首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hypertonic stress (HS) can alter the function of mammalian cells. We have reported that HS enhances differentiated responses of T cells by increasing their ability to produce interleukin (IL)-2, a finding of clinical interest because hypertonic infusions may modulate immune function in patients. HS shrinks cells and mechanically deforms membranes, which results in ATP release from many cell types. Here we investigate if ATP release is an underlying mechanism through which HS augments T cell function. We found that mechanical stress and HS induced rapid ATP release from Jurkat T cells. HS and exogenous ATP mobilized intracellular Ca(2+), activated p38 MAPK, and increased IL-2 expression. Ca(2+) mobilization was attenuated in the presence of EGTA or by removal of extracellular ATP with apyrase. Adenosine did not increase IL-2 expression, as did ATP. Apyrase, inhibition of P2 receptors, or inhibition of p38 MAPK with SB203580 reduced the stimulatory effects of HS, indicating that HS enhances IL-2 expression through a mechanism that involves ATP release, P2 (perhaps P2X7) receptors, and p38 MAPK activation. We conclude that release of and response to ATP plays a key role in the mechanism through which hypertonic stress regulates the function of T cells.  相似文献   

2.
p38 MAPK was originally characterized as a stress-induced kinase, along with JNK. Subsequently, p38 MAPK was found to be activated by stimuli other than cellular stress, such as growth factors and mitogens, like interleukin (IL)-2, IL-7 and IL-3. A notable exception was IL-4, as studies in mast cells showed no activation of p38 MAPK by this cytokine. In this study we show that the regulation of p38 MAPK is cell type dependent. Like other cytokines that signal through the gamma (gamma)(c), IL-4 can activate p38 MAPK in the CT6 T-cell line and BA/F3 pro-B-cells. However, IL-4 was unable to activate p38 MAPK in the murine macrophage cell line, RAW 264.7 and, indeed, prolonged exposure of cells to IL-4 results in suppression of LPS-induced MAPK activation. This result correlates with the well defined inhibitory effect of IL-4 on tumour necrosis factor alpha (TNFalpha) production. In contrast, studies in primary human monocytes showed that prolonged exposure to IL-4 resulted in enhanced activation of LPS-stimulated p38 MAPK; this correlated with an enhanced TNFalpha production. These data highlight the complexity of IL-4 signalling mechanisms, the diversity that can exist in the regulation of a given signalling pathway by a given cytokine and, furthermore, indicate the problems that can arise from extrapolation between different cell systems.  相似文献   

3.
4.
The role of reactive oxygen species (ROS) in regulating the expression of the inducible nitric oxide synthase (iNOS) was studied in rat aortic vascular smooth muscle cells (VSMC). We hypothesized that ROS regulate iNOS expression through the mitogen-activated protein kinases ERK and p38(MAPK). We found that interleukin-1beta (IL-1beta) stimulated the production of hydrogen peroxide (H2O2) which could be inhibited by loading the cells with the H2O2-scavenging enzyme catalase. Inhibition of the upstream ERK1,2 activator MEK1,2 with U0126 prevented IL-1beta-stimulated iNOS expression, while the p38MAPK inhibitor SB03580 potentiated iNOS expression. Loading the cells with catalase enhanced ERK activation and iNOS expression but had no effect on p38MAPK activation or PDGF-induced ERK activation. These data indicated that H2O2 negatively regulates iNOS expression through ERK inhibition independently of p38MAPK. The present results outline a novel role for H2O2 in suppressing signaling pathways leading to gene expression such as iNOS in VSMC in response to cytokines.  相似文献   

5.
Natural killer (NK) cells play an important role in the innate immune response. Interleukin-18 (IL-18) is a well-known interferon-gamma (IFN-γ inducing factor, which stimulates immune response in NK and T cells. Sphingosine kinase (SPHK) catalyzes the formation of sphingosine 1-phosphate (S1P), which acts as a second messenger to function as an anti-apoptotic factor and proliferation stimulator of immune cells. In this study, to elucidate whether SPHK is involved in IL-18-induced IFN-γ production, we measured IL-18-induced IFN-γ production after pre-treatment with SPHK inhibitor (SKI) in NK-92MI cells. We found that IL-18-induced IFN-γ expression was blocked by SKI pre-treatment in both mRNA and protein levels. In addition, the increased IFN-γ production by stimulation with IL-18 is mediated through both SPHK and p38 MAPK. To determine the upstream signals of SKI and p38 MAPK in IL-18-induced IFN-γ production, phosphorylation levels of p38 MAPK was measured after SKI pre-treatment. As a result, inhibition of SPHK by SKI blocked phosphorylation of p38 MAPK, showing that SPHK activation by IL-18 is an upstream signal of p38 MAPK activation. Inhibition of SPHK by SKI also inhibited IL-18-induced IFN-γ production in human primary NK cells. In conclusion, SPHK activation is an essential factor for IL-18-induced IFN-γ production via p38 MAPK.  相似文献   

6.
7.
8.
9.
10.
The effects of epigallocatechin-3-gallate (EGCG) on dendritic cells (DC) maturation were investigated. EGCG, in a dose-dependent manner, profoundly inhibited CD80, CD86, and MHC class I and II expression on bone marrow-derived murine myeloid DC. EGCG restored the decreased dextran-FITC uptake and inhibited enhanced IL-12 production by LPS-treated DC. EGCG-treated DC were poor stimulators of nai;ve allogeneic T-cell proliferation and reduced levels of IL-2 production in responding T cells. EGCG-pretreated DC inhibited LPS-induced MAPKs, such as ERK1/2, p38, JNK, and NF-kappaB p65 translocation. Therefore, the molecular mechanisms by which EGCG antagonized LPS-induced DC maturation appeared to involve the inhibition of MAPK and NF-kappaB activation. These novel findings provide new insight into the immunopharmacological role of EGCG and suggest a novel approach to the manipulation of DC for therapeutic application of autoimmune and allergic diseases.  相似文献   

11.
Yu G  Luo H  Wu Y  Wu J 《The Journal of biological chemistry》2003,278(47):47209-47216
Ephrins (EFN) are cell-surface ligands of Ephs, the largest family of cell-surface receptor tyrosine kinases. The function of EFNs in the immune system has not been well studied, although some EFNs and Ephs are expressed at high levels on certain leukocytes. We report here that EFNB3 and its receptors (collectively called EFNB3Rs, as EFNB3 binds to multiple EphBs) were expressed in peripheral T cells and monocytes/macrophages, with T cells being the dominant EFNB3+ and EFNB3R+ cell type. Solid-phase EFNB3-Fc in the presence of suboptimal anti-CD3 crosslinking enhanced T-cell responses in terms of proliferation, activation marker expression, interferon-gamma but not interleukin-2 production, and cytotoxic T-cell activity. EFNB3R costimulation in the presence of phorbol 12-myristate 13- acetate was insensitive to cyclosporin A, similar to CD28 costimulation, suggesting they might share a part of the signaling pathway. After crosslinking, T-cell receptor and EFNB3R congregated into aggregated rafts, and this provided a morphological basis for signaling pathways of T-cell receptor and EFNB3R to interact. Solid-phase EFNB3-Fc augmented p38 and p44/42 MAPK activation further downstream of the signaling pathway. These data suggest that EFNB3 is important in T-cell/T-cell and T-cell/antigen-presenting cell collaboration to enhance T-cell activation and function.  相似文献   

12.
13.
Activation of na?ve T cells requires synergistic signals produced by the T-cell receptor (TCR) and by CD28. We previously identified the novel adaptor ALX, which, upon overexpression in Jurkat T cells, inhibited activation of the interleukin-2 (IL-2) promoter by TCR/CD28, suggesting that it is a negative regulator of T-cell activation. To further understand the physiological role of ALX, ALX-deficient mice were generated. Purified T cells from ALX-deficient mice demonstrated increased IL-2 production, CD25 expression, and proliferation in response to TCR/CD28 stimulation. Enhanced IL-2 production and proliferation were also observed when ALX-deficient mice were primed in vivo with ovalbumin-complete Freund's adjuvant and then restimulated ex vivo. Consistent with our initial overexpression studies, these data demonstrate that ALX is a negative regulator of T-cell activation. While TCR/CD28-mediated activations of phosphotyrosine induction, extracellular signal-regulated kinase 1/2, Jun N-terminal protein kinase, IkappaB kinase alpha/beta, and Akt were unaltered, constitutive activation of p38 mitogen-activated protein kinase and its upstream regulators MKK3/6 were observed for ALX-deficient splenocytes. The phenotype of ALX-deficient mice resembled the phenotype of those deficient in the transmembrane adaptor LAX, and an association between ALX and LAX proteins was demonstrated. These results suggest that ALX, in association with LAX, negatively regulates T-cell activation through inhibition of p38.  相似文献   

14.
15.
16.
The role of the p38 MAPK signaling cascade was studied in stress response of RAW 264.7 macrophages to extremely low-intensity centimeter microwaves. Irradiation stimulated production of a number of cytokines (IL-1, IL-6, TNF-α, INF-γ and IL-10), as well as induced activation of the signaling cascades NF- κB and p38 MAPK, and enhanced expression of Hsp72 heat shock protein. In the presence of the cascade p38 MAPK inhibitor (p38 MAP kinase inhibitor XI), the stimulating effects of electromagnetic waves were abrogated either completely (for NF-κB and Hsp72) or partially (for p38 MAPK and cytokines). The results obtained are indicative of a high sensitivity of the signaling cascade p38 MAPK to the effect of low-intensity physical fields.  相似文献   

17.
18.
The dual-specificity mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP-1) inactivates MAP kinases by dephosphorylation. Here we show that the proinflammatory cytokine interleukin (IL)-17A induces adult mouse primary cardiac fibroblast (CF) proliferation and migration via IL-17 receptor A//IL-17 receptor C-dependent MKP-1 suppression, and activation of p38 MAPK and ERK1/2. IL-17A mediated p38 MAPK and ERK1/2 activation is inhibited by MKP-1 overexpression, but prolonged by MKP-1 knockdown. IL-17A induced miR-101 expression via PI3K/Akt, and miR-101 inhibitor reversed MKP-1 down regulation. Importantly, MKP-1 knockdown, pharmacological inhibition of p38 MAPK and ERK1/2, or overexpression of dominant negative MEK1, each markedly attenuated IL-17A-mediated CF proliferation and migration. Similarly, IL-17F and IL-17A/F heterodimer that also signal via IL-17RA/IL-17RC, stimulated CF proliferation and migration. These results indicate that IL-17A stimulates CF proliferation and migration via Akt/miR-101/MKP-1-dependent p38 MAPK and ERK1/2 activation. These studies support a potential role for IL-17 in cardiac fibrosis and adverse myocardial remodeling.  相似文献   

19.
Using a T cell clone (2D6) capable of responding to IL-2 and IL-12, we compared the effects of NAC on IL-2 and IL-12-driven T cell proliferation. Addition of N-acetylcysteine (NAC) to 2D6 cultures did not affect IL-2 stimulated proliferation, but strikingly inhibited IL-12 stimulated proliferation. These differential NAC effects did not correlate with the patterns of the mitogen-activated protein kinase (MAPK) activation following cytokine stimulation and its regulation by NAC. Although a p38 MAPK inhibitor downregulated both IL-2- and IL-12-induced proliferation, this effect was seen at drug concentrations one order higher than those reportedly used to specifically inhibit p38 MAPK. The results suggest the existence of distinct signalling pathways and a common, indispensable signalling molecule in IL-2- and IL-12 driven T cell proliferation.  相似文献   

20.
We reported previously that the early secreted antigenic target of 6 kDa (ESAT-6) from Mycobacterium tuberculosis directly inhibits human T cell IFN-γ production and proliferation in response to stimulation with anti-CD3 and anti-CD28. To determine the mechanism of this effect, we treated T cells with kinase inhibitors before stimulation with ESAT-6. Only the p38 MAPK inhibitor, SB203580, abrogated ESAT-6-mediated inhibition of IFN-γ production in a dose-dependent manner. SB203580 did not reverse ESAT-6-mediated inhibition of IL-17 and IL-10 production, suggesting a specific effect of SB203580 on IFN-γ production. SB203580 did not act through inhibition of AKT (PKB) as an AKT inhibitor did not affect ESAT-6 inhibition of T cell IFN-γ production and proliferation. ESAT-6 did not reduce IFN-γ production by expanding FoxP3(+) T regulatory cells. Incubation of T cells with ESAT-6 induced phosphorylation and increased functional p38 MAPK activity, but not activation of ERK or JNK. Incubation of peripheral blood mononuclear cells with ESAT-6 induced activation of p38 MAPK, and inhibition of p38 MAPK with SB203580 reversed ESAT-6 inhibition of M. tuberculosis-stimulated IFN-γ production by peripheral blood mononuclear cells from subjects with latent tuberculosis infection. Silencing of p38α MAPK with siRNA rendered T cells resistant to ESAT-6 inhibition of IFN-γ production. Taken together, our results demonstrate that ESAT-6 inhibits T cell IFN-γ production in a p38 MAPK-dependent manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号