首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe in the present paper mutations of the catalytic subunit α of PKA (protein kinase A) that introduce amino acid side chains into the ATP-binding site and progressively transform the pocket to mimic that of Aurora protein kinases. The resultant PKA variants are enzymatically active and exhibit high affinity for ATP site inhibitors that are specific for Aurora kinases. These features make the Aurora-chimaeric PKA a valuable tool for structure-based drug discovery tasks. Analysis of crystal structures of the chimaera reveal the roles for individual amino acid residues in the binding of a variety of inhibitors, offering key insights into selectivity mechanisms. Furthermore, the high affinity for Aurora kinase-specific inhibitors, combined with the favourable crystallizability properties of PKA, allow rapid determination of inhibitor complex structures at an atomic resolution. We demonstrate the utility of the Aurora-chimaeric PKA by measuring binding kinetics for three Aurora kinase-specific inhibitors, and present the X-ray structures of the chimaeric enzyme in complex with VX-680 (MK-0457) and JNJ-7706621 [Aurora kinase/CDK (cyclin-dependent kinase) inhibitor].  相似文献   

2.
Epidermal growth factor receptor (EGFR) mutant non-small cell lung cancers acquire resistance to EGFR tyrosine kinase inhibitors through multiple mechanisms including c-Met receptor pathway activation. We generated a bispecific antibody targeting EGFR and c-Met (JNJ-61186372) demonstrating anti-tumor activity in wild-type and mutant EGFR settings with c-Met pathway activation. JNJ-61186372 was engineered with low fucosylation (<10 %), resulting in enhanced antibody-dependent cell-mediated cytotoxicity and FcγRIIIa binding. In vitro and in vivo studies with the single-arm EGFR or c-Met versions of JNJ-61186372 identified that the Fc-activity of JNJ-61186372 is mediated by binding of the anti-EGFR arm and required for inhibition of EGFR-driven tumor cells. In a tumor model driven by both EGFR and c-Met, treatment with Fc-silent JNJ-61186372 or with c-Met single-arm antibody reduced tumor growth inhibition compared to treatment with JNJ-61186372, suggesting that the Fc function of JNJ-61186372 is essential for maximal tumor inhibition. Moreover in this same model, downregulation of both EGFR and c-Met receptors was observed upon treatment with Fc-competent JNJ-61186372, suggesting that the Fc interactions are necessary for down-modulation of the receptors in vivo and for efficacy. These Fc-mediated activities, in combination with inhibition of both the EGFR and c-Met signaling pathways, highlight the multiple mechanisms by which JNJ-61186372 combats therapeutic resistance in EGFR mutant patients.  相似文献   

3.
Androgens are required for the maintenance of normal sexual activity in adulthood and for enhancing muscle growth and lean body mass in adolescents and adults. Androgen receptor (AR) ligands with tissue selectivity (selective androgen receptor modulators, or SARMs) have potential for treating muscle wasting, hypogonadism of aging, osteoporosis, female sexual dysfunction, and other indications. JNJ-37654032 is a nonsteroidal AR ligand with mixed agonist and antagonist activity in androgen-responsive cell-based assays. It is an orally active SARM with muscle selectivity in orchidectomized rat models. It stimulated growth of the levator ani muscle with ED(50) 0.8 mg/kg, stimulating maximal growth at a dose of 3mg/kg. In contrast, it stimulated ventral prostate growth to 21% of its full size at 3mg/kg. At the same time, JNJ-37654032 reduced prostate weight in intact rats by 47% at 3mg/kg, while having no inhibitory effect on muscle. Using magnetic resonance imaging to monitor body composition, JNJ-37654032 restored about 20% of the lean body mass lost following orchidectomy in aged rats. JNJ-37654032 reduced follicle-stimulating hormone levels in orchidectomized rats and reduced testis size in intact rats. JNJ-37654032 is a potent prostate-sparing SARM with the potential for clinical benefit in muscle-wasting diseases.  相似文献   

4.
G-protein-coupled receptor (GPCR) agonists are known to induce both cellular adaptations resulting in tolerance to therapeutic effects and withdrawal symptoms upon treatment discontinuation. Glutamate neurotransmission is an integral part of sleep-wake mechanisms, which processes have translational relevance for central activity and target engagement. Here, we investigated the efficacy and tolerance potential of the metabotropic glutamate receptors (mGluR2/3) agonist LY354740 versus mGluR2 positive allosteric modulator (PAM) JNJ-42153605 on sleep-wake organisation in rats. In vitro, the selectivity and potency of JNJ-42153605 were characterized. In vivo, effects on sleep measures were investigated in rats after once daily oral repeated treatment for 7 days, withdrawal and consecutive re-administration of LY354740 (1–10 mg/kg) and JNJ-42153605 (3–30 mg/kg). JNJ-42153605 showed high affinity, potency and selectivity at mGluR2. Binding site analyses and knowledge-based docking confirmed the specificity of JNJ-42153605 at the mGluR2 allosteric binding site. Acute LY354740 and JNJ-42153605 dose-dependently decreased rapid eye movement (REM) sleep time and prolonged its onset latency. Sub chronic effects of LY354740 on REM sleep measures disappeared from day 3 onwards, whereas those of JNJ-42153605 were maintained after repeated exposure. LY354740 attenuated REM sleep homeostatic recovery, while this was preserved after JNJ-42153605 administration. JNJ-42153605 enhanced sleep continuity and efficiency, suggesting its potential as an add-on medication for impaired sleep quality during early stages of treatment. Abrupt cessation of JNJ-42153605 did not induce withdrawal phenomena and sleep disturbances, while the initial drug effect was fully reinstated after re-administration. Collectively, long-term treatment with JNJ-42153605 did not induce tolerance phenomena to its primary functional effects on sleep measures, nor adverse effects at withdrawal, while it promoted homeostatic recovery sleep. From the translational perspective, the present rodent findings suggest that mGluR2 positive allosteric modulation has therapeutic potential based on its superior long term efficacy over agonists in psychiatric disorders, particularly of those commonly occurring with REM sleep overdrive.  相似文献   

5.
Multispecific proteins, such as bispecific antibodies (BsAbs), that bind to two different ligands are becoming increasingly important therapeutic agents. Such BsAbs can exhibit markedly increased target binding and target residence time when both pharmacophores bind simultaneously to their targets. The cross-arm binding efficiency (χ) describes an increase in apparent affinity when a BsAb binds to the second target or receptor (R2) following its binding to the first target or receptor (R1) on the same cell. χ is an intrinsic characteristic of a BsAb mostly related to the binding epitopes on R1 and R2. χ can have significant impacts on the binding to R2 for BsAbs targeting two receptors on the same cell. JNJ-61186372, a BsAb that targets epidermal growth factor receptor (EGFR) and c-Met, was used as the model compound for establishing a method to characterize χ. The χ for JNJ-61186372 was successfully determined via fitting of in vitro cell binding data to a ligand binding model that incorporated χ. The model-derived χ value was used to predict the binding of JNJ-61186372 to individual EGFR and c-Met receptors on tumor cell lines, and the results agreed well with the observed IC50 for EGFR and c-Met phosphorylation inhibition by JNJ-61186372. Consistent with the model, JNJ-61186372 was shown to be more effective than the combination therapy of anti-EGFR and anti-c-Met monovalent antibodies at the same dose level in a mouse xenograft model. Our results showed that χ is an important characteristic of BsAbs, and should be considered for rationale design of BsAbs targeting two membrane bound targets on the same cell.  相似文献   

6.
The pharmacological activity of JNJ-26146900 is described. JNJ-26146900 is a nonsteroidal androgen receptor (AR) ligand with tissue-selective activity in rats. The compound was evaluated in in vitro and in vivo models of AR activity. It binds to the rat AR with a K(i) of 400nM and acts as a pure androgen antagonist in an in vitro cell-based assay. Its in vitro profile is similar to the androgen antagonist bicalutamide (Casodex). In intact rats, JNJ-26146900 reduces ventral prostate weight with an oral potency (ED(50)) of 20-30mg/kg, again comparable to that of bicalutamide. JNJ-26146900 prevented prostate tumor growth in the Dunning rat model, maximally inhibiting growth at a dose of 10mg/kg. It slowed tumor growth significantly in a CWR22-LD1 mouse xenograft model of human prostate cancer. It was tested in aged male rats for its ability to prevent bone loss and loss of lean body mass following orchidectomy. After 6 weeks of dosing, bone volume decreased by 33% in orchidectomized versus intact vehicle-treated rats with a probability (P) of less than 0.05, as measured by micro-computerized tomography analysis. At a dose of 30mg/kg, JNJ-26146900 significantly reduced castration-induced tibial bone loss as indicated by the following parameters: bone volume, trabecular connectivity, trabecular number and spacing between trabeculae. Bone mineral density decreased from 229+/-34mg/cm(3) of hydroxyapatite to 166+/-26mg/cm(3) following orchidectomy, and was maintained at 194+/-20mg/cm(3) with JNJ-26146900 treatment (P<0.05 relative to orchidectomy alone). Using magnetic resonance imaging, the compound was found to partially prevent orchidectomy-induced loss of lean body mass. Our data show that selective androgen receptor modulators (SARMs) have the potential for anabolic effects on bone and muscle while maintaining therapeutic efficacy in prostate cancer.  相似文献   

7.
Allan GF  Palmer E  Musto A  Lai MT  Clancy J  Palmer S 《Steroids》2006,71(7):578-584
Progesterone receptor modulators have diverse potential therapeutic uses, including the treatment of endometriosis, uterine fibroids and breast cancer. Here we describe the molecular properties and preclinical pharmacology of a new steroidal progestin antagonist, JNJ-1250132. The compound is a high affinity ligand for the progesterone receptor, possessing cross-reactivity with other steroid receptors comparable to that of steroidal antagonists such as mifepristone. It inhibits progestin-inducible alkaline phosphatase gene expression in T47D human breast cancer cells, and also inhibits their in vitro proliferation. It inhibits gestation in rats and progesterone-dependent endometrial transformation in rabbits with efficacies comparable to mifepristone. Like mifepristone, it is a glucocorticoid antagonist in vivo. In cell-free DNA binding assays, the compound inhibits binding of the human progesterone receptor to a progesterone response element, and thus is similar to onapristone in this regard. In contrast, as judged by proteolytic analysis, JNJ-1250132 induces a receptor conformation more similar to that induced by mifepristone, which promotes receptor binding to DNA. Therefore, JNJ-1250132 has unique effects on the progesterone receptor that may translate into a novel clinical profile.  相似文献   

8.
The efficacy of engaging multiple drug targets using bispecific antibodies (BsAbs) is affected by the relative cell-surface protein levels of the respective targets. In this work, the receptor density values were correlated to the in vitro activity of a BsAb (JNJ-61186372) targeting epidermal growth factor receptor (EGFR) and hepatocyte growth factor receptor (c-MET). Simultaneous binding of the BsAb to both receptors was confirmed in vitro. By using controlled Fab-arm exchange, a set of BsAbs targeting EGFR and c-MET was generated to establish an accurate receptor quantitation of a panel of lung and gastric cancer cell lines expressing heterogeneous levels of EGFR and c-MET. EGFR and c-MET receptor density levels were correlated to the respective gene expression levels as well as to the respective receptor phosphorylation inhibition values. We observed a bias in BsAb binding toward the more highly expressed of the two receptors, EGFR or c-MET, which resulted in the enhanced in vitro potency of JNJ-61186372 against the less highly expressed target. On the basis of these observations, we propose an avidity model of how JNJ-61186372 engages EGFR and c-MET with potentially broad implications for bispecific drug efficacy and design.  相似文献   

9.
Synthesis and biological evaluation of possible prodrugs of COX-2 inhibitors involving sulfonamide and hydroxymethyl groups of 2-hydroxymethyl-4-(5-phenyl-3-trifluoromethyl-pyrazol-1-yl) benzenesulfonamides are described. Out of many options, the sodium salt of N-propionyl sulfonamide demonstrated much improved pharmacological profiles and physicochemical properties suitable for oral as well as parenteral administration.  相似文献   

10.
Screening of the NCI Diversity Set-1 identified PI-083 (NSC-45382) a proteasome inhibitor selective for cancer over normal cells. Focused libraries of novel compounds based on PI-083 chloronaphthoquinone and sulfonamide moieties were synthesized to gain a better understanding of the structure–activity relationship responsible for chymotrypsin-like proteasome inhibitory activity. This led to the demonstration that the chloronaphthoquinone and the sulfonamide moieties are critical for inhibitory activity. The pyridyl group in PI-083 can be replaced with other heterocyclic groups without significant loss of activity. Molecular modeling studies were also performed to explore the detailed interactions of PI-083 and its derivatives with the β5 and β6 subunits of the 20S proteasome. The refined model showed an H-bond interaction between the Asp-114 and the sulfonamide moiety of the PI-083 in the β6 subunit.  相似文献   

11.
A series of sulfonamide neuropeptide Y Y5 antagonists was optimized by preparation of sets of analogues using high-throughput synthesis and purification techniques. Testing of these compounds for their ability to bind to the human NPY Y5 receptor revealed separate SAR trends for sulfonamide amides versus sulfonamide ureas versus sulfonamide amines. By understanding these SAR trends, potent compounds were identified in all three series.  相似文献   

12.
N-protected amino acids (Gly, Ala and Phe protected with Boc and Z groups) were reacted with sulfonamide derivatives, leading to the corresponding N-protected amino acid–sulfonamide conjugates. The carbonic anhydrase (CA, EC 4.2.1.1) inhibitory activity of the new compounds was assessed against four human (h) isoforms, hCA I, hCA II, hCA IV and hCA XII. Among them, hCA II, IV and XII are antiglaucoma drug targets, being involved in aqueous humor secretion within the eye. Low nanomolar inhibition was measured against all four isoforms with the 20 reported sulfonamides, but no selective inhibitory profiles, except for some CA XII-selective derivatives, were observed. hCA I, II and XII were generally better inhibited by sulfonamides incorporating longer scaffolds and Gly/Ala, whereas the best hCA IV inhibitors were homosulfanilamide derivatives, incorporating Phe moieties. The amino acid–sulfonamide conjugates show good water solubility and effective hCA II, IV and XII inhibition, and may be considered as interesting candidates for antiglaucoma studies.  相似文献   

13.
The hepatitis C virus (HCV) NS3 protease has emerged as a promising anti-HCV drug target. Herein, we present an investigation of NS3 inhibitors comprising the acyl sulfonamide functionality. A series of tetra- and tripeptide based acyl sulfonamide inhibitors and their structure-activity relationships from both enzymatic and cell-based in vitro assays are presented. In summary, the acidity of the acyl sulfonamide functionality, the character of the P1 side chain, and the acyl sulfonamide substituent were found to be important for the inhibitory potencies.  相似文献   

14.
Being the primary sulfonamide among the most efficient zinc binding group (ZBG) to design inhibitors for the metallo-enzymes carbonic anhydrases (CA, EC 4.2.1.1), herein, we propose an investigation on four physiologically important human (h) CAs (hCA I, II, IV, and IX) with N1-substituted secondary sulfonamides incorporating thiazolinone or imidazolone-indole tails. The effect of the functionalisation of the sulfonamide group with five different substitution patterns, namely acetyl, pyridine, thiazole, pyrimidine, and carbamimidoyl, was evaluated in relation to the inhibition profile of the corresponding primary sulfonamide analogues. With most of these latter being nanomolar inhibitors of all four considered isoforms, a totally counterproductive effect on the inhibition potency can be ascribed to N1-functionalisations of the ZBG primary sulfonamide structure with pyridine, thiazole, and pyrimidine moieties. On the other hand, incorporation of less hindered groups, such as sulfonylacetamides and sulfonylguanidines, maintained a certain degree of activity dependent on the tailing moiety, with KIs spanning in the low micromolar range.  相似文献   

15.
周丛生物膜是一种对水体污染物净化的新兴生物技术。有关水体不同氮磷营养水平下周丛生物对水体抗生素类污染物去除作用的研究还未见报道。本研究设置4个氮磷营养盐浓度水平[N-P (mg·L-1):2-0.2、5-0.5、8-0.8、11-1.1],用塑料筐装置在室外培养周丛生物膜,对其生长、光合活力、物种组成以及对磺胺和恩诺沙星去除作用进行中型模拟试验。结果表明: 各处理组中周丛生物的生物量随培养时间的增加而升高,光合色素含量和光合活力则呈现先降低后上升的“单峰”模式,表明生物膜中的藻类会受到抗生素的胁迫,但可快速适应并恢复活力。除此之外,不同氮磷浓度处理造成各组生物群落组成差异,随营养盐浓度的升高,周丛藻类物种丰富度逐渐下降,但各处理胶网藻和小球藻都具有较高的相对丰度;16S rRNA高通量测序发现,根瘤菌科、放线菌门和莫拉氏菌科菌群在(N-P)2-0.2组显著富集,而几丁质嗜菌科在4个处理中的相对丰度都处在最高水平。所有处理的磺胺去除率均高于50%,而恩诺沙星去除率均达到90%以上,其中,(N-P)2-0.2 mg·L-1组对磺胺的去除率(65.8%)显著高于其他各组,但各处理对恩诺沙星的去除率差异不显著,表明周丛生物在较宽的N-P营养水平范围内对磺胺和恩诺沙星均具有良好的去除能力。各处理组对水体可溶性氮的去除效果不明显,但对可溶性磷的去除效果显著。本研究为水体磺胺和恩诺沙星的生态去除提供了基础数据,为研发水体抗生素类新型污染物生态去除技术提供了新思路。  相似文献   

16.
The structure-based design of potent sulfonamide hydroxamate TACE inhibitors bearing novel acetylenic P1' groups has led to compounds with excellent in vitro potency against TACE and selectivity over MMP-1.  相似文献   

17.
M Tanaka  T Yamamoto    T Sawai 《Journal of bacteriology》1983,153(3):1432-1438
The molecular interrelationship of a transposon family which confers multiple antibiotic resistance and is assumed to have been generated from an ancestral mercury transposon was analyzed. Initially, the transposons Tn2613 (7.2 kilobases), encoding mercury resistance, and Tn2608 (13.5 kilobases), encoding mercury, streptomycin, and sulfonamide resistances, were isolated and their structures were analyzed. Next, the following transposons were compared with respect to their genetic and physical maps: Tn2613 and Tn501, encoding mercury resistance; Tn2608 and Tn21, encoding mercury, streptomycin, and sulfonamide resistance; Tn2607 and Tn4, encoding streptomycin, sulfonamide, and ampicillin resistance; and Tn2603, encoding mercury, streptomycin, sulfonamide, and ampicillin resistance. The results suggest that the transposons encoding multiple resistance were evolved from an ancestral mercury transposon.  相似文献   

18.
Four strains of Neisseria meningitidis were studied during serial passage. From two strains which originally were sulfonamide resistant, variants developed that had altered susceptibility to sulfonamides. One of the variants became relatively highly sulfonamide-sensitive, the other exhibited merely reduced sulfonamide resistance. There was a difference in the resistance pattern for two sulfonamides (sulfaisodimidine and sulfamethoxazole), and the effect of inoculum size and growth conditions in three different media could be demonstrated. Although the patterns of susceptibility to other antibacterial agents were different for the strains studied, no further susceptibility alterations occurred in parallel to the sulfonamide sensitivity changes. The variants also lost their ability to liberate free endotoxin.  相似文献   

19.
Probenecid inhibits anion movements (organic anions and chloride) in ox erythrocytes. The I50 is 4. 10(-5) M. Structural analogues such as carinamide, p-carboxybenzene sulfonamide and p-carboxy N,N-diethyl benzene sulfonamide, which are drugs of the sulfonamide class, were also found to inhibit anion transport. These results reinforce the previously discussed view based on structural considerations, that sulfonamides act on the red cell membrane as competitors of anion transport. It is possible that probenecid and carinamide act in a similar way in the kidney.  相似文献   

20.
Tertiary N-acyloxymethyl- and N-[(aminocarbonyloxy)methyl]sulfonamides were synthesised and evaluated as novel classes of potential prodrugs of agents containing a secondary sulfonamide group. The chemical and plasma hydrolyses of the title compounds were studied by HPLC. Tertiary N-acyloxymethylsulfonamides are slowly and quantitatively hydrolysed to the parent sulfonamide in pH 7.4 phosphate buffer, with half-lives ranging from 20 h, for 7d, to 30 days, for 7g. Quantitative formation of the parent sulfonamide also occurs in human plasma, the half-lives being within 0.2-2.0 min for some substrates. The rapid rate of hydrolysis can be ascribed to plasma cholinesterase, as indicated by the complete inhibition observed at [eserine] = 0.10 mM. These results suggest that tertiary N-acyloxymethylsulfonamides are potentially useful prodrugs for agents containing a secondary sulfonamide group, especially with pKa < 8, combining a high stability in aqueous media with a high rate of plasma activation. In contrast, N-[(aminocarbonyloxy)methyl]sulfonamides 7h-j do not liberate the parent sulfonamide either in aqueous buffers or in human plasma and thus appear to be unsuitable for development as sulfonamide prodrugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号