首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Type I myosins in yeast, Myo3p and Myo5p (Myo3/5p), are involved in the reorganization of the actin cytoskeleton. The SH3 domain of Myo5p regulates the polymerization of actin through interactions with both Las17p, a homolog of mammalian Wiskott-Aldrich syndrome protein (WASP), and Vrp1p, a homolog of WASP-interacting protein (WIP). Vrp1p is required for both the localization of Myo5p to cortical patch-like structures and the ATP-independent interaction between the Myo5p tail region and actin filaments. We have identified and characterized a new adaptor protein, Mti1p (Myosin tail region-interacting protein), which interacts with the SH3 domains of Myo3/5p. Mti1p co-immunoprecipitated with Myo5p and Mti1p-GFP co-localized with cortical actin patches. A null mutation of MTI1 exhibited synthetic lethal phenotypes with mutations in SAC6 and SLA2, which encode actin-bundling and cortical actin-binding proteins, respectively. Although the mti1 null mutation alone did not display any obvious phenotype, it suppressed vrp1 mutation phenotypes, including temperature-sensitive growth, abnormally large cell morphology, defects in endocytosis and salt-sensitive growth. These results suggest that Mti1p and Vrp1p antagonistically regulate type I myosin functions.  相似文献   

2.
In Saccharomyces cerevisiae, the WASP (Wiskott-Aldrich syndrome protein) homologue Las17p (also called Bee1p) is an important component of cortical actin patches. Las17p is part of a high-molecular-weight protein complex that regulates Arp2/3 complex-dependent actin polymerization at the cell cortex and that includes the type I myosins Myo3p and Myo5p and verprolin (Vrp1p). To identify other factors implicated with this complex in actin regulation, we isolated proteins that bind to Las17p by two-hybrid screening and affinity chromatography. Here, we report the characterization of Lsb7/Bzz1p (for Las seventeen binding protein 7), an Src homology 3 (SH3) domain protein that interacts directly with Las17p via a polyproline-SH3 interaction. Bzz1p coimmunoprecipitates in a complex with Las17p, Vrp1p, Myo3/5p, Bbc1p, Hsp70p, and actin. It colocalizes with cortical actin patches and with Las17p. This localization is dependent on Las17p, but not on F-actin. Bzz1p interacts physically and genetically with type I myosins. While deletion of BZZ1 shows no obvious phenotype, simultaneous deletion of the BZZ1, MYO3, and MYO5 genes is lethal. Overexpression of Bzz1p inhibits cell growth, and a bzz1Delta myo5Delta double mutant is unable to restore actin polarity after NaCl stress. Finally, Bzz1p in vitro is able to recruit a functional actin polymerization machinery through its SH3 domains. Its interactions with Las17p, Vrp1p, and the type I myosins are essential for this process. This suggests that Bzz1p could be implicated in the regulation of actin polymerization.  相似文献   

3.
Myosins‐I are conserved proteins that bear an N‐terminal motor head followed by a Tail Homology 1 (TH1) lipid‐binding domain. Some myosins‐I have an additional C‐terminal extension (Cext) that promotes Arp2/3 complex‐dependent actin polymerization. The head and the tail are separated by a neck that binds calmodulin or calmodulin‐related light chains. Myosins‐I are known to participate in actin‐dependent membrane remodelling. However, the molecular mechanisms controlling their recruitment and their biochemical activities in vivo are far from being understood. In this study, we provided evidence suggesting the existence of an inhibitory interaction between the TH1 domain of the yeast myosin‐I Myo5 and its Cext. The TH1 domain prevented binding of the Myo5 Cext to the yeast WIP homologue Vrp1, Myo5 Cext‐induced actin polymerization and recruitment of the Myo5 Cext to endocytic sites. Our data also indicated that calmodulin dissociation from Myo5 weakened the interaction between the neck and TH1 domains and the Cext. Concomitantly, calmodulin dissociation triggered Myo5 binding to Vrp1, extended the myosin‐I lifespan at endocytic sites and activated Myo5‐induced actin polymerization.  相似文献   

4.
The budding yeast contains two type I myosins, Myo3p and Myo5p, with redundant functions. Deletion of both myosins results in growth defects, loss of actin polarity and polarized cell surface growth, and accumulation of intracellular membranes. Expression of myc-tagged Myo5p in myo3Δ myo5Δ cells fully restores wild-type characteristics. Myo5p is localized as punctate, cortical structures enriched at sites of polarized cell growth. We find that latrunculin-A–induced depolymerization of F-actin results in loss of Myo5p patches. Moreover, incubation of yeast cells at 37°C results in transient depolarization of both Myo5p patches and the actin cytoskeleton. Mutant Myo5 proteins with deletions in nonmotor domains were expressed in myo3Δ myo5Δ cells and the resulting strains were analyzed for Myo5p function. Deletion of the tail homology 2 (TH2) domain, previously implicated in ATP-insensitive actin binding, has no detectable effect on Myo5p function. In contrast, myo3Δ myo5Δ cells expressing mutant Myo5 proteins with deletions of the src homology domain 3 (SH3) or both TH2 and SH3 domains display defects including Myo5p patch depolarization, actin disorganization, and phenotypes associated with actin dysfunction. These findings support a role for the SH3 domain in Myo5p localization and function in budding yeast. The proline-rich protein verprolin (Vrp1p) binds to the SH3 domain of Myo3p or Myo5p in two-hybrid tests, coimmunoprecipitates with Myo5p, and colocalizes with Myo5p. Immunolocalization of the myc-tagged SH3 domain of Myo5p reveals diffuse cytoplasmic staining. Thus, the SH3 domain of Myo5p contributes to but is not sufficient for localization of Myo5p either to patches or to sites of polarized cell growth. Consistent with this, Myo5p patches assemble but do not localize to sites of polarized cell surface growth in a VRP1 deletion mutant. Our studies support a multistep model for Myo5p targeting in yeast. The first step, assembly of Myo5p patches, is dependent upon F-actin, and the second step, polarization of actin patches, requiresVrp1p and the SH3 domain of Myo5p.  相似文献   

5.
Type I myosins are highly conserved actin-based molecular motors that localize to the actin-rich cortex and participate in motility functions such as endocytosis, polarized morphogenesis, and cell migration. The COOH-terminal tail of yeast myosin-I proteins, Myo3p and Myo5p, contains an Src homology domain 3 (SH3) followed by an acidic domain. The myosin-I SH3 domain interacted with both Bee1p and Vrp1p, yeast homologues of human WASP and WIP, adapter proteins that link actin assembly and signaling molecules. The myosin-I acidic domain interacted with Arp2/3 complex subunits, Arc40p and Arc19p, and showed both sequence similarity and genetic redundancy with the COOH-terminal acidic domain of Bee1p (Las17p), which controls Arp2/3-mediated actin nucleation. These findings suggest that myosin-I proteins may participate in a diverse set of motility functions through a role in actin assembly.  相似文献   

6.
Myosin 1E is one of two "long-tailed" human Class I myosins that contain an SH3 domain within the tail region. SH3 domains of yeast and amoeboid myosins I interact with activators of the Arp2/3 complex, an important regulator of actin polymerization. No binding partners for the SH3 domains of myosins I have been identified in higher eukaryotes. In the current study, we show that two proteins with prominent functions in endocytosis, synaptojanin-1 and dynamin, bind to the SH3 domain of human Myo1E. Myosin 1E co-localizes with clathrin- and dynamin-containing puncta at the plasma membrane and this co-localization requires an intact SH3 domain. Expression of Myo1E tail, which acts in a dominant-negative manner, inhibits endocytosis of transferrin. Our findings suggest that myosin 1E may contribute to receptor-mediated endocytosis.  相似文献   

7.
《The Journal of cell biology》1996,133(6):1277-1291
The organization of the actin cytoskeleton plays a critical role in cell physiology in motile and nonmotile organisms. Nonetheless, the function of the actin based motor molecules, members of the myosin superfamily, is not well understood. Deletion of MYO3, a yeast gene encoding a "classic" myosin I, has no detectable phenotype. We used a synthetic lethality screen to uncover genes whose functions might overlap with those of MYO3 and identified a second yeast myosin 1 gene, MYO5. MYO5 shows 86 and 62% identity to MYO3 across the motor and non- motor regions. Both genes contain an amino terminal motor domain, a neck region containing two IQ motifs, and a tail domain consisting of a positively charged region, a proline-rich region containing sequences implicated in ATP-insensitive actin binding, and an SH3 domain. Although myo5 deletion mutants have no detectable phenotype, yeast strains deleted for both MYO3 and MYO5 have severe defects in growth and actin cytoskeletal organization. Double deletion mutants also display phenotypes associated with actin disorganization including accumulation of intracellular membranes and vesicles, cell rounding, random bud site selection, sensitivity to high osmotic strength, and low pH as well as defects in chitin and cell wall deposition, invertase secretion, and fluid phase endocytosis. Indirect immunofluorescence studies using epitope-tagged Myo5p indicate that Myo5p is localized at actin patches. These results indicate that MYO3 and MYO5 encode classical myosin I proteins with overlapping functions and suggest a role for Myo3p and Myo5p in organization of the actin cytoskeleton of Saccharomyces cerevisiae.  相似文献   

8.
The generation of cortical actin filaments is necessary for processes such as cell motility and cell polarization. Several recent studies have demonstrated that Wiskott-Aldrich syndrome protein (WASP) family proteins and the actin-related protein (Arp) 2/3 complex are key factors in the nucleation of actin filaments in diverse eukaryotic organisms. To identify other factors involved in this process, we have isolated proteins that bind to Bee1p/Las17p, the yeast WASP-like protein, by affinity chromatography and mass spectroscopic analysis. The yeast type I myosins, Myo3p and Myo5p, have both been identified as Bee1p-interacting proteins. Like Bee1p, these myosins are essential for cortical actin assembly as assayed by in vitro reconstitution of actin nucleation sites in permeabilized yeast cells. Analysis using this assay further demonstrated that the motor activity of these myosins is required for the polymerization step, and that actin polymerization depends on phosphorylation of myosin motor domain by p21-activated kinases (PAKs), downstream effectors of the small guanosine triphosphatase, Cdc42p. The type I myosins also interact with the Arp2/3 complex through a sequence at the end of the tail domain homologous to the Arp2/3-activating region of WASP-like proteins. Combined deletions of the Arp2/3-interacting domains of Bee1p and the type I myosins abolish actin nucleation sites at the cortex, suggesting that these proteins function redundantly in the activation of the Arp2/3 complex.  相似文献   

9.
BACKGROUND: Myosins are motor proteins involved in processes like cell motility, vesicle transport, or cytokinesis. In a variety of organisms, a novel group of proteins forming the UCS (UNC-45/CRO1/SHE4) domain-containing family are essential for proper myosin function. The Saccharomyces cerevisae UCS domain protein She4p is involved in two myosin-requiring events, endocytosis and mRNA localization. RESULTS: In contrast to UCS domain proteins from other organisms that interact with class II myosins, we demonstrate that She4p associates with yeast class I and class V myosins. She4p binds to motor domains of class V myosin Myo4p and class I myosin Myo5p, and this binding depends on She4p's UCS domain. In vivo, She4p is essential for the function and localization of Myo3p, Myo4p, and Myo5p (but not of Myo2p) and for colocalization of class I myosins with cortical actin patches. In vitro, She4p stimulates binding of Myo5p to filamentous actin. Wild-type She4p, but not a mutant lacking the UCS domain, accumulates in a cap-like structure at the bud tip. This localization requires Myo2p and actin, suggesting a Myo2-dependent mechanism by which She4p is targeted to the bud cap. Localization of She4p is essential for proper positioning and myosin-actin association of cortical Myo5p. CONCLUSIONS: Our results suggest that She4p is a novel myosin motor domain binding protein and operates as a localized regulator of myosin function of class I and likely class V myosins.  相似文献   

10.
Mutations in the budding yeast myosins-I (MYO3 and MYO5) cause defects in the actin cytoskeleton and in the endocytic uptake. Robust evidence also indicates that these proteins induce Arp2/3-dependent actin polymerization. Consistently, we have recently demonstrated, using fluorescence microscopy, that Myo5p is able to induce cytosol-dependent actin polymerization on the surface of Sepharose beads. Strikingly, we now observed that, at short incubation times, Myo5p induced the formation of actin foci that resembled the yeast cortical actin patches, a plasma membrane-associated structure that might be involved in the endocytic uptake. Analysis of the machinery required for the formation of the Myo5p-induced actin patches in vitro demonstrated that the Arp2/3 complex was necessary but not sufficient in the assay. In addition, we found that cofilin was directly involved in the process. Strikingly though, the cofilin requirement seemed to be independent of its ability to disassemble actin filaments and profilin, a protein that closely cooperates with cofilin to maintain a rapid actin filament turnover, was not needed in the assay. In agreement with these observations, we found that like the Arp2/3 complex and the myosins-I, cofilin was essential for the endocytic uptake in vivo, whereas profilin was dispensable.  相似文献   

11.
The yeast endocytic scaffold Pan1 contains an uncharacterized proline-rich domain (PRD) at its carboxy (C)-terminus. We report that the pan1-20 temperature-sensitive allele has a disrupted PRD due to a frame-shift mutation in the open reading frame of the domain. To reveal redundantly masked functions of the PRD, synthetic genetic array screens with a pan1DeltaPRD strain found genetic interactions with alleles of ACT1, LAS17 and a deletion of SLA1. Through a yeast two-hybrid screen, the Src homology 3 domains of the type I myosins, Myo3 and Myo5, were identified as binding partners for the C-terminus of Pan1. In vitro and in vivo assays validated this interaction. The relative timing of recruitment of Pan1-green fluorescent protein (GFP) and Myo3/5-red fluorescent protein (RFP) at nascent endocytic sites was revealed by two-color real-time fluorescence microscopy; the type I myosins join Pan1 at cortical patches at a late stage of internalization, preceding the inward movement of Pan1 and its disassembly. In cells lacking the Pan1 PRD, we observed an increased lifetime of Myo5-GFP at the cortex. Finally, Pan1 PRD enhanced the actin polymerization activity of Myo5-Vrp1 complexes in vitro. We propose that Pan1 and the type I myosins interactions promote an actin activity important at a late stage in endocytic internalization.  相似文献   

12.
Myosin IIIA (MYO3A) targets actin protrusion tips using a motility mechanism dependent on both motor and tail actin-binding activity [1]. We show that myosin IIIB (MYO3B) lacks tail actin-binding activity and is unable to target COS7 cell filopodia tips, yet is somehow able to target stereocilia tips. Strikingly, when MYO3B is coexpressed with espin-1 (ESPN1), a MYO3A cargo protein endogenously expressed in stereocilia [2], MYO3B targets and carries ESPN1 to COS7 filopodia tips. We show that this tip localization is lost when we remove the ESPN1 C terminus actin-binding site. We also demonstrate that, like MYO3A [2], MYO3B can elongate filopodia by transporting ESPN1 to the polymerizing end of actin filaments. The mutual dependence of MYO3B and ESPN1 for tip localization reveals a novel mechanism for the cell to regulate myosin tip localization via a reciprocal relationship with cargo that directly participates in actin binding for motility. Our results are consistent with a novel form of motility for class III myosins that requires both motor and tail domain actin-binding activity and show that the actin-binding tail can be replaced by actin-binding cargo. This study also provides a framework to better understand the late-onset hearing loss phenotype in patients with MYO3A mutations.  相似文献   

13.
She4p/Dim1p, a member of the UNC-45/CRO1/She4p (UCS) domain-containing protein family, is required for endocytosis, polarization of actin cytoskeleton, and polarization of ASH1 mRNA in Saccharomyces cerevisiae. We show herein that She4p/Dim1p is involved in endocytosis and actin polarization through interactions with the type I myosins Myo3p and Myo5p. Two-hybrid and biochemical experiments showed that She4p/Dim1p interacts with the motor domain of Myo3/5p through its UCS domain. She4p/Dim1p was required for Myo5p localization to cortical patch-like structures. Using random mutagenesis of the motor region of MYO5, we identified four independent dominant point mutations that suppress the temperature-sensitive growth phenotype of the she4/dim1 null mutant. All of the amino acid substitutions caused by these mutations, V164I, N168I, N209S, and K377M, could suppress the defects of endocytosis and actin polarization of the she4/dim1 mutant as well. She4p/Dim1p also showed two-hybrid interactions with the motor domain of a type II myosin Myo1p and type V myosins Myo2p and Myo4p, and was required for proper localization of Myo4p, which regulates polarization of ASH1 mRNA. Our results suggest that She4p/Dim1p is required for structural integrity or regulation of the motor domain of unconventional myosins.  相似文献   

14.
Isogawa Y  Kon T  Inoue T  Ohkura R  Yamakawa H  Ohara O  Sutoh K 《Biochemistry》2005,44(16):6190-6196
Myosin XVIII is the recently identified 18th class of myosins, and its members are composed of a unique N-terminal domain, a motor domain with an unusual sequence around the ATPase site, one IQ motif, a segmented coiled-coil region for dimerization, and a C-terminal globular tail. To gain insight into the functions of this unique myosin, we characterized its human homologue, MYO18A, focusing on the functional roles of the characteristic N-terminal domain that contains a PDZ module known to mediate protein-protein interaction. GFP-tagged full-length and C-terminally truncated MYO18A molecules that were expressed in HeLa cells exhibited colocalization with actin filaments. Chemical cross-linking of these molecules showed that they form stable dimers as expected from their putative coiled-coil tails. Cosedimentation of the various types of truncated MYO18A constructs with actin filaments indicated the presence of an ATP-insensitive actin-binding site in the N-terminal domain. Further studies on truncated constructs of the N-terminal domain indicated that this actin-binding site is located outside the PDZ module, but within the middle region of this domain, which does not show any homology with the known actin-binding motifs. These results imply that this dimeric myosin might stably cross-link actin filaments by two ATP-insensitive actin-binding sites at the N-terminal domains for higher-order organization of the actin cytoskeleton.  相似文献   

15.
MYO2 encodes a type V myosin heavy chain needed for the targeting of vacuoles and secretory vesicles to the growing bud of yeast. Here we describe new myo2 alleles containing conditional lethal mutations in the COOH-terminal tail domain. Within 5 min of shifting to the restrictive temperature, the polarized distribution of secretory vesicles is abolished without affecting the distribution of actin or the mutant Myo2p, showing that the tail has a direct role in vesicle targeting. We also show that the actin cable-dependent translocation of Myo2p to growth sites does not require secretory vesicle cargo. Although a fusion protein containing the Myo2p tail also concentrates at growth sites, this accumulation depends on the polarized delivery of secretory vesicles, implying that the Myo2p tail binds to secretory vesicles. Most of the new mutations alter a region of the Myo2p tail conserved with vertebrate myosin Vs but divergent from Myo4p, the myosin V involved in mRNA transport, and genetic data suggest that the tail interacts with Smy1p, a kinesin homologue, and Sec4p, a vesicle-associated Rab protein. The data support a model in which the Myo2p tail tethers secretory vesicles, and the motor transports them down polarized actin cables to the site of exocytosis.  相似文献   

16.
Fission yeast myo1(+) encodes a myosin-I with all three tail homology domains (TH1, 2, 3) found in typical long-tailed myosin-Is. Myo1p tail also contains a COOH-terminal acidic region similar to the A-domain of WASp/Scar proteins and other fungal myosin-Is. Our analysis shows that Myo1p and Wsp1p, the fission yeast WASp-like protein, share functions and cooperate in controlling actin assembly. First, Myo1p localizes to cortical patches enriched at tips of growing cells and at sites of cell division. Myo1p patches partially colocalize with actin patches and are dependent on an intact actin cytoskeleton. Second, although deletion of myo1(+) is not lethal, Deltamyo1 cells have actin cytoskeletal defects, including loss of polarized cell growth, delocalized actin patches, and mating defects. Third, additional disruption of wsp1(+) is synthetically lethal, suggesting that these genes may share functions. In mapping the domains of Myo1p tail that share function with Wsp1p, we discovered that a Myo1p construct with just the head and TH1 domains is sufficient for cortical localization and to rescue all Deltamyo1 defects. However, it fails to rescue the Deltamyo1 Deltawsp1 lethality. Additional tail domains, TH2 and TH3, are required to complement the double mutant. Fourth, we show that a recombinant Myo1p tail binds to Arp2/3 complex and activates its actin nucleation activity.  相似文献   

17.
Summary. The formation of actin filaments is crucial for endocytosis and other interrelated cellular phenomena such as motility, polarized morphogenesis, and cytokinesis. In this paper we have investigated the role of the WASP/Las17-interacting protein Bzz1p in endocytosis and trafficking to the vacuole. We and others have recently shown that Bzz1p is an actin patch protein that interacts directly with Las17p via a SH3-polyproline interaction. Bzz1p functions with type I myosins to restore polarity of the actin cytoskeleton after NaCl stress. In an in vitro bead assay, GST-Bzz1p fusion protein triggers a functional actin polymerization machinery through its two C-terminal SH3 domains. In this paper we implicate Bzz1p with the type I myosins both in fluid-phase and in the internalization step of receptor-mediated endocytosis. As deduced from their localization as GFP fusions, the vacuolar delivery of endocytic and biosynthetic cargoes as well as the multivesicular body pathway appear unaffected. We further elucidate Bzz1p direct participation in actin polymerization by demonstrating that each of the SH3 domains of Bzz1p individually is able to trigger actin polymerization in a cell-free system dependent on Arp2/3, Las17p, Vrp1p, and the type I myosins. Taken together, our results show that Bzz1p participates, essentially via its SH3 domains, in early steps of endocytosis together with known actin nucleation activators. Correspondence and reprints: Equipe Cytosquelette et Trafic Intracellulaire, UMR7156 du CNRS, Institut de Biologie Moléculaire et Cellulaire du CNRS, 15 rue Descartes, 67084 Strasbourg, France. Present address: Division of Biochemistry, Biozentrum, University of Basel, Basel, Switzerland.  相似文献   

18.
Vrp1p (verprolin, End5p) is the yeast ortholog of human Wiskott-Aldrich syndrome protein (WASP)-interacting protein (WIP). Vrp1p localizes to the cortical actin cytoskeleton, is necessary for its polarization to sites of growth and is also essential for endocytosis. At elevated temperature, Vrp1p becomes essential for growth. A C-terminal Vrp1p fragment (C-Vrp1p) retains the ability to localize to the cortical actin cytoskeleton and function in actin-cytoskeleton polarization, endocytosis and growth. Here, we demonstrate that two submodules in C-Vrp1p are required for actin-cytoskeleton polarization: a novel C-terminal actin-binding submodule (CABS) that contains a novel G-actin-binding domain, which we call a verprolin homology 2 C-terminal (VH2-C) domain; and a second submodule comprising the Las17p-binding domain (LBD) that binds Las17p (yeast WASP). The LBD localizes C-Vrp1p to membranes and the cortical actin cytoskeleton. Intriguingly, the LBD is sufficient to restore endocytosis and growth at elevated temperature to Vrp1p-deficient cells. The CABS also restores these functions, but only if modified by a lipid anchor to provide membrane association. Our findings highlight the role of Las17p binding for Vrp1p membrane association, suggest general membrane association may be more important than specific targeting to the cortical actin cytoskeleton for Vrp1p function in endocytosis and cell growth, and suggest that Vrp1p binding to individual effectors may alter their physiological activity.  相似文献   

19.
In budding yeast, partitioning of the cytoplasm during cytokinesis can proceed via a pathway dependent on the contractile actomyosin ring, as in other eukaryotes, or alternatively via a septum deposition pathway dependent on an SH3 domain protein, Hof1/Cyk2 (the yeast PSTPIP1 ortholog). In dividing yeast cells, Hof1 forms a ring at the bud neck distinct from the actomyosin ring, and this zone is active in septum deposition. We previously showed the yeast Wiskott-Aldrich syndrome protein (WASP)-interacting protein (WIP) ortholog, verprolin/Vrp1/End5, interacts with Hof1 and facilitates Hof1 recruitment to the bud neck. A Vrp1 fragment unable to interact with yeast WASP (Las17/Bee1), localize to the actin cytoskeleton or function in polarization of the cortical actin cytoskeleton nevertheless retains function in Hof1 recruitment and cytokinesis. Here, we show the ability of this Vrp1 fragment to bind the Hof1 SH3 domain via its Hof one trap (HOT) domain is critical for cytokinesis. The Vrp1 HOT domain consists of three tandem proline-rich motifs flanked by serines. Unexpectedly, the Hof1 SH3 domain itself is not required for cytokinesis and indeed appears to negatively regulate cytokinesis. The Vrp1 HOT domain promotes cytokinesis by binding to the Hof1 SH3 domain and counteracting its inhibitory effect.  相似文献   

20.
SH3 domains are small protein modules that are involved in protein-protein interactions in several essential metabolic pathways. The availability of the complete genome and the limited number of clearly identifiable SH3 domains make the yeast Saccharomyces cerevisae an ideal proteomic-based model system to investigate the structural rules dictating the SH3-mediated protein interactions and to develop new tools to assist these studies. In the present work, we have determined the solution structure of the SH3 domain from Myo3 and modeled by homology that of the highly homologous Myo5, two myosins implicated in actin polymerization. We have then implemented an integrated approach that makes use of experimental and computational methods to characterize their binding properties. While accommodating their targets in the classical groove, the two domains have selectivity in both orientation and sequence specificity of the target peptides. From our study, we propose a consensus sequence that may provide a useful guideline to identify new natural partners and suggest a strategy of more general applicability that may be of use in other structural proteomic studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号