首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. We report changes in photosynthetic capacity of leaves developed in varying photon flux density (PFD), nitrogen supply and CO2 concentration. We determined the relative effect of these environmental factors on photosynthetic capacity per unit leaf volume as well as the volume of tissue per unit leaf area. We calculated resource-use efficiencies from the photosynthetic capacities and measurements of leaf dry mass, carbohydrates and nitrogen content.
2. There were clear differences between the mechanisms of photosynthetic acclimation to PFD, nitrogen supply and CO2. PFD primarily affected volume of tissue per unit area whereas nitrogen supply primarily affected photosynthetic capacity per unit volume. CO2 concentration affected both of these parameters and interacted strongly with the PFD and nitrogen treatments.
3. Photosynthetic capacity per unit carbon invested in leaves increased in the low PFD, high nitrogen and low CO2 treatments. Photosynthetic capacity per unit nitrogen was significantly affected only by nitrogen supply.
4. The responses to low PFD and low nitrogen appear to function to increase the efficiency of utilization of the limiting resource. However, the responses to elevated CO2 in the high PFD and high nitrogen treatments suggest that high CO2 can result in a situation where growth is not limited by either carbon or nitrogen supply. Limitation of growth at elevated CO2 appears to result from internal plant factors that limit utilization of carbohydrates at sinks and/or transport of carbohydrates to sinks.  相似文献   

2.
A range of marine photosynthetic picoeukaryote phytoplankton species grown in culture were screened for the presence of extracellular carbonic anhydrase (CAext), a key enzyme in inorganic carbon acquisition under carbon- limiting conditions in some larger marine phytoplankton species. Of the species tested, extracellular carbonic anhydrase was detected only in Micromonas pusilla Butcher. The rapid, light-dependent development of CAext when cells were transferred from carbon-replete to carbon-limiting conditions was regulated by the available free- CO2 concentration and not by total dissolved inorganic carbon. Kinetic studies provided support for a CO2- concentrating mechanism in that the K 0.5[CO2] (i.e. the CO2 concentration required for the half-maximal rate of photosynthesis) was substantially lower than the K m[CO2] of Rubisco from related taxa, whilst the intracellular carbon pool was at least seven fold greater than the extracellular DIC concentration, for extracellular DIC values 1.0 m m .
It is proposed that when the flux of CO2 into the cell is insufficient to support the photosynthetic rate at an optimum photon irradiance, the development of CAext increases the availability of CO2 at the plasma membrane. This ensures rapid acclimation to environmental change and provides an explanation for the central role of M. pusilla as a carbon sink in oligotrophic environments.  相似文献   

3.
When grown under elevated atmospheric carbon dioxide (CO2), leaf nitrogen content decreases less for legumes than for nonlegume C3 plants. Given that elevated CO2 adversely affects insect herbivores primarily through dilution of plant nitrogen, it is reasonable to expect that legume-feeding herbivores will be relatively buffered against CO2-induced reduction in performance. However, despite their ecological and economic importance, very few studies have addressed the effects of elevated CO2 on legume-feeding herbivores. Unlike the responses of the vast majority of nonlegume C3 plants, when the legumes Trifolium pratense and Melilotus alba were grown under elevated (742 ppm) CO2, leaf nitrogen and carbon contents and C : N ratios did not change. For Colias philodice larvae fed T. pratense , elevated CO2 had little or no effect on consumption, digestion, or conversion of whole food or nitrogen and, consequently, no effect on growth rate, instar duration, or pupal weight. For larvae fed M. alba , elevated CO2 had little or no effect on consumption of whole food or nitrogen, increased digestion but decreased conversion of both and, consequently, had no effect on growth rate, instar duration or pupal weight. These results suggest that, relative to herbivores of nonlegume C3 plants, legume-feeding herbivores will be less affected as atmospheric CO2 continues to rise.  相似文献   

4.
Abstract. A mechanistic model of photosynthesis is developed based on the characteristics of ribulose 1,5-bisphosphate (RuBP) carboxylase and the assimilation of CO2 as an ordered reaction with RuBP binding before CO2. An equation is derived which considers the effects of light (for regeneration of RuBP) and CO2. Taking values for the maximum turnover of RuBP carboxylase at substrate saturation, the maximum carboxylation efficiency (maximum increase in rate per increase in CO2 concentration) and the minimum quantum requirement for the C3 pathway, photosynthesis in the absence of photorespiration is simulated. In the model, at varying concentrations of CO2, the efficiency of light utilization approaches a maximum value as photon flux density decreases. Similarly, with a given maximum carboxyation capacity, at varying photon flux densities the carboxylation efficiency approaches a constant maximum value (equal to V max/ K m CO2) as CO2 is decreased. However, a decrease in the state of activation of RuBP carboxylase under low light results in a lower carboxylation efficiency. Limits on the rate of photosynthesis, as the maximum capacity for regeneration of RuBP is reduced relative to carboxylation potential, or as the maximum capacity of the carboxylase varies, are considered.  相似文献   

5.
Abstract. Two experiments are described which test the normal correlations that arise between stomatal conductance, net CO2 assimilation rate, and intercellular CO2 concentration (Ci), using whole shoots of Commelina communis L. In the first, conductance increased with decreasing Ci, at four different quantum flux densities, such that there was no unique relationship between conductance and quantum flux density or Ci, In the second, conductance increased hyperbolically with increasing quantum flux density while Ci was held constant at 466, 302, and 46 μmiolmol−1, and the response differed at each Ci. In neither experiment was conductance consistently related to net CO2 assimilation rate in the mesophyll. In both experiments high Ci suppressed the response of conductance to light, while there was a large response of conductance to light at low Ci, indicating an interaction between the effects of light and CO2 on stomata. The results show that the parallel responses of assimilation and conductance to light result in constant intercellular CO2 concentrations, and not that stomata maintain a 'constant Ci'.  相似文献   

6.
Carbon and water fluxes in a calcareous grassland under elevated CO2   总被引:3,自引:2,他引:1  
1. As part of a long-term study of the effects of elevated CO2 on biodiversity and ecosystem function in a calcareous grassland, we measured ecosystem carbon dioxide and water-vapour fluxes over 24-h periods during the 1994 and 1995 growing seasons. Data were used to derive CO2 and H2O gas-exchange response functions to quantum flux density (QFD).
2. The relative increase in net ecosystem CO2 flux (NEC) owing to CO2 enrichment increased as QFD rose. Daytime NEC at high QFD under elevated CO2 increased by 25% to 60%, with the greatest increases in the spring and after mowing in June when above-ground biomass was lowest. There was much less stimulation of NEC in early June and again in October when the canopy was fully developed. Night-time NEC was not significantly altered under elevated CO2.
3. Short-term reversal of CO2 concentrations between treatments after two seasons of CO2 exposure provided evidence for a 50% downward adjustment of NEC expressed per unit above-ground plant dry weight. However, when expressed on a land area basis, this difference disappeared because of a c. 20% increase in above-ground biomass under elevated CO2.
4. Ecosystem evapotranspiration (ET) was not significantly altered by elevated CO2 when averaged over all measurement dates and positions. However, ET was reduced 3–18% at high QFD in plots at the top of the slope at our study site. In summary, CO2 enrichment resulted in a large stimulation of ecosystem CO2 capture, especially during periods of a large demand of carbon in relationship to its supply, and resulted in a relatively small and variable effect on ecosystem water consumption.  相似文献   

7.
Up to 99% of the carbon fuelling the food webs of temperate woodland streams is derived from inputs of terrestrial leaf litter. Aquatic bacteria, fungi, and detritivore invertebrates directly utilize these inputs, transferring this energy to other components of the food web. Increases in atmospheric CO2 could indirectly impact woodland stream food webs by chemically altering leaf litter. This study evaluated CO2-induced chemical changes in aspen ( Populus tremuloides ) leaf litter, and the corresponding effects on stream bacteria, fungi and leaf-shredding cranefly larvae ( Tipula abdominalis : Diptera). Leaf litter from plants grown under elevated CO2 had decreased nutritional value to aquatic decomposers and detritivores because of higher levels of structural compounds and lower nitrogen content. Consequently, elevated CO2-grown leaf litter supported 59% lower bacterial production in a stream than litter grown at ambient CO2 levels, while not affecting fungal biomass. Larval craneflies fed elevated CO2-grown microbially colonized leaves consumed less, assimilated less, and grew 12 times slower than their ambient fed counterparts.  相似文献   

8.
Ananas comosus L. (Merr.) (pineapple) was grown at three day/night temperatures and 350 (ambient) and 700 (elevated) μ mol mol–1 CO2 to examine the interactive effects of these factors on leaf gas exchange and stable carbon isotope discrimination ( Δ ,‰). All data were collected on the youngest mature leaf for 24 h every 6 weeks. CO2 uptake (mmol m–2 d–1) at ambient and elevated CO2, respectively, were 306 and 352 at 30/20 °C, 175 and 346 at 30/25 °C and 187 and 343 at 35/25 °C. CO2 enrichment enhanced CO2 uptake substantially in the day in all environments. Uptake at night at elevated CO2, relative to that at ambient CO2, was unchanged at 30/20 °C, but was 80% higher at 30/25 °C and 44% higher at 35/25 °C suggesting that phosphoenolpyruvate carboxylase was not CO2-saturated at ambient CO2 levels and a 25 °C night temperature. Photosynthetic water use efficiency (WUE) was higher at elevated than at ambient CO2. Leaf Δ -values were higher at elevated than at ambient CO2 due to relatively higher assimilation in the light. Leaf Δ was significantly and linearly related to the fraction of total CO2 assimilated at night. The data suggest that a simultaneous increase in CO2 level and temperature associated with global warming would enhance carbon assimilation, increase WUE, and reduce the temperature dependence of CO2 uptake by A. comosus .  相似文献   

9.
Sporocarp production is essential for ectomycorrhizal fungal recombination and dispersal, which influences fungal community dynamics. Increasing atmospheric carbon dioxide (CO2) and ozone (O3) affect host plant carbon gain and allocation, which may in turn influence ectomycorrhizal sporocarp production if the carbon available to the ectomycorrhizal fungus is dependant upon the quantity of carbon assimilated by the host. We measured sporocarp production of ectomycorrhizal fungi over 4 years at the Aspen FACE (free air CO2 enrichment) site, which corresponded to stand ages seven to 10 years. Total mean sporocarp biomass was greatest under elevated CO2, regardless of O3 concentration, while it was generally lowest under elevated O3 with ambient CO2. Community composition differed significantly among the treatments, with less difference in the final year of the study. Whether this convergence was due to succession or environmental factors is uncertain. CO2 and O3 affect ectomycorrhizal sporocarp productivity and community composition, with likely effects on dispersal, colonization and sporocarp-dependent food webs.  相似文献   

10.
Calcite nucleation on the surface of cyanobacteria of the Synechococcus leopoliensis strain PCC 7942 was investigated to assess the influence of photosynthetic uptake of inorganic carbon and active ion exchange processes across the cell membrane on the nucleation and precipitation mechanisms. We performed long-term precipitation experiments at a constant CO2 level in ambient air by adding suspensions of previously washed cyanobacteria to solutions of NaHCO3/CaCl2 which were supersaturated with respect to calcite. Induction times between 4 and 110 h were measured over a range of saturation states, Ω, between 8 and 4. The kinetics of CaCO3 nucleation was compared between experiments: (i) with ongoing photosynthesis, (ii) with cells metabolizing but not undergoing photosynthetic uptake of inorganic carbon and (iii) in darkness without photosynthesis. No significant differences were observed between the three treatments. The results reveal that under low nutrient concentrations and permanent CO2 supply, photosynthetic uptake of inorganic carbon predominantly uses CO2 and consequently does not directly influence the nucleation process of CaCO3 at the surface of S. leopoliensis. Furthermore, ion exchange processes did not affect the kinetics, indicating a passive nucleation process wherein the cell surface or extracellular polymers provided preferential sites for mineral nucleation. The catalyzing effect of the cyanobacteria on calcite nucleation was equivalent to a ∼18% reduction in the specific interfacial free energy of the calcite nuclei. This result and the ubiquitous abundance of cyanobacteria suggest that this process may have an impact on local and global carbon cycling.  相似文献   

11.
Marine pelagic redoxclines are zones of high dark CO2 fixation rates, which can correspond up to 30% of the surface primary production. However, despite this significant contribution to the pelagic carbon cycle, the identity of most chemolithoautotrophic organisms is still unknown. Therefore, the aim of this study was to directly link the dark CO2 fixation capacity of a pelagic redoxcline in the central Baltic Sea (Landsort Deep) with the identity of the main chemolithoautotrophs involved. Our approach was based on the analysis of natural carbon isotope signatures in fatty acid methyl esters (FAMEs) and on measurements of CO2 incorporation in 13C-bicarbonate pulse experiments. The incorporation of 13C into chemolithoautotrophic cells was investigated by rRNA-based stable isotope probing (RNA-SIP) and FAME analysis after incubation for 24 and 72 h under in situ conditions. Our results demonstrated that fatty acids indicative of Proteobacteria were significantly enriched in 13C slightly below the chemocline. RNA-SIP analyses revealed that two different Gammaproteobacteria and three closely related Epsilonproteobacteria of the Sulfurimonas cluster were active dark CO2-fixing microorganisms, with a time-dependent community shift between these groups. Labelling of Archaea was not detectable, but after 72 h of incubation the 13C-label had been transferred to a potentially bacterivorous ciliate related to Euplotes sp. Thus, RNA-SIP provided direct evidence for the contribution of chemolithoautotrophic production to the microbial food web in this marine pelagic redoxcline, emphasizing the importance of dark CO2-fixing Proteobacteria within this habitat.  相似文献   

12.
Recent research has shown that nodule nitrogen fixation is limited under a wide range of environmental constraints by lowered carbon flux within the nodule due to down-regulation of sucrose synthase activity. The aim of this work was to elucidate whether an increase in both carbon flux and activity of enzymes of carbon metabolism in nodules may lead to an increased nitrogen fixation. We report the effects caused by a continuous exposure to atmospheric CO2 enrichment in nodulated pea plants. CO2 enrichment led to an enhanced whole-plant growth and increased nodule biomass. Moreover, nodules of plants grown at increased CO2 showed a higher sugar content as well as enhancement of some activities related to nodule carbon metabolism, such as sucrose synthase, UDP glucose pyrophosphorylase and phosphoenolpyruvate carboxylase. Indeed, acetylene reduction activity, measured by the classical technique, was increased more than four times. However, when specific nitrogen fixation was determined as hydrogen evolution, no significant differences were detected, consistent with the lack of changes of enzymes involved in nitrogen metabolism such as glutamate synthase and aspartate aminotransferase. These results are discussed in the context of the regulation of nitrogen fixation and nodule metabolism.  相似文献   

13.
Chlamydomonas acidophila Negoro is a green algal species abundant in acidic waters (pH 2–3.5), in which inorganic carbon is present only as CO2. Previous studies have shown that aeration with CO2 increased its maximum growth rate, suggesting CO2 limitation under natural conditions. To unravel the underlying physiological mechanisms at high CO2 conditions that enables increased growth, several physiological characteristics from high- and low-CO2-acclimated cells were studied: maximum quantum yield, photosynthetic O2 evolution (Pmax), affinity constant for CO2 by photosynthesis (K0.5,p), a CO2-concentrating mechanism (CCM), cellular Rubisco content and the affinity constant of Rubisco for CO2 (K0.5,r). The results show that at high CO2 concentrations, C. acidophila had a higher K0.5,p, Pmax, maximum quantum yield, switched off its CCM and had a lower Rubisco content than at low CO2 conditions. In contrast, the K0.5,r was comparable under high and low CO2 conditions. It is calculated that the higher Pmax can already explain the increased growth rate in a high CO2 environment. From an ecophysiological point of view, the increased maximum growth rate at high CO2 will likely not be realised in the field because of other population regulating factors and should be seen as an acclimation to CO2 and not as proof for a CO2 limitation.  相似文献   

14.
CO2 enrichment of soybeans. Effects of leaf/pod ratio   总被引:2,自引:0,他引:2  
The effect of varying leaf number on response of soybean ( Glycine max (L.) Merr. cv. Fiskeby V) to CO2 enrichment was studied. Plants were trimmed at pod set to 15 pods and 1 or 3 leaves (15:1 and 5:1 pod/leaf ratio) and placed in 350 or 1000 μl/l CO2 growth chambers. Photosynthetic rates and dry weights were measured 6 times in all plants at each CO2 concentration over a period of 39 days. Measured at treatment CO2 concentration, photosynthetic rates deelined rapidly in enriched plants, but remained higher than those of non-enriched plants. When all plants were measured at the same CO2 concentration, for most sampling dates, neither growth, CO2 concentration or pod/leaf ratio significantly affected rates of photosynthesis per unit area of comparable leaves. CO2 enrichment significantly increased total weights and pod weights in 15:1 but not 5:1 pod/leaf ratio plants. Plants with a 5:1 pod/leaf ratio had significantly higher total and pod weights than 15:1 ratio plants. Both the photosynthesis and dry weight data suggest that plants in the 5:1 ratio enriched treatment were sink-limited, but plants in all other treatments were source limited.  相似文献   

15.
We examined how anticipated changes in CO2 concentration and temperature interacted to alter plant growth, harvest characteristics and photosynthesis in two cold-adapted herbaceous perennials, alfalfa ( Medicago sativa L. cv. Arc) and orchard grass ( Dactylis glomerata L. cv. Potomac). Plants were grown at two CO2 concentrations (362 [ambient] and 717 [elevated] μmol mol−1 CO2) and four constant day/night temperatures of 15, 20, 25 and 30°C in controlled environmental chambers. Elevated CO2 significantly increased total plant biomass and protein over a wide range of temperatures in both species. Stimulation of photosynthetic rate, however, was eliminated at the highest growth temperature in M. sativa and relative stimulation of plant biomass and protein at high CO2 declined as temperature increased in both species. Lack of a synergistic effect between temperature and CO2 was unexpected since elevated CO2 reduces the amount of carbon lost via photorespiration and photorespiration increases with temperature. Differences between anticipated stimulatory effects of CO2 and temperature and whole plant single and leaf measurements are discussed. Data from this study suggest that stimulatory effects of atmospheric CO2 on growth and photosynthesis may decline with anticipated increases in global temperature, limiting the degree of carbon storage in these two perennial species.  相似文献   

16.
Abstract. A model is developed for photosynthesis and photorespiration in C3 plants, using an equation for the multisubslrate ordered reaction of ribulose 1,5-bisphosphalc carboxylase-oxygenase (Farazdaghi & Edwards, 1988). The model examines net CO2 fixation with O2 inhibition, and mutual inhibition when equilibrium exists between carboxylation and oxygenation (at the CO2 compensation point). It is based on the stoichiometry of energy requirements and O2, and CO2 exchange in the cycles, the quantum efficiency for RuBP generation, the maximum capacity for RuBP generation, the carboxylation efficiency with respect to [CO2], and the oxygenation efficiency with respect to [O2]. With increasing concentrations of CO2 above the CO2 compensation point, decreasing quantum flux density, or decreasing O2, simulations show that the rate of photorespiration progressively decreases. The two components of O2 inhibition of photosynthesis change disproportionately with increasing CO2 concentration. According to the model, the energy utilized during photosynthesis at the CO2 compensation point is about half that under atmospheric conditions.  相似文献   

17.
Sequestration of carbon dioxide (CO2) in the ocean is being considered as a feasible mechanism to mitigate the alarming rate in its atmospheric rise. Little is known, however, about how the resulting hypercapnia and ocean acidification may affect marine fauna. In an effort to understand better the protistan reaction to such an environmental perturbation, the survivorship of benthic foraminifera, which is a prevalent group of protists, was studied in response to deep-sea CO2 release. The survival response of calcareous, agglutinated, and thecate foraminifera was determined in two experiments at ∼3.1 and 3.3 km water depth in Monterey Bay (California, USA). Approximately 5 weeks after initial seafloor CO2 release, in situ incubations of the live–dead indicator CellTracker Green were executed within seafloor-emplaced pushcores. Experimental treatments included direct exposure to CO2 hydrate, two levels of lesser exposure adjacent to CO2 hydrate, and controls, which were far removed from the CO2 hydrate release. Results indicate that survivorship rates of agglutinated and thecate foraminifera were not significantly impacted by direct exposure but the survivorship of calcareous foraminifera was significantly lower in direct exposure treatments compared with controls. Observations suggest that, if large scale CO2 sequestration is enacted on the deep-sea floor, survival of two major groups of this prevalent protistan taxon will likely not be severely impacted, while calcareous foraminifera will face considerable challenges to maintain their benthic populations in areas directly exposed to CO2 hydrate.  相似文献   

18.
Two rice ( Oryza sativa L.) cultivars of contrasting morphologies, IR-36 and Fujiyama-5, were exposed to ambient (360 μl l−1) and ambient plus 300 μl l−1 CO2 from time of emergence until ca 50% grain fill at the Duke University Phytotron, Durham, North Carolina. Exposure to increased CO2 resulted in about a 50% increase in the photosynthetic rate for both cultivars and photosynthetic enhancement was still evident after 3 months of exposure to a high CO2 environment. The photosynthetic response at 5% CO2 and the response of CO2 assimilation (A) to internal CO2 (Ci) suggest a reallocation of biochemical resources from RuBP carboxylation to RuBP regeneration. Increases in total plant biomass at elevated CO2 were approximately the same in both cultivars, although differences in allocation patterns were noted in root/shoot ratio. Differences in reproductive characteristics were also observed between cultivars at an elevated CO2 environment with a significant increase in harvest index for IR-36 but not for Fujiyama-5. Changes in carbon allocation in reproduction between these two cultivars suggest that lines of rice could be identified that would maximize reproductive output in a future high CO2 environment.  相似文献   

19.
In situ responses to elevated CO2 in tropical forest understorey plants   总被引:3,自引:1,他引:2  
1. Plants growing in deep shade and high temperature, such as in the understorey of humid tropical forests, have been predicted to be particularly sensitive to rising atmospheric CO2. We tested this hypothesis in five species whose microhabitat quantum flux density (QFD) was documented as a covariable. After 7 (tree seedlings of Tachigalia versicolor and Beilschmiedia pendula ) and 18 months (shrubs Piper cordulatum and Psychotria limonensis, and grass Pharus latifolius ) of elevated CO2 treatment ( c. 700 μl litre–1) under mean QFD of less than 11 μmol m–2 s–1, all species produced more biomass (25–76%) under elevated CO2.
2. Total plant biomass tended to increase with microhabitat QFD (daytime means varying from 5 to 11μmol m–2 s–1) but the relative stimulation by elevated CO2 was higher at low QFD except in Pharus .
3. Non-structural carbohydrate concentrations in leaves increased significantly in Pharus (+ 27%) and Tachigalia (+ 40%).
4. The data support the hypothesis that tropical plants growing near the photosynthetic light compensation point are responsive to elevated CO2. An improved plant carbon balance in deep shade is likely to influence understorey plant recruitment and competition as atmospheric CO2 continues to rise.  相似文献   

20.
The responses of individual stomata to CO2 concentrations ranging from 0 to 900 μmol mol−1 air were analysed in Ipomoea pes-caprae L. Sweet (Convolvulaceae). The stomata were directly observed using a measurement system that permitted continuous observation of stomatal movement under controlled light and CO2 conditions. A CO2 concentration of 350 μmol mol−1 or higher induced stomatal closure, whereas concentrations below 350 μmol mol−1 did not. The time lag before stomatal closure decreased with increasing CO2 concentration, as did the steady-state aperture of the stomata after a change in CO2 concentration. However, the rate of stomatal closure increased with increasing CO2 concentration. Therefore, not only the stomatal closure rate but also the time from the CO2 concentration change to the beginning of stomatal closure changed with increasing CO2 concentration. These results suggest that atmospheric CO2 may be the stimulus for the closure of guard cells. No significant differences were observed between adaxial and abaxial stomata in terms of their responses to CO2. However, heterogeneous responses were detected between neighbouring stomata on each leaf surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号