首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It has been argued that the architecture of the genotype-phenotype map determines evolvability, but few studies have attempted to quantify these effects. In this article we use the multilinear epistatic model to study the effects of different forms of epistasis on the response to directional selection. We derive an analytical prediction for the change in the additive genetic variance, and use individual-based simulations to understand the dynamics of evolvability and the evolution of genetic architecture. This shows that the major determinant for the evolution of the additive variance, and thus the evolvability, is directional epistasis. Positive directional epistasis leads to an acceleration of evolvability, while negative directional epistasis leads to canalization. In contrast, pure non-directional epistasis has little effect on the response to selection. One consequence of this is that the classical epistatic variance components, which do not distinguish directional and non-directional effects, are useless as predictors of evolutionary dynamics. The build-up of linkage disequilibrium also has negligible effects. We argue that directional epistasis is likely to have major effects on evolutionary dynamics and should be the focus of empirical studies of epistasis.  相似文献   

2.
Lenormand T  Otto SP 《Genetics》2000,156(1):423-438
Most models describing the evolution of recombination have focused on the case of a single population, implicitly assuming that all individuals are equally likely to mate and that spatial heterogeneity in selection is absent. In these models, the evolution of recombination is driven by linkage disequilibria generated either by epistatic selection or drift. Models based on epistatic selection show that recombination can be favored if epistasis is negative and weak compared to directional selection and if the recombination modifier locus is tightly linked to the selected loci. In this article, we examine the joint effects of spatial heterogeneity in selection and epistasis on the evolution of recombination. In a model with two patches, each subject to different selection regimes, we consider the cases of mutation-selection and migration-selection balance as well as the spread of beneficial alleles. We find that including spatial heterogeneity extends the range of epistasis over which recombination can be favored. Indeed, recombination can be favored without epistasis, with negative and even with positive epistasis depending on environmental circumstances. The selection pressure acting on recombination-modifier loci is often much stronger with spatial heterogeneity, and even loosely linked modifiers and free linkage may evolve. In each case, predicting whether recombination is favored requires knowledge of both the type of environmental heterogeneity and epistasis, as none of these factors alone is sufficient to predict the outcome.  相似文献   

3.
Kouyos RD  Otto SP  Bonhoeffer S 《Genetics》2006,173(2):589-597
Whether recombination decelerates or accelerates a population's response to selection depends, at least in part, on how fitness-determining loci interact. Realistically, all genomes likely contain fitness interactions both with positive and with negative epistasis. Therefore, it is crucial to determine the conditions under which the potential beneficial effects of recombination with negative epistasis prevail over the detrimental effects of recombination with positive epistasis. Here, we examine the simultaneous effects of diverse epistatic interactions with different strengths and signs in a simplified model system with independent pairs of interacting loci and selection acting only on the haploid phase. We find that the average form of epistasis does not predict the average amount of linkage disequilibrium generated or the impact on a recombination modifier when compared to results using the entire distribution of epistatic effects and associated single-mutant effects. Moreover, we show that epistatic interactions of a given strength can produce very different effects, having the greatest impact when selection is weak. In summary, we observe that the evolution of recombination at mutation-selection balance might be driven by a small number of interactions with weak selection rather than by the average epistasis of all interactions. We illustrate this effect with an analysis of published data of Saccharomyces cerevisiae. Thus to draw conclusions on the evolution of recombination from experimental data, it is necessary to consider the distribution of epistatic interactions together with the associated selection coefficients.  相似文献   

4.
Using a multilinear model of epistasis we explore the evolution of canalization (reduced mutational effects) and evolvability (levels of additive genetic variance) under different forms of stabilizing and fluctuating selection. We show that the total selection acting on an allele can be divided into a component deriving from adaptation of the trait mean, a component of canalizing selection favoring alleles that epistatically reduce the effects of other allele substitutions, and a component of conservative selection disfavoring rare alleles. While canalizing selection operates in both stable and fluctuating environments, it may not typically maximize canalization, because it gets less efficient with increasing canalization, and reaches a balance with drift, mutation and indirect selection. Fluctuating selection leads to less canalized equilibria than stabilizing selection of comparable strength, because canalization then becomes influenced by erratic correlated responses to shifting trait adaptation. We conclude that epistatic systems under bounded fluctuating selection will become less canalized than under stabilizing selection and may support moderately increased evolvability if the amplitude of fluctuations is large, but canalization is still stronger and evolvability lower than expected under neutral evolution or under patterns of selection that shift the trait in directions of positive (reinforcing) epistasis.  相似文献   

5.
Malmberg RL  Held S  Waits A  Mauricio R 《Genetics》2005,171(4):2013-2027
The extent to which epistasis contributes to adaptation, population differentiation, and speciation is a long-standing and important problem in evolutionary genetics. Using recombinant inbred (RI) lines of Arabidopsis thaliana grown under natural field conditions, we have examined the genetic architecture of fitness-correlated traits with respect to epistasis; we identified both single-locus additive and two-locus epistatic QTL for natural variation in fruit number, germination, and seed length and width. For fruit number, we found seven significant epistatic interactions, but only two additive QTL. For seed germination, length, and width, there were from two to four additive QTL and from five to eight epistatic interactions. The epistatic interactions were both positive and negative. In each case, the magnitude of the epistatic effects was roughly double that of the effects of the additive QTL, varying from -41% to +29% for fruit number and from -5% to +4% for seed germination, length, and width. A number of the QTL that we describe participate in more than one epistatic interaction, and some loci identified as additive also may participate in an epistatic interaction; the genetic architecture for fitness traits may be a network of additive and epistatic effects. We compared the map positions of the additive and epistatic QTL for germination, seed width, and seed length from plants grown in both the field and the greenhouse. While the total number of significant additive and epistatic QTL was similar under the two growth conditions, the map locations were largely different. We found a small number of significant epistatic QTL x environment effects when we tested directly for them. Our results support the idea that epistatic interactions are an important part of natural genetic variation and reinforce the need for caution in comparing results from greenhouse-grown and field-grown plants.  相似文献   

6.
The epistatic interactions among mutations have a large effect on the evolution of populations. In this article we provide a formalism under which epistatic interactions among pairs of mutations have a distribution whose mean can be modulated. We find that the mean epistasis is correlated to the effect of mutations or genetic robustness, which suggests that such formalism is in good agreement with most in silico models of evolution where the same pattern is observed. We further show that the evolution of epistasis is highly dependant on the intensity of drift and of how complex the organisms are, and that either positive or negative epistasis could be selected for, depending on the balance between the efficiency of selection and the intensity of drift.  相似文献   

7.
Gene networks are likely to govern most traits in nature. Mutations at these genes often show functional epistatic interactions that lead to complex genetic architectures and variable fitness effects in different genetic backgrounds. Understanding how epistatic genetic systems evolve in nature remains one of the great challenges in evolutionary biology. Here we combine an analytical framework with individual-based simulations to generate novel predictions about long-term adaptation of epistatic networks. We find that relative to traits governed by independently evolving genes, adaptation with epistatic gene networks is often characterized by longer waiting times to selective sweeps, lower standing genetic variation, and larger fitness effects of adaptive mutations. This may cause epistatic networks to either adapt more slowly or more quickly relative to a nonepistatic system. Interestingly, epistatic networks may adapt faster even when epistatic effects of mutations are on average deleterious. Further, we study the evolution of epistatic properties of adaptive mutations in gene networks. Our results show that adaptive mutations with small fitness effects typically evolve positive synergistic interactions, whereas adaptive mutations with large fitness effects evolve positive synergistic and negative antagonistic interactions at approximately equal frequencies. These results provide testable predictions for adaptation of traits governed by epistatic networks and the evolution of epistasis within networks.  相似文献   

8.
We evaluate the effect of epistasis on genetically-based multivariate trait variation in haploid non-recombining populations. In a univariate setting, past work has shown that epistasis reduces genetic variance (additive plus epistatic) in a population experiencing stabilizing selection. Here we show that in a multivariate setting, epistasis also reduces total genetic variation across the entire multivariate trait in a population experiencing stabilizing selection. But, we also show that the pattern of variation across the multivariate trait can be more even when epistasis occurs compared to when epistasis is absent, such that some character combinations will have more genetic variance when epistasis occurs compared to when epistasis is absent. In fact, a measure of generalized multivariate trait variation can be increased by epistasis under weak to moderate stabilizing selection conditions, as well as neutral conditions. Likewise, a measure of conditional evolvability can be increased by epistasis under weak to moderate stabilizing selection and neutral conditions. We investigate the nature of epistasis assuming a multivariate-normal model genetic effects and investigate the nature of epistasis underlying the biophysical properties of RNA. Increased multivariate diversity occurs for populations that are infinite in size, as well as populations that are finite in size. Our model of finite populations is explicitly genealogical and we link our findings about the evenness of eigenvalues with epistasis to prior work on the genealogical mapping of epistatic effects.  相似文献   

9.
Y‐ and W‐chromosomes offer a theoretically powerful way for sexual dimorphism to evolve. Consistent with this possibility, Drosophila melanogaster Y‐chromosomes can influence gene regulation throughout the genome; particularly immune‐related genes. In order for Y‐linked regulatory variation (YRV) to contribute to adaptive evolution it must be comprised of additive genetic variance, such that variable Ys induce consistent phenotypic effects within the local gene pool. We assessed the potential for Y‐chromosomes to adaptively shape gram‐negative and gram‐positive bacterial defence by introgressing Ys across multiple genetic haplotypes from the same population. We found no Y‐linked additive effects on immune phenotypes, suggesting a restricted role for the Y to facilitate dimorphic evolution. We did find, however, a large magnitude Y by background interaction that induced rank order reversals of Y‐effects across the backgrounds (i.e. sign epistasis). Thus, Y‐chromosome effects appeared consistent within backgrounds, but highly variable among backgrounds. This large sign epistatic effect could constrain monomorphic selection in both sexes, considering that autosomal alleles under selection must spend half of their time in a male background where relative fitness values are altered. If the pattern described here is consistent for other traits or within other XY (or ZW) systems, then YRV may represent a universal constraint to autosomal trait evolution.  相似文献   

10.
Summary Selection for a character controlled by additive genes induces linkage disequilibrium which reduces the additive genetic variance usable for further selective gains. Additive x additive epistasis contributes to selection response through development of linkage disequilibrium between interacting loci. To investigate the relative importance of the two effects of linkage disequilibrium, formulae are presented and results are reported of simulations using models involving additive, additive x additive and dominance components. The results suggest that so long as epistatic effects are not large relative to additive effects, and the proportion of pairs of loci which show epistasis is not very high, the predominant effect of linkage disequilibrium will be to reduce the rate of selection response.  相似文献   

11.
In this paper we present a model that maps epistatic effects onto a genealogical tree for a haploid population. Prior work has demonstrated that genealogical structure causes the genotypic values of individuals to covary. Our results indicate that epistasis can reduce genotypic covariance that is caused by genealogical structure. Genotypic effects (both additive and epistatic) occur along the branches of a genealogical tree, from the base of the tree to its tips. Epistasis reduces genotypic covariance because there is a reweighting of the contribution of branches to the states of genotypes compared to the additive case. Branches near the tips of a genealogical tree contribute proportionally more genetic effects with epistasis than without epistasis. Epistatic effects are most numerous at basal positions in a genealogical tree when a population is constant in size and experiencing no selection, optimizing selection, diversifying selection or directional selection, indicating that epistatic effects are typically old. For a population that is growing in size, epistatic effects are most numerous at midpoints in a genealogical tree, indicating epistatic effects are of moderate age. Our results are important in that they suggest epistatic effects may typically explain deep (old) divergences and broad patterns of divergence that exist in populations, except in growing populations. In a growing population, epistatic effects may cause more within group divergence higher up in a tree and less between group divergence that is deep in a tree. The distribution of the number of epistatic effects and the expected variance and covariance in the number of epistatic effects is also provided assuming neutrality.  相似文献   

12.
Epistasis describes the phenomenon that mutations at different loci do not have independent effects with regard to certain phenotypes. Understanding the global epistatic landscape is vital for many genetic and evolutionary theories. Current knowledge for epistatic dynamics under multiple conditions is limited by the technological difficulties in experimentally screening epistatic relations among genes. We explored this issue by applying flux balance analysis to simulate epistatic landscapes under various environmental perturbations. Specifically, we looked at gene-gene epistatic interactions, where the mutations were assumed to occur in different genes. We predicted that epistasis tends to become more positive from glucose-abundant to nutrient-limiting conditions, indicating that selection might be less effective in removing deleterious mutations in the latter. We also observed a stable core of epistatic interactions in all tested conditions, as well as many epistatic interactions unique to each condition. Interestingly, genes in the stable epistatic interaction network are directly linked to most other genes whereas genes with condition-specific epistasis form a scale-free network. Furthermore, genes with stable epistasis tend to have similar evolutionary rates, whereas this co-evolving relationship does not hold for genes with condition-specific epistasis. Our findings provide a novel genome-wide picture about epistatic dynamics under environmental perturbations.  相似文献   

13.
The epistatic interactions that underlie evolutionary constraint have mainly been studied for constant external conditions. However, environmental changes may modulate epistasis and hence affect genetic constraints. Here we investigate genetic constraints in the adaptive evolution of a novel regulatory function in variable environments, using the lac repressor, LacI, as a model system. We have systematically reconstructed mutational trajectories from wild type LacI to three different variants that each exhibit an inverse response to the inducing ligand IPTG, and analyzed the higher-order interactions between genetic and environmental changes. We find epistasis to depend strongly on the environment. As a result, mutational steps essential to inversion but inaccessible by positive selection in one environment, become accessible in another. We present a graphical method to analyze the observed complex higher-order interactions between multiple mutations and environmental change, and show how the interactions can be explained by a combination of mutational effects on allostery and thermodynamic stability. This dependency of genetic constraint on the environment should fundamentally affect evolutionary dynamics and affects the interpretation of phylogenetic data.  相似文献   

14.
A central goal in molecular evolution is to understand how genetic interactions between protein mutations shape protein function and fitness. While intergenic epistasis has been extensively explored in eukaryotes, bacteria, and viruses, intragenic epistatic interactions have been insufficiently studied. Here, we employ a model system in which lambda phage fitness correlates with the enzymatic activity of human immunodeficiency virus type 1 (HIV-1) protease to systematically determine the epistatic interactions between intragenic pairs of deleterious protein substitutions. We generated 114 genotypes of the HIV-1 protease, each carrying pairs of nucleotide substitution mutations whose separated and combined deleterious effects on fitness were then determined. A high proportion (39%) of pairs displayed lethality. Several pairs exhibited significant interactions for fitness, including positive and negative epistasis. Significant negative epistatic interactions predominated (15%) over positive interactions (2%). However, the average ± SD epistatic effect, ē = 0.0025 ± 0.1334, was not significantly different from zero (p = 0.8368). Notably, epistatic interactions, regardless of epistatic direction, tend to be more frequent in the context of less deleterious mutations. In the present study, the high frequencies of lethality and negative epistasis indicate that the HIV-1 protease is highly sensitive to the effects of deleterious mutations. Therefore, proteins may not be as robust to mutational change as is usually expected.  相似文献   

15.
Hallander J  Waldmann P 《Heredity》2007,98(6):349-359
Additive genetic variance might usually be expected to decrease in a finite population because of genetic drift. However, both theoretical and empirical studies have shown that the additive genetic variance of a population could, in some cases, actually increase owing to the action of genetic drift in presence of non-additive effects. We used Monte-Carlo simulations to address a less-well-studied issue: the effects of directional truncation selection on a trait affected by non-additive genetic variation. We investigated the effects on genetic variance and the response to selection. We compared two different genetic models, representing various numbers of loci. We found that the additive genetic variance could also increase in the case of truncation selection, when dominance and epistasis was present. Additive-by-additive epistatic effects generally gave a higher increase in additive variance compared to dominance. However, the magnitude of the increase differed depending on the particular model and on the number of loci.  相似文献   

16.
Jannink JL 《Genetics》2007,176(1):553-561
Association studies are designed to identify main effects of alleles across a potentially wide range of genetic backgrounds. To control for spurious associations, effects of the genetic background itself are often incorporated into the linear model, either in the form of subpopulation effects in the case of structure or in the form of genetic relationship matrices in the case of complex pedigrees. In this context epistatic interactions between loci can be captured as an interaction effect between the associated locus and the genetic background. In this study I developed genetic and statistical models to tie the locus by genetic background interaction idea back to more standard concepts of epistasis when genetic background is modeled using an additive relationship matrix. I also simulated epistatic interactions in four-generation randomly mating pedigrees and evaluated the ability of the statistical models to identify when a biallelic associated locus was epistatic to other loci. Under additive-by-additive epistasis, when interaction effects of the associated locus were quite large (explaining 20% of the phenotypic variance), epistasis was detected in 79% of pedigrees containing 320 individuals. The epistatic model also predicted the genotypic value of progeny better than a standard additive model in 78% of simulations. When interaction effects were smaller (although still fairly large, explaining 5% of the phenotypic variance), epistasis was detected in only 9% of pedigrees containing 320 individuals and the epistatic and additive models were equally effective at predicting the genotypic values of progeny. Epistasis was detected with the same power whether the overall epistatic effect was the result of a single pairwise interaction or the sum of nine pairwise interactions, each generating one ninth of the epistatic variance. The power to detect epistasis was highest (94%) at low QTL minor allele frequency, fell to a minimum (60%) at minor allele frequency of about 0.2, and then plateaued at about 80% as alleles reached intermediate frequencies. The power to detect epistasis declined when the linkage disequilibrium between the DNA marker and the functional polymorphism was not complete.  相似文献   

17.
We consider the effects of epistasis in a polygenic trait in the balance of mutation and stabilizing selection. The main issues are the genetic variation maintained in equilibrium and the evolution of the mutational effect distribution. The model assumes symmetric mutation and a continuum of alleles at all loci. Epistasis is modeled proportional to pairwise products of the single-locus effects. A general analytical formalism is developed. Assuming linkage equilibrium, we derive results for the equilibrium mutation load and the genetic and mutational variance in the house of cards and the Gaussian approximation. The additive genetic variation maintained in mutation-selection balance is reduced by any pattern of the epistatic interactions. The mutational variance, in contrast, is often increased. Large differences in mutational effects among loci emerge, and a negative correlation among (standard mean) locus mutation effects and mutation rates is predicted. Contrary to the common view since Waddington, we find that stabilizing selection in general does not lead to canalization of the trait. We propose that canalization as a target of selection instead occurs at the genic level. Here, primarily genes with a high mutation rate are buffered, often at the cost of decanalization of other genes. An intuitive interpretation of this view is given in the discussion.  相似文献   

18.
The Bateson–Dobzhansky–Muller model predicts that postzygotic isolation evolves due to the accumulation of incompatible epistatic interactions, but few studies have quantified the relationship between genetic architecture and patterns of reproductive divergence. We examined how the direction and magnitude of epistatic interactions in a polygenic trait under stabilizing selection influenced the evolution of hybrid incompatibilities. We found that populations evolving independently under stabilizing selection experienced suites of compensatory allelic changes that resulted in genetic divergence between populations despite the maintenance of a stable, high‐fitness phenotype. A small number of loci were then incompatible with multiple alleles in the genetic background of the hybrid and the identity of these incompatibility loci changed over the evolution of the populations. For F1 hybrids, reduced fitness evolved in a window of intermediate strengths of epistatic interactions, but F2 and backcross hybrids evolved reduced fitness across weak and moderate strengths of epistasis due to segregation variance. Strong epistatic interactions constrained the allelic divergence of parental populations and prevented the development of reproductive isolation. Because many traits with varying genetic architectures must be under stabilizing selection, our results indicate that polygenetic drift is a plausible hypothesis for the evolution of postzygotic reproductive isolation.  相似文献   

19.
Jarvis JP  Cheverud JM 《Genetics》2011,187(2):597-610
Genome-wide mapping analyses are now commonplace in many species and several networks of interacting loci have been reported. However, relatively few details regarding epistatic interactions and their contribution to complex trait variation in multicellular organisms are available and the identification of positional candidate loci for epistatic QTL (epiQTL) is hampered, especially in mammals, by the limited genetic resolution inherent in most study designs. Here we further investigate the genetic architecture of reproductive fatpad weight in mice using the F(10) generation of the LG,SM advanced intercross (AI) line. We apply multiple mapping techniques including a single-locus model, locus-specific composite interval mapping (CIM), and tests for multiple QTL per chromosome to the 12 chromosomes known to harbor single-locus QTL (slQTL) affecting obesity in this cross. We also perform a genome-wide scan for pairwise epistasis. Using this combination of approaches we detect 199 peaks spread over all 19 autosomes, which potentially contribute to trait variation including all eight original F(2) loci (Adip1-8), novel slQTL peaks on chromosomes 7 and 9, and several novel epistatic loci. Extensive epistasis is confirmed involving both slQTL confidence intervals (C.I.) as well as regions that show no significant additive or dominance effects. These results provide important new insights into mapping complex genetic architectures and the role of epistasis in complex trait variation.  相似文献   

20.
Self-fertilization and the evolution of recombination   总被引:1,自引:0,他引:1       下载免费PDF全文
Roze D  Lenormand T 《Genetics》2005,170(2):841-857
In this article, we study the effect of self-fertilization on the evolution of a modifier allele that alters the recombination rate between two selected loci. We consider two different life cycles: under gametophytic selfing, a given proportion of fertilizations involves gametes produced by the same haploid individual, while under sporophytic selfing, a proportion of fertilizations involves gametes produced by the same diploid individual. Under both life cycles, we derive approximations for the change in frequency of the recombination modifier when selection is weak relative to recombination, so that the population reaches a state of quasi-linkage equilibrium. We find that gametophytic selfing increases the range of epistasis under which increased recombination is favored; however, this effect is substantial only for high selfing rates. Moreover, gametophytic selfing affects the relative influence of different components of epistasis (additive x additive, additive x dominance, dominance x dominance) on the evolution of the modifier. Sporophytic selfing has much stronger effects: even a small selfing rate greatly increases the parameter range under which recombination is favored, when there is negative dominance x dominance epistasis. This effect is due to the fact that selfing generates a correlation in homozygosity at linked loci, which is reduced by recombination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号