首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The mechanisms by which sister chromatids maintain biorientation on the metaphase spindle are critical to the fidelity of chromosome segregation. Active force interplay exists between predominantly extensional microtubule-based spindle forces and restoring forces from chromatin. These forces regulate tension at the kinetochore that silences the spindle assembly checkpoint to ensure faithful chromosome segregation. Depletion of pericentric cohesin or condensin has been shown to increase the mean and variance of spindle length, which have been attributed to a softening of the linear chromatin spring. Models of the spindle apparatus with linear chromatin springs that match spindle dynamics fail to predict the behavior of pericentromeric chromatin in wild-type and mutant spindles. We demonstrate that a nonlinear spring with a threshold extension to switch between spring states predicts asymmetric chromatin stretching observed in vivo. The addition of cross-links between adjacent springs recapitulates coordination between pericentromeres of neighboring chromosomes.  相似文献   

3.
The extremely high concentration of macromolecules in a eukaryotic cell nucleus indicates that the nucleoplasm is a crowded macromolecular solution in which large objects tend to gather together due to crowding forces. It has been shown experimentally that crowding forces support the integrity of various nuclear compartments. However, little is known about their role in control of chromatin dynamics in vivo. Here, we experimentally addressed the possible role of crowding forces in spatial organization of the eukaryotic genome. Using the mouse β-globin domain as a model, we demonstrated that spatial juxtaposition of the remote regulatory elements of this domain in globin-expressing cells may be lost and restored by manipulation of the level of macromolecular crowding. In addition to proving the role of crowding forces in shaping interphase chromatin, our results suggest that the folding of the chromatin fiber is a major determinant in juxtaposing remote genomic elements.  相似文献   

4.
Chromatin from calf thymus isolated under hypotonic conditions in the presence of various agents was investigated by methods of electron microscopy prior to and after EDTA treatment. It is shown that the presence of chelating agents and, especially, the application of considerable mechanical forces in the course of isolation may cause damage to the nucleosomal structure of the chromatin. Moreover, sufficiently great mechanical forces are liable to destroy the structure of the chromatin nucleosomal fibres even when they are packed in structures of a higher order of organization of the chromatin.  相似文献   

5.
The enzymes that transcribe, recombine, package, and duplicate the eukaryotic genome all are highly processive and capable of generating large forces. Understanding chromosome function therefore will require analysis of mechanics as well as biochemistry. Here we review development of new biophysical-biochemical techniques for studying the mechanical properties of isolated chromatin fibers and chromosomes. We also discuss microscopy-based experiments on cells that visualize chromosome structure and dynamics. Experiments on chromatin tell us about its flexibility and fluctuation, as well as quantifying the forces generated during chromatin assembly. Experiments on whole chromosomes provide insight into the higher-order organization of chromatin; for example, recent experiments have shown that the mitotic chromosome is held together by isolated chromatin-chromatin links and not a large, mechanically contiguous non-DNA "scaffold".  相似文献   

6.
Cellular chromatin forms a dynamic structure that maintains the stability and accessibility of the host DNA genome. Viruses that enter and persist in the nucleus must, therefore, contend with the forces that drive chromatin formation and regulate chromatin structure. In some cases, cellular chromatin inhibits viral gene expression and replication by suppressing DNA accessibility. In other cases, cellular chromatin provides essential structure and organization to the viral genome and is necessary for successful completion of the viral life cycle. Consequently, viruses have acquired numerous mechanisms to manipulate cellular chromatin to ensure viral genome survival and propagation.  相似文献   

7.
It is proposed that elongation of the nucleus in spermatids of Marchantia results from interaction between its membranous envelope and microtubules of the spermatid's cytoskeleton. The nucleus may be drawn out in two directions along microtubules until forces attracting the nucleus to them are balanced by forces resisting envelope distortion. Condensation of nuclear chromatin into fibrils of uniform diameter and probable shaping of the nucleus by blebbing of its envelope occur together before elongation is complete. The nucleus becomes crescent shaped and it is prolonged distally into a chromatin-free diverticulum. In accord with their distribution along the axis of the nucleus, chromatin fibrils are compacted together forming a cone-like rod of chromatin which narrows anteriorly and extends distally to the tip of the preexisting diverticulum. Elongation and shaping of the nucleus influence the distribution of its chromatin and thus its ultimate morphology. Coiling of the nucleus is related to a reduction of spermatid cytoplasm during maturation.  相似文献   

8.
Drosophila melanogaster oocytes heterozygous for mutations in the alpha-tubulin 67C gene (alphatub67C) display defects in centromere positioning during prometaphase of meiosis I. The centromeres do not migrate to the poleward edges of the chromatin mass, and the chromatin fails to stretch during spindle lengthening. These results suggest that the poleward forces acting at the kinetochore are compromised in the alphatub67C mutants. Genetic studies demonstrate that these mutations also strongly and specifically decrease the fidelity of achiasmate chromosome segregation. Proper centromere orientation, chromatin elongation, and faithful segregation can all be restored by a decrease in the amount of the Nod chromokinesin. These results suggest that the accurate segregation of achiasmate chromosomes requires the proper balancing of forces acting on the chromosomes during prometaphase.  相似文献   

9.
Single chromatin fibers were assembled directly in the flow cell of an optical tweezers setup. A single lambda phage DNA molecule, suspended between two polystyrene beads, was exposed to a Xenopus laevis egg extract, leading to chromatin assembly with concomitant apparent shortening of the DNA molecule. Assembly was force-dependent and could not take place at forces exceeding 10 pN. The assembled single chromatin fiber was subjected to stretching by controlled movement of one of the beads with the force generated in the molecule continuously monitored with the second bead trapped in the optical trap. The force displayed discrete, sudden drops upon fiber stretching, reflecting discrete opening events in fiber structure. These opening events were quantized at increments in fiber length of approximately 65 nm and are attributed to unwrapping of the DNA from around individual histone octamers. Repeated stretching and relaxing of the fiber in the absence of egg extract showed that the loss of histone octamers was irreversible. The forces measured for individual nucleosome disruptions are in the range of 20-40 pN, comparable to forces reported for RNA- and DNA-polymerases.  相似文献   

10.
The last decade has radically renewed our understanding of higher order chromatin folding in the eukaryotic nucleus. As a result, most current models are in support of a mostly hierarchical and relatively stable folding of chromosomes dividing chromosomal territories into A‐ (active) and B‐ (inactive) compartments, which are then further partitioned into topologically associating domains (TADs), each of which is made up from multiple loops stabilized mainly by the CTCF and cohesin chromatin‐binding complexes. Nonetheless, the structure‐to‐function relationship of eukaryotic genomes is still not well understood. Here, we focus on recent work highlighting the biophysical and regulatory forces that contribute to the spatial organization of genomes, and we propose that the various conformations that chromatin assumes are not so much the result of a linear hierarchy, but rather of both converging and conflicting dynamic forces that act on it.  相似文献   

11.
When chromosomes are aligned and bioriented at metaphase, the elastic stretch of centromeric chromatin opposes pulling forces exerted on sister kinetochores by the mitotic spindle. Here we show that condensin ATPase activity is an important regulator of centromere stiffness and function. Condensin depletion decreases the stiffness of centromeric chromatin by 50% when pulling forces are applied to kinetochores. However, condensin is dispensable for the normal level of compaction (rest length) of centromeres, which probably depends on other factors that control higher-order chromatin folding. Kinetochores also do not require condensin for their structure or motility. Loss of stiffness caused by condensin-depletion produces abnormal uncoordinated sister kinetochore movements, leads to an increase in Mad2(+) kinetochores near the metaphase plate and delays anaphase onset.  相似文献   

12.
Is it possible to extract tethering forces applied on chromatin from the statistics of a single locus trajectories imaged in vivo? Chromatin fragments interact with many partners such as the nuclear membrane, other chromosomes or nuclear bodies, but the resulting forces cannot be directly measured in vivo. However, they impact chromatin dynamics and should be reflected in particular in the motion of a single locus. We present here a method based on polymer models and statistics of single trajectories to extract the force characteristics and in particular when they are generated by the gradient of a quadratic potential well. Using numerical simulations of a Rouse polymer and live cell imaging of the MAT-locus located on the yeast Saccharomyces cerevisiae chromosome III, we recover the amplitude and the distance between the observed and the interacting monomer. To conclude, the confined trajectories we observed in vivo reflect local interaction on chromatin.  相似文献   

13.
Changes in nuclear morphology occur during normal development and have been observed during the progression of several diseases. The shape of a nucleus is governed by the balance of forces exerted by nuclear-cytoskeletal contacts and internal forces created by the structure of the chromatin and nuclear envelope. However, factors that regulate the balance of these forces and determine nuclear shape are poorly understood. The SWI/SNF chromatin remodeling enzyme ATPase, BRG1, has been shown to contribute to the regulation of overall cell size and shape. Here we document that immortalized mammary epithelial cells show BRG1-dependent nuclear shape changes. Specifically, knockdown of BRG1 induced grooves in the nuclear periphery that could be documented by cytological and ultrastructural methods. To test the hypothesis that the observed changes in nuclear morphology resulted from altered tension exerted by the cytoskeleton, we disrupted the major cytoskeletal networks and quantified the frequency of BRG1-dependent changes in nuclear morphology. The results demonstrated that disruption of cytoskeletal networks did not change the frequency of BRG1-induced nuclear shape changes. These findings suggest that BRG1 mediates control of nuclear shape by internal nuclear mechanisms that likely control chromatin dynamics.  相似文献   

14.
15.
Histone H1 binds to linker DNA between nucleosomes, but the dynamics and biological ramifications of this interaction remain poorly understood. We performed single-molecule experiments using magnetic tweezers to determine the effects of H1 on naked DNA in buffer or during chromatin assembly in Xenopus egg extracts. In buffer, nanomolar concentrations of H1 induce bending and looping of naked DNA at stretching forces below 0.6 pN, effects that can be reversed with 2.7-pN force or in 200 mM monovalent salt concentrations. Consecutive tens-of-nanometer bending events suggest that H1 binds to naked DNA in buffer at high stoichiometries. In egg extracts, single DNA molecules assemble into nucleosomes and undergo rapid compaction. Histone H1 at endogenous physiological concentrations increases the DNA compaction rate during chromatin assembly under 2-pN force and decreases it during disassembly under 5-pN force. In egg cytoplasm, histone H1 protects sperm nuclei undergoing genome-wide decondensation and chromatin assembly from becoming abnormally stretched or fragmented due to astral microtubule pulling forces. These results reveal functional ramifications of H1 binding to DNA at the single-molecule level and suggest an important physiological role for H1 in compacting DNA under force and during chromatin assembly.  相似文献   

16.
All life forms sense and respond to mechanical stimuli. Throughout evolution, organisms develop diverse mechanosensing and mechanotransduction pathways, leading to fast and sustained mechanoresponses. Memory and plasticity characteristics of mechanoresponses are thought to be stored in the form of epigenetic modifications, including chromatin structure alterations. These mechanoresponses in the chromatin context share conserved principles across species, such as lateral inhibition during organogenesis and development. However, it remains unclear how mechanotransduction mechanisms alter chromatin structure for specific cellular functions, and if altered chromatin structure can mechanically affect the environment. In this review, we discuss how chromatin structure is altered by environmental forces via an outside-in pathway for cellular functions, and the emerging concept of how chromatin structure alterations can mechanically affect nuclear, cellular, and extracellular environments. This bidirectional mechanical feedback between chromatin of the cell and the environment can potentially have important physiological implications, such as in centromeric chromatin regulation of mechanobiology in mitosis, or in tumor-stroma interactions. Finally, we highlight the current challenges and open questions in the field and provide perspectives for future research.  相似文献   

17.
Rat ventral prostate chromatin, prepared by a gentle procedure in which marked shearing forces were avoided, was separated by sucrose gradient centrifugation into a quantitatively minor less dense (L) fraction, and 2 heavier components, (H1) and (H2). The (L) fraction, comprising 5–15 percent of the totäl chromatin DNA, had a unique melting profile, with a Tmapp. of 59°, compared to 82.5°, 85° and 80.5° for total, (H1) and (H2) chromatin. (L) chromatin has a number of other properties expected of “euchromatin”. This approach to the preparation of chromatin has been used successfully with other tissues such as liver.  相似文献   

18.
Gan HH  Schlick T 《Biophysical journal》2010,99(8):2587-2596
Characterizing the ionic distribution around chromatin is important for understanding the electrostatic forces governing chromatin structure and function. Here we develop an electrostatic model to handle multivalent ions and compute the ionic distribution around a mesoscale chromatin model as a function of conformation, number of nucleosome cores, and ionic strength and species using Poisson-Boltzmann theory. This approach enables us to visualize and measure the complex patterns of counterion condensation around chromatin by examining ionic densities, free energies, shielding charges, and correlations of shielding charges around the nucleosome core and various oligonucleosome conformations. We show that: counterions, especially divalent cations, predominantly condense around the nucleosomal and linker DNA, unburied regions of histone tails, and exposed chromatin surfaces; ionic screening is sensitively influenced by local and global conformations, with a wide ranging net nucleosome core screening charge (56-100e); and screening charge correlations reveal conformational flexibility and interactions among chromatin subunits, especially between the histone tails and parental nucleosome cores. These results provide complementary and detailed views of ionic effects on chromatin structure for modest computational resources. The electrostatic model developed here is applicable to other coarse-grained macromolecular complexes.  相似文献   

19.
The mitotic spindle is a structure that forms during mitosis to help ensure that each daughter cell receives a full complement of genetic material. In metaphase, the spindle contains microtubules that nucleate inward from two opposing poles. Chromosomes are attached to plus-ends of these microtubules via protein structures called kinetochores. The centromere is the specific region of kinetochore attachment on the chromosome. Chromatin surrounding the centromere (pericentric chromatin) is subject to microtubule-based forces and is commonly modeled as a linear spring, where the force that it exerts is proportional to the distance that it is stretched. We have incorporated physically based models of chromatin to create more accurate and predictive models of the spindle. In addition, using fluorescence microscopy and motion analysis of fluorescently labeled chromatin spots we discovered that pericentric chromatin is restrained relative to free diffusive motion. The characterization of chromatin is crucial to understand mitotic spindle stability and to understand the cell cycle checkpoint regulating anaphase onset.  相似文献   

20.
A solid foundation: functional specialization of centromeric chromatin   总被引:17,自引:0,他引:17  
Centromeres provide a distinctive mechanical function for the chromosomes as the site of kinetochore assembly and force generation in mitosis and meiosis. Recent studies show that a unique form of chromatin, based on the histone-H3-like protein CENP-A and homologues, provides a conserved foundation for this mechanical chromatin domain. CENP-A plays a role in templating kinetochore assembly and may be a central element in the epigenetic maintenance of centromere identity. Cohesion at the centromere, intimately linked to kinetochore assembly, is required for integrating spindle forces exerted across the centromere and for establishing the bipolar geometry of sister kinetochores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号