首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thermostable pullulanase was purified to homogeneity on sodium dodecyl sulfate-polyacrylamide gel from the culture supernatant of Bacillus stearothermophilus TRS128. However, multiformity of the pullulanase was suggested by activity staining on a pullulan-reactive red plate. The thermostability of the enzyme was tested. In the presence of Ca2+, the optimum temperature of the pullulanase was 75°C, and nearly 100% of the enzyme activity was retained even after treatment at 68°C for 60 min. Since the thermostable pullulanase gene (pulT) has been cloned, the nucleotide sequence was determined. Although the DNA sequence revealed only one large open reading frame, two possible pairs of SD sequence and initiation codon were found in the frame. To analyze the regulatory region, several mutations (deletion, insertion and substitution of nucleotides) were introduced in the flanking region of pulT, using site-directed mutagenesis. A putative promoter, SD sequence and initiation codon were inferred. The pulT gene was composed of 1974 bases and 658 amino acid residues (molecular weight 75,375). The deduced amino acid sequence of the thermostable pullulanase exhibited a fairly low homology with that of the thermolabile pullulanase from Klebsiella aerogenes. However, four consensus sequences containing catalytic and/or substrate binding sites for amylolytic enzymes were also found in the thermostable pullulanase and the thermolabile enzyme.  相似文献   

2.
The B domain of CGTase has been generally accepted as a domain involved in thermostability. However, limited work has been performed in which entire B domain is substituted with the thermostable counterpart. Using overlap extension PCR, we replaced the B domain of a variant of CGTase Bacillus sp. G1 by six other B domains from thermostable CGTases. Likely due to distortion in the substrate-binding cleft adjacent to the active site, variants with the domain replacements from Thermoanaerobacter, Thermococcus, Thermococcus kodakarensis, Anaerobranca gottschalkii and Pyrococcus furiosus completely lost their catalytic function. A mutant designated Cgt_ET1 with a domain replacement from a Bacillus stearopthermophilus ET1 CGTase was the only variant that retained activity after domain exchange. Both the parental enzyme and the mutant Cgt_ET1 had an identical optimum temperature at 60 °C. The activity half-life was 22 min for the parental CGTase, whereas a marked increase to 57 min was observed for the mutant. Further mutagenesis on Cgt_ET1 was performed at residue 188 by replacing a Phe residue with Tyr. The mutant Cgt_ET1_F188Y displayed a decreased activity half-life of 28 min. Both mutants exhibited a better cyclodextrin-forming ability and a faster turnover rate (kcat) than the parental CGTase.  相似文献   

3.
A thermostable chitosanase gene from the environmental isolate Bacillus sp. strain CK4, which was identified on the basis of phylogenetic analysis of the 16S rRNA gene sequence and phenotypic analysis, was cloned, and its complete DNA sequence was determined. The thermostable chitosanase gene was composed of an 822-bp open reading frame which encodes a protein of 242 amino acids and a signal peptide corresponding to a 30-kDa enzyme. The deduced amino acid sequence of the chitosanase from Bacillus sp. strain CK4 exhibits 76.6, 15.3, and 14.2% similarities to those from Bacillus subtilis, Bacillus ehemensis, and Bacillus circulans, respectively. C-terminal homology analysis shows that Bacillus sp. strain CK4 belongs to cluster III with B. subtilis. The gene was similar in size to that of the mesophile B. subtilis but showed a higher preference for codons ending in G or C. The enzyme contains 2 additional cysteine residues at positions 49 and 211. The recombinant chitosanase has been purified to homogeneity by using only two steps with column chromatography. The half-life of the enzyme was 90 min at 80°C, which indicates its usefulness for industrial applications. The enzyme had a useful reactivity and a high specific activity for producing functional oligosaccharides as well, with trimers through hexamers as the major products.  相似文献   

4.
A thermostable superoxide dismutase (SOD) from a Thermomyces lanuginosus strain (P134) was purified to homogeneity by fractional ammonium sulfate precipitation, ion-exchange chromatography on DEAE-Sepharose, Phenyl-Sepharose hydrophobic interaction chromatography, and gel filtration on Sephacryl S-100. The molecular mass of a single band of the enzyme was estimated to be 22.4 kDa, using sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Using gel filtration on Sephacryl S-100, the molecular mass was estimated to be 89.1 kDa, indicating that this enzyme was composed of four identical subunits of 22.4 kDa each. The SOD was found to be inhibited by NaN3, but not by KCN or H2O2, suggesting that the SOD in T. lanuginosus was of the manganese superoxide dismutase type. The SOD exhibited maximal activity at pH 7.5. The optimum temperature for the activity was 55°C. It was thermostable at 50 and 60°C and retained 55% activity after 60 min at 70°C. The half-life of the SOD at 80°C was approximately 28 min and even retained 20% activity after 20 min at 90°C.  相似文献   

5.
Enantioselective reductions of ethyl 3-oxobutanoates with fermenting cells or acetone treated cells of Geotrichum candidum gave 3-hydroxyesters with different ee and different predominant configurations depending on reaction conditions. Ethyl 4-bromo-3-oxobutanoate was reduced with APG4 and NADH to give predominantly ethyl (R)-4-bromo-3 hydroxybutanoate while the (S)-configuration was predominant when NADPH was the cofactor. Moreover, when the catalyst was heated before the reaction, the ee was increased indicating that the enzyme giving the (S)-alcohol is more thermolabile than the other.  相似文献   

6.
A new, thermostable superoxide dismutase (SOD) from Bacillus licheniformis M20, isolated from Bulgarian mineral springs, was purified 11-fold with 11% recovery of activity. From native PAGE and SDS-PAGE, the enzyme was composed of two subunits of 21.5 kDa each. The SOD was inhibited only by NaN3, which suggested that this SOD is of the manganese superoxide dismutase type. The purified enzyme had maximum activity at pH 8 and 55°C. The half-life of the SOD was 10 min at 95°C.  相似文献   

7.
In crude extract of castor bean endosperm, isocitrate dehydrogenase (NADP+) (EC 1.1.1.42) was stable at 57°C at the beginning of seed germination as well as in maturing and dry seeds. The enzyme gradually became less thermostable as germination proceeded and became unstable after 4 days. Extract from 5-day-old endosperm reduced the thermostability of the thermostable enzyme. The destabilizing factor accumulated in the endosperm as germination progressed and was identified as ricinoleate. Ricinoleate destabilized the purified enzyme which was stabilized by isocitrate and Mg2+, but ricinoleate did not affect the activity of NADP+-isocitrate dehydrogenase itself. Stearate, oleate, palmitate and myristate were similar to ricinoleate in their effect on the thermostability of the enzyme. The thermolabile enzyme in the crude extract of 5-day-old endosperm was readily inactivated by trypsin and in low concentrations of buffer. The thermostable enzyme in the crude extract of 2-day-old endosperm was not affected by these treatments. The thermostable enzyme treated with ricinoleate showed the same instabilities as the thermolabile enzyme. The role of ricinoleate in ther germinating castor bean endosperm is discussed.  相似文献   

8.
We present evidence thatRhizobium etli has two glutaminases differentiated by their thermostability and electrophoretic mobility. The thermostable glutaminase (B) is constitutive, in contrast with the thermolabile glutaminase (A), which is positively regulated by glutamine and negatively regulated by ammonium and by the carbon source. In distinction to glutaminase A, glutaminase B plays a minor role in the utilization of glutamine as a carbon source, but it may play a role in maintaining the balance of glutamine and glutamate. By complementation of theRhizobium etli LM16 mutant that lacks glutaminase A, we have cloned the gene that codes for this enzyme.  相似文献   

9.
A thermostable extracellular serine protease from Aspergillus fumigatus was purified 8.8-fold using a 4-step protocol. The enzyme was produced using a 36 h solid-state culture, had a molecular weight of 88 kDa and exhibited maximal enzyme activity at pH 7 and 60 °C. Structural analysis revealed that the protease is monomeric and non-glycosylated. Thermal inactivation of the pure enzyme followed first-order kinetics. The half-life (t1/2) of the pure enzyme at 50, 60 and 70 °C was 65, 34 and 14 min, respectively. The denaturation and activation energies were 69 and 62 kJ mol−1, respectively. Thermodynamic parameters (entropy and enthalpy) suggested that the protease was highly thermostable. This is the first report on the thermodynamic parameters of proteases produced by A. fumigatus.  相似文献   

10.

Background

We have previously isolated a thermolabile nuclease specific for double-stranded DNA from industrial processing water of Northern shrimps (Pandalus borealis) and developed an application of the enzyme in removal of contaminating DNA in PCR-related technologies.

Methodology/Principal Findings

A 43 kDa nuclease with a high specific activity of hydrolysing linear as well as circular forms of DNA was purified from hepatopancreas of Northern shrimp (Pandalus borealis). The enzyme displayed a substrate preference that was shifted from exclusively double-stranded DNA in the presence of magnesium to also encompass significant activity against single-stranded DNA when calcium was added. No activity against RNA was detected. Although originating from a cold-environment animal, the shrimp DNase has only minor low-temperature activity. Still, the enzyme was irreversibly inactivated by moderate heating with a half-life of 1 min at 65°C. The purified protein was partly sequenced and derived oligonucleotides were used to prime amplification of the encoding cDNA. This cDNA sequence revealed an open reading frame encoding a 404 amino acid protein containing a signal peptide. By sequence similarity the enzyme is predicted to belong to a family of DNA/RNA non-specific nucleases even though this shrimp DNase lacks RNase activity and is highly double-strand specific in some respects. These features are in agreement with those previously established for endonucleases classified as similar to the Kamchatka crab duplex-specific nuclease (Par_DSN). Sequence comparisons and phylogenetic analyses confirmed that the Northern shrimp nuclease resembles the Par_DSN-like nucleases and displays a more distant relationship to the Serratia family of nucleases.

Conclusions/Significance

The shrimp nuclease contains enzyme activity that may be controlled by temperature or buffer compositions. The double-stranded DNA specificity, as well as the thermolabile feature, strengthens its potential for in vitro applications.  相似文献   

11.
Nitrobenzylthioinosine (NBMPR), an inhibitor of nucleoside transport by human erythrocytes, was found to be a potent inhibitor of thymidine uptake by asynchronous monolayer cultures of HeLa cells. Rates of thymidine uptake by the cultures at 20 °C were constant between 10 and 40 sec after thymidine addition and were assayed during this interval; TTP was the principal metabolite of thymidine and the thymidine phosphates accumulated at constant rates which extrapolated through time zero. The lack of an effect of NBMPR on thymidine kinase activity, or on the relative proportions of thymidine metabolites in cell extracts, indicated that NBMPR inhibited thymidine transport. When mediated entry (transport) was eliminated by 2 μM NBMPR, a significant diffusional component of thymidine entry was apparent. The mediated component of thymidine uptake exhibited Michaelis-Menten kinetics and apparent Km and Vmax values of 0.5 μM and 10–21 pmoles/min/106 cells were obtained. When NBMPR-treated cells were transferred to NBMPR-free medium, inhibition of thymidine uptake persisted, suggesting that NBMPR was firmly bound to the transport inhibitory sites.  相似文献   

12.
A glycerate kinase gene (ST2037) from the hyperthermophilic crenarchaeon Sulfolobus tokodaii was cloned and expressed in Escherichia coli. The purified homodimeric protein (45 kDa) specifically catalyzed the formation of 2-phosphoglycerate with d-glycerate as substrate. The thermostable enzyme displayed maximum activity (over 20 min) at 90°C and pH 4.5. The maximal activity was in the presence of Co2+. The MOFRL family glycerate kinase used AMP as phosphate donor with maximal activity towards GTP. These characteristics of the enzyme suggested its potential in the catalytic production of 2-phosphoglycerate.  相似文献   

13.
Kinetics of in vivo phosphorylation of 3H-thymidine taken up by sea urchin eggs was compared between unfertilized and fertilized eggs. The percentage of phosphorylated 3H-thymidine in the total acid-soluble radioactivity in the cell increased with increasing incubation time within the first several minutes of incubation in the unfertilized eggs, while nearly 100% of phosphorylation of thymidine was observed without regards to the incubation time and in spite of a tremendous increase in the net uptake of thymidine in the fertilized eggs, suggesting possible activation of thymidine kinase occurring soon after fertilization.In contrast to the in vivo finding, the thymidine kinase activity in unfertilized egg homogenates was found in general to be almost as large as that in fertilized egg homogenates. However, when the enzyme activity was assayed within a short period (30 min) after homogenization of unfertilized eggs, the activity was found to increase more or less with time after homogenization, reaching a level equal to that in fertilized egg homogenates. This enzyme activation after homogenization was especially marked in case of Pseudocentrotus eggs and sometimes amounted to a several fold increase.Preliminary investigations revealed possible involvement of some redox reaction(s) in the thymidine kinase activation during and/or after homogenization of unfertilized sea urchin eggs.  相似文献   

14.
Catechol 2,3-dioxygenase from the thermophilic Bacillus thermoleovorans A2 was purified and characterized. The catechol 2,3-dioxygenase has a molecular mass of 135 000 Da and consists of four identical subunits of 34 700 Da. One iron per enzyme subunit was detected using atom absorption spectroscopy. Enzyme activity was not inhibited by EDTA, suggesting that the iron is tightly bound. Addition of hydrogen peroxide to the enzyme completely destroyed activity, indicating that the iron was in the divalent state. The isoelectric point of the enzyme was 4.8. The enzyme displayed optimal activity at pH 7.2 and 70°C. The half-life of the catechol 2,3-dioxygenase at the optimum temperature was 1.5 min under aerobic conditions and 10 min in a nitrogen atmosphere. This stability of the enzyme is comparable to the stability of the enzyme from the mesophilic Pseudomonas putida mt-2. The stability of the cloned enzyme in E. coli extracts was identical to the stability in wild-type extracts, suggesting that no stabilizing factors were present in Bacillus thermoleovorans A2 In whole cells the half-life of the enzyme at 70°C was approximately 26 min, when protein synthesis was disrupted by chloramphenicol; however, the activity remained constant when protein synthesis was not inhibited. From these results we concluded that catechol 2,3-dioxygenase from Bacillus thermoleovorans A2 is not particularly thermostable, but that the organism retains the ability to degrade phenol at high temperatures because of continuous production of this enzyme. Received: October 10, 1998 / Accepted: March 18, 1999  相似文献   

15.
Protein Kinase Activities in Neurospora crassa   总被引:2,自引:0,他引:2  
Several protein kinase activities have been found in 105,000g supernatant of Neurospora crassa mycelia grown up to the logarithmic phase. By chromatography on DEAE-cellulose the following enzyme activities have been resolved: (i) a cyclic AMP-dependent protein kinase (peak I kinase) eluting at 0.20 m NaCl, more active with histone than with phosvitin (it was inhibited by both a thermolabile fraction having cyclic AMP-binding activity and a thermostable inhibitor isolated from 105,0005g mycelial supernates), (ii) a cyclic nucleotide-independent protein kinase (peak II kinase) eluting at 0.35 m NaCl, also more active with histone than with phosvitin (this kinase was not inhibited by the fraction having cyclic AMP-binding activity but it was sensitive to the thermostable inhibitor); and finally, (iii) a protein kinase eluting at 0.43 m NaCl (peak II kinase), with similar activity toward histone and phosvitin, insensitive to cyclic nucleotides and to fractions carrying cyclic AMP-binding capacity (this kinase activity also resulted insensitive to the thermostable inhibiting factor).  相似文献   

16.
17.
18.
Natural and modified purine nucleosides have been synthesized using the recombinant thermostable enzymes purine nucleoside phosphorylase II (E. C. 2.4.2.1) and pyrimidine nucleoside phosphorylase (E. C. 2.4.2.2) from Geobacillus stearothermophilus B-2194. The enzymes were produced in recombinant E. coli strains and covalently immobilized on aminopropylsilochrom AP-CPG-170 after heating the cell lysates and the removal of coagulated thermolabile proteins. The resulting preparations of thermostable nucleoside phosphorylases retained a high activity after 20 reuses in nucleoside transglycosylation reactions at 70–75°C with a yield of the target products as high as 96%. Owing to the high catalytic activity, thermal stability, the ease of application, and the possibility of repeated use, the immobilized preparations of thermostable nucleoside phosphorylases are suitable for the production of pharmacologically important natural and modified nucleosides.  相似文献   

19.
Adenylate cyclase can be resolved into at least two proteins, a thermolabile, N-ethylmaleimide-sensitive component and a second protein (or proteins) that is more stable to either of these treatments. Neither component by itself catalyzes the formation of cyclic AMP using MgATP as substrate. However, mixture of the two reconstitutes MgATP-dependent fluoride- and guanyl-5'-yl imidodiphosphate (Gpp(NH)p)-stimulatable adenylate cyclase activity. The more stable component can be resolved from the first in various tissues or cultured cells by treatment of membrnes or detergent extracts with heat or N-ethylmaleimide. The two proteins have also been resolved genetically in two clonal cell lines that are deficient in adenylate cyclase activity. An adenylate cyclase-deficient variant of the S49 lymphoma cell (AC-) contains only the thermolabile activity, while the activity of the more stable protein is found in a complementary hepatoma cell line (HC-1). In addition, AC-S49 cell plasma membranes contain MnATP-dependent adenylate cyclase activity. The protein that catalyzes this reaction appears to be the same as that which can combine with the thermostable component to reconstitute Mg2+-dependent enzyme activity because both activities co-fractionate by gel exclusion chromatography and sucrose density gradient centrifugation, both activities have identical denaturation kinetics at 30 degrees C, and both activities are stabilized at 30 degrees C and labilized at 0 degree C by various nucleotides and divalent cations with similar specificity. It is thus hypothesized that the thermolabile factor is the catalytic subunit of the physiological adenylate cyclase and that the Mn2+-dependent activity is a nonphysiological expression of the catalytic protein. The thermostable moiety of the enzyme, which is proposed to serve a regulatory function, appears to consist of two functional components, based upon differential thermal lability of its ability to reconstitute hormone-, NaF-, or Gpp(NH)p-stimulated adenylate cyclase activity. These components have not, however, been physically separated. The thermolabile and thermostable components can interact in detergent solution or in a suitable membrane. Mixing of the detergent-solubilized regulatory component with AC-membranes that contain only the catalytic protein and beta-adrenergic receptors reconstitutes catecholamine-stimulatable adenylate cyclase activity; however, addition of the catalytic protein to membranes that contain receptor and the regulatory component yields MgATP-dependent enzymatic activity that is unresponsive to hormone.  相似文献   

20.
A fructosyltransferase that transfers a terminal d-fructosyl group from a (2→1)-β-linked fructosaccharide to HO-1 of another d-fructosyl group has been purified from an extract of asparagus roots by successive chromatography with DEAE-cellulose, octyl-Sepharose, Sephadex G-200, and raffinose-coupled Sepharose 6B. The disc-electrophoretically homogeneous enzyme was free from β-d-fructofuranosidase, sucrose:sucrose 1-fructosyltransferase, and 6G-frutosyltransferase activity, and catalysed the d-fructosyl transfer from 1-kestose more rapidly to saccharides of the neokestose series [1F(1-β-d-fructofuranosyl)m-6G(1-β-d-fructofuranosyl)nsucrose] than to those of the 1-kestose series [1F(1-β-d-fructofuranosyl)nsucrose]. The enzyme was tentatively termed 1F-fructosyltransferase. The general properties of the enzyme were as follows: mol. wt., ~64,000; optimum pH, ~5.0; stable at pH 5.0–5.5 at 45° for 20 min; stable at 30–45° for 10 min; inhibited by Hg2+, p-chloromercuribenzoate, and Ag+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号