首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sugar maple (Acer saccharum Marsh.) seedlings were grown in a nursery for three years in 13, 25, 45 and 100 per cent of full daylight. During the third year of growth, the rates of their apparent photosynthesis and respiration were measured periodically with an infra-red gas analyzer at various light intensities and normal CO2 concentration. In addition, the rates of apparent photosynthesis of a single attached leaf of the same seedlings were measured at saturating light intensity, hut varying CO2 concentrations. An increase in the light intensity in which seedlings were grown had no effect on their height or mean leaf area, hut resulted in thicker leaves, an increase in the total leaf area per seedling due to an increase in the number of leaves, an increase in the dry weight especially of roots and a decrease in the chlorophyll content of leaves. Throughout the growing season seedlings grown in full daylight, as compared with those grown in lower light intensities, had the lowest rates of apparent photosynthesis measured at standard conditions (21,600 lux light intensity and 300 ul/l of CO2), when this was expressed per unit leaf area, hut the highest rates on a per seedling basis. Thus dry matter production attained at the end of the growing season correlated positively with the photosynthetic rate per seedling, but not per unit leaf area. The rates of apparent photosynthesis of seedlings grown at lower light intensities were more responsive to changes in light intensity or CO2 concentration than those of seedlings grown in full daylight intensity.  相似文献   

2.
Chloroplasts are one of the most susceptible systems to salt and osmotic stresses. Based on quantitative measurements of delayed fluorescence (DF) of the chloroplasts, we have investigated the damage to photosynthesis caused by these two kinds of stresses in Arabidopsis seedlings by using a custom-built multi-channel biosensor. Results showed that the DF intensity and net photosynthesis rate (Pn) decreased in a similar way with increasing NaCl or sorbitol concentration. Incubation of the seedlings in 200 mM NaCl induced a rapid and reversible decline and subsequent slow and irreversible loss in both the DF intensity and Pn. The rapid decline was dominantly related to osmotic stress, whereas the slow declines in the DF intensity and Pn were specific to ionic stress and could be reversed to a similar extent by a Na+-channel blocker. The DF intensity and Pn also exhibited a similar response to irradiation light under NaCl or sorbitol stress. All results indicated that the DF intensity correlated well with Pn under salt and osmotic stresses. We thus conclude that DF is an excellent marker for detecting the damage to photosynthesis caused by these two stresses. The mechanism of the correlation between the DF intensity and Pn under salt and osmotic stresses was also analyzed in theory and investigated with experiments by measuring intercellular CO2 concetration (Ci), stomatal conductance (Gs), chlorophyll fluorescence parameter, and chlorophyll content. This proposed DF technique holds the potential to be a useful means for analyzing the dynamics of salt and osmotic stresses in vivo and elucidating the mechanism by which plants respond to stress.  相似文献   

3.
钙离子对盐胁迫小麦幼苗氮代谢的影响   总被引:3,自引:0,他引:3  
为探讨增强小麦抗盐能力的调控途径,以普通小麦豫麦34为材料,研究了Ca2+对盐胁迫下小麦幼苗氮代谢及生长的影响.采用全营养液培养小麦幼苗至第一片叶完全展开,更换无钙营养液,并开始不同处理.处理分别为低盐胁迫(150 mmol · L-1 NaCl)、低盐胁迫+4 mmol · L-1 Ca2+、高盐胁迫(300 mmol · L-1 NaCl)、高盐胁迫+4mmol · L-1 Ca2+,以无NaCl胁迫的小麦为对照.5 d后取样,测定了氮同化酶活性、代谢物含量、积累量及幼苗生长状况.结果表明,Ca2+明显缓解了低盐胁迫对小麦幼苗的生长抑制,表现在鲜重、叶绿素及可溶性蛋白含量的增加,而对高盐胁迫下小麦幼苗的生长无明显改善效果;Ca2+改善了低盐胁迫下小麦幼苗的氮营养状况,表现在氮积累量的增加,这一效应主要是通过硝酸还原酶(NR)、谷氨酰胺合成酶(GS)以及异柠檬酸脱氢酶(NADP-ICDH)活性的增强而实现的.Ca2+未能改善高盐胁迫下小麦幼苗氮营养状况的主要限制因子在于NADP-ICDH活性未明显增加.  相似文献   

4.
In nature, soil salinity and fluctuating light (FL) often occur concomitantly. However, it is unknown whether salt stress interacts with FL on leaf photosynthesis, architecture, biochemistry, pigmentation, mineral concentrations, as well as whole-plant biomass. To elucidate this, tomato (Solanum lycopersicum) seedlings were grown under constant light (C, 200 μmol m−2 s−1) or FL (5–650 μmol m−2 s−1), in combination with no (0 mM NaCl) or moderate (80 mM NaCl) salinity, for 14 days, at identical photoperiods and daily light integrals. FL and salt stress had separate effects on leaf anatomy, biochemistry and photosynthetic capacity: FL reduced leaf thickness as well as nitrogen, chlorophyll and carotenoid contents per unit leaf area, but rarely affected steady-state and dynamic photosynthetic properties along with abundance of key proteins in the electron transport chain. Salt stress, meanwhile, mainly disorganized chloroplast grana stacking, reduced stomatal density, size and aperture as well as photosynthetic capacity. Plant biomass was affected interactively by light regime and salt stress: FL reduced biomass in salt stressed plants by 17%, but it did not affect biomass of non-stressed plants. Our results stress the importance of considering FL when inferring effects of salt-stress on photosynthesis and productivity under fluctuating light intensities.  相似文献   

5.
为评价日本荚蒾(Viburnum japonicum)的耐盐雾能力,对4 a生实生苗用不同盐雾浓度处理(盐雾NaCl质量浓度分别为0%、1%、2%、3%),测定叶片净光合速率、最大光化学效率(Fv/Fm)和叶绿素含量(Chl)等指标的变化。结果表明,1%盐雾处理的日本荚蒾植株能够存活,但生长不良,大于2%的盐雾处理的植株全部死亡。随着浓度的升高,日本荚蒾叶片的最大光合速率、Fv/Fm及Chl含量下降,而光饱和点及光补偿点总体呈上升趋势。这说明盐雾胁迫通过伤害光系统Ⅱ反应中心、改变植物可利用光能范围及降低叶绿素含量影响植物的光合作用。  相似文献   

6.
施用有机肥环境下盐胁迫小麦幼苗长势和内源激素的变化   总被引:3,自引:0,他引:3  
在盆栽条件下,研究了不同浓度NaCl处理下,底施不同施用量有机肥小麦品种豫麦49-198幼苗的生长变化,在此基础上,选择出合适的NaCl处理浓度和有机肥施用量区间,并对此情况下小麦幼苗苗和根中内源激素含量和比例的变化进行了测定,以揭示其耐盐差异机制。结果表明,15000-35000 kg/hm2施用量有机肥处理明显减轻NaCl浓度为150 mmol/L的盐胁迫,其中25000 kg/hm2有机肥处理效果最明显;45000 kg/hm2以上的有机肥处理对幼苗生长抑制无明显缓解作用;当NaCl浓度为450 mmol/L时,各种施用量的有机肥处理均不能减轻盐胁迫对幼苗生长的抑制。150 mmol/L NaCl胁迫下,不同施用量有机肥处理,分别为对照(不施肥)、低施用量(15000 kg/hm2)、中施用量(25000 kg/hm2)和高施用量(35000 kg/hm2)的有机肥,土壤盐度的增加量随有机肥用量增加而上升,对小麦幼苗生长的抑制作用得到缓解,以25000 kg/hm2有机肥处理缓解作用最强。有机肥处理下盐胁迫小麦幼苗苗和根中ABA含量的增加得到显著缓解,IAA和GAs的含量比不施有机肥的对照有不同程度的提高, 说明盐胁迫下有机肥处理小麦幼苗具有较高IAA和GAs合成量。盐胁迫下有机肥处理使苗中ZR的含量较高而根中则较低,说明抗盐性较强的有机肥处理可迅速将根部合成的ZR向苗中转移,促进苗的生长。盐胁迫下有机肥处理的IAA/ABA、GAs/ABA、ZR/ABA的比值也有不同程度提高。在盐胁迫下,有机肥处理尤其是在25000 kg/hm2施用量时,小麦幼苗协调自身激素平衡的能力较强可能是其生长受抑制较小的重要原因。  相似文献   

7.
盐旱复合胁迫对小麦幼苗生长和水分吸收的影响   总被引:4,自引:0,他引:4  
为明确盐害、干旱及盐旱复合胁迫对小麦幼苗生长和水分吸收的影响,从而为盐害和干旱胁迫下栽培调控提供理论依据。以2个抗旱性不同的小麦品种(扬麦16和耐旱型洛旱7号)为材料,采用水培试验,以NaCl和PEG模拟盐旱复合胁迫,研究了盐旱复合胁迫下小麦幼苗生长、根系形态、光合特性及水分吸收特性的变化。结果表明,盐、旱及复合胁迫下小麦幼苗的生物量、叶面积、总根长与根系表面积、叶绿素荧光和净光合速率均显著下降,但是复合胁迫处理的降幅却显著低于单一胁迫。盐旱复合胁迫下根系水导速率和根系伤流液强度显著大于单一胁迫,从而提高了小麦幼苗叶片水势和相对含水量。盐胁迫下小麦幼苗Na~+/K~+显著大于复合胁迫,但复合胁迫下ABA含量却显著小于单一的盐害和干旱胁迫。因此,盐旱复合胁迫可以通过增强根系水分吸收及降低根叶中ABA含量以维持较高光合能力,这是盐旱复合胁迫提高小麦适应性的重要原因。洛旱7号和扬麦16对盐及盐旱复合胁迫的响应基本一致,但在干旱胁迫下洛旱7号表现出明显的耐性。  相似文献   

8.
遮荫和全光下生长的棉花光合作用和叶绿素荧光特征   总被引:49,自引:0,他引:49       下载免费PDF全文
 遮荫条件下(遮荫下光强相当于自然光强的40%左右)棉花(Gossypium hirsutum)叶片光合速率明显降低,仅为自然光强下生长叶片的30%~40%,叶片中RuBP羧化酶活性降低,而表观量子效率(AQY)较高。不同光照条件下生长的棉花叶片对短时间持续光强的光合诱导过程有明显的差异,由弱光转到强光下,自然光强下生长的叶片的Pn、Gs、ΦPSⅡ及非光化学猝灭系数(NPQ)都能在较短的时间内达到最大值,而遮荫叶片需要的时间较长;遮荫下生长的棉花叶片的实际光化学效率,随光强的增加下降幅度较大,而自然光照下生长的叶片下降幅度较小;自然光照下生长的叶片的NPQ随光强的升高达到较高水平,而遮荫叶片在较低的光强下即达到最大值,此时NPQ较低,遮荫叶片依赖于叶黄素循环的能量耗散水平较低。遮荫叶片较低的光合速率以及过剩光能耗散能力是其转入自然强光后光抑制严重的主要原因。  相似文献   

9.
Rawat  J.S.  Banerjee  S.P. 《Plant and Soil》1998,205(2):163-169
The influence of NaCl salinity on growth, dry-matter production and leaf photosynthesis of seedlings of Eucalyptus camaldulensis Dehnh. and Dalbergia sissoo Roxb. was studied by imposing 4 levels (40, 80, 120 and 160 mM) of NaCl in pot culture. Salinity up to 160 mM did not affect plant survival, but did affect plant growth and dry-matter production depending upon the species and salt concentration. NaCl reduced leaf number and dry-weight of all the plant components, but increased stem dry-weight, especially in E. camaldulensis. Salinization also stimulated total dry-matter production at all the salinity levels in E. camaldulensis but only at 40 mM in D. sissoo. The two species varied in protein and chlorophyll concentration and in leaf photosynthetic rate. Protein and chlorophyll concentration of the plants fell at all the levels of NaCl, except at 40 mM, where stimulation in the photosynthetic carbon assimilation of the plants occurred. However, no distinct relationship between leaf photosynthetic rate and dry-matter production was found. The study indicated that low salt concentrations generally stimulated growth, biomass production and rate of photosynthesis in both the species, and E. camaldulensis appeared more NaCl salt-tolerant than D. sissoo.  相似文献   

10.
Mesophyll cells from leaves of cowpea (Vigna unquiculata [L.] Walp.) plants grown under saline conditions were isolated and used for the determination of photosynthetic CO2 fixation. Maximal CO2 fixation rate was obtained when the osmotic potential of both cell isolation and CO2 fixation assay media were close to leaf osmotic potential, yielding a zero turgor pressure. Hypotonic and hypertonic media decreased the rate of photosynthesis regardless of the salinity level during plant growth. No decrease in photosynthesis was obtained for NaCl concentrations up to 87 moles per cubic meter in the plant growing media and only a 30% decrease was found at 130 moles per cubic meter when the osmotic potential of cell isolation and CO2 fixation media were optimal. The inhibition was reversible when stress was relieved. At 173 moles per cubic meter NaCl, photosynthesis was severely and irreversibly inhibited. This inhibition was attributed to toxic effects caused by high Cl and Na+ accumulation in the leaves. Uptake of sorbitol by intact cells was insignificant, and therefore not associated with cell volume changes. The light response curve of cells from low salinity grown plants was similar to the controls. Cells from plants grown at 173 moles per cubic meter NaCl were light saturated at a lower radiant flux density than were cells from lower salinity levels.  相似文献   

11.
本研究检测了与盐芥(Ghellungiella halophila)和拟南芥(Arabidopsis thaliana)光合作用相关的叶绿素、净光合速率(photosynthetic rate, Pn)、气孔导度(stomatal conductance, Gs)、胞间隙CO2浓度以及叶绿素荧光参数等指标, 观察到随着NaCl浓度逐渐增加, 盐芥的叶绿素a/b值(Chl a/Chl b)、类胡萝卜素/总叶绿素值(Car/Chl)显著高于拟南芥, 且二比值变化幅度较小并保持较高水平。盐胁迫下拟南芥净光合速率下降、气孔导度下降和胞间CO2浓度减小。气孔因素是引起拟南芥光合能力下降的主要因素。叶绿素荧光参数的变化表明, 50-200 mmol.L-1 NaCl降低拟南芥叶绿体对光能的吸收能力, 而且降低叶绿体的光化学活性, 使电子传递速率和光能转化效率大幅度下降,造成光能转化为化学能的过程受阻,进一步加剧了光合放氧和碳同化能力的降低。而50-200 mmol.L-1 NaCl 胁迫没有使盐芥的光合作用受到不良影响。  相似文献   

12.
Klaus Winter 《Planta》1973,114(1):75-85
Summary The correlation of CO2-fixation metabolism to various environmental conditions such as NaCl content of culture medium, air humidity and light intensity was investigated in the halophytic species Mesembryanthemum crystallinum. The data obtained demonstrate that a change in photosynthesis from C3-pathway to crassulacean acid metabolism (CAM) is observed not only in NaCl treated plants as reported earlier but also in control plants grown in non-saline medium when environmental conditions (high light intensity, low air humidity) cause a water deficit in the leaves. It is suggested that water stress plays an important role in regulation between C3- and CAM-pathway of photosynthesis in Mesembryanthemum crystallinum.
Abkürzungen CAM Crassulaceensäurestoffwechsel - FG Frischgewicht - TG Trockengewicht - D Ende Dunkelphase - L Ende Lichtphase Herrn Prof. Dr. Otto Stocker zum 85. Geburtstag gewidmet  相似文献   

13.
盐胁迫是影响小麦萌发、生长和生产的最重要环境因素。探究链带藻(Desmodesmus Sp.)生物刺激剂对盐胁迫条件下小麦种子和早期幼苗抗盐、生长和生理的缓解效应以及最佳施用浓度,可为其应用于缓解小麦盐胁迫影响提供理论依据。【方法】通过室内培养皿培养法,将小麦种子置于100 mmol/L NaCl胁迫下,外源添加25,50,100,200 mg/L的链带藻提取物(DAE),处理7 d后测量各项萌发和生长参数。【结果】外源添加DAE处理缓解了盐胁迫对小麦种子萌发和早期幼苗生长的抑制作用,提高了盐胁迫下小麦种子的萌发率和叶片含水量,促进了生物量的积累;提高了幼苗叶片超氧化物歧化酶、过氧化物酶、过氧化氢酶、抗坏血酸过氧化物酶活性以及脯氨酸、可溶性总糖、可溶性蛋白质和叶绿素的含量;降低了脂质过氧化作用,减少了丙二醛含量和膜透性。在100 mmol/L NaCl胁迫条件下,25 mg/L DAE对盐胁迫下小麦种子萌发及早期幼苗生长抑制作用的缓解效果最佳。【结论】链带藻细胞提取物通过促进小麦种子早期萌发的启动,提高小麦幼苗叶绿素含量、抗氧化酶活性和渗透调节能力,增强小麦种子及早期幼苗对盐胁迫的适应性,提升了小麦的耐盐能力。  相似文献   

14.
On transferring three-week-old plants of Aster tripolium L. growing in a half strength Hoagland's medium to the same medium containing 333 m M NaCl a very quick uptake of salt and, after a lag phase of 3 to 5 h, an increase in free proline level was observed. During the time course of imino acid storage, the accumulation rates were higher in the light than in the dark, thereby suggesting some kind of photocontrol on solute metabolism. At zero time, high levels of glycine betaine were present in young plants grown without salt. However, after the application of saline shock, the betaine level also increased significantly. The highest rate of betaine accumulation was detected during the third day of treatment when the rate of proline storage decreased. Glycine betaine storage could also be linked to light dependent processes; whatever its importance in response to salt shock was, the levels observed were lower than those of plants directly grown on 333 m M NaCl for three weeks. When saline stressed plants were transferred to a medium without NaCl, the proline level quickly decreaed while that of glycine betaine remained stable.  相似文献   

15.
Low oxygen stress in plants can occur during flooding and compromise the availability and utilization of carbohydrates in root and shoot tissues. Low-oxygen-tolerant rice and -sensitive wheat plants were analyzed under anaerobiosis in light to evaluate main factors of the primary metabolism that affect sensitivity against oxygen deprivation: activity of glycolysis and the rate of photosynthesis. Relatively stable ATP contents (93 and 58% of aerated control levels after 24 h anaerobiosis) in illuminated shoot tissues account for enhanced tolerance of rice and wheat seedlings to anaerobiosis upon light exposure in comparison to anoxia in darkness. Although the photosynthetic process was inhibited during low oxygen stress, which was partly due to CO2 deficiency, more light-exposed than dark-incubated seedlings survived. Illuminated plants could tolerate a 70% lower anaerobic ethanol production in shoots in comparison to darkness, although still an 18-times higher ethanol production rate was determined in rice than in wheat leaves. In conclusion, light-exposed plants grown under anaerobiosis may recycle low amounts of generated oxygen between photosynthesis and dissimilation and generate additional energy not only from substrate phosphorylation during glycolysis but also from other sources like cyclic electron transport.  相似文献   

16.
为探究施盐和磷对重要海防林树种台湾相思幼苗叶光合作用与养分特征的影响,该研究设置0%(B0)、0.2%(B1)、0.4%(B2)、0.6%(B3)、0.8%(B4)的NaCl溶液和0 (P0)、0.5 (P1)、1.5 (P2)g·kg-1 3个供磷水平的过磷酸钙磷肥,在此基础上设置盐磷6个耦合处理,测定幼苗光合作用和养分特征指标。结果表明:(1)盐胁迫显著抑制台湾相思幼苗的生长发育,盐含量越高影响程度越大;低盐施磷对台湾相思幼苗生长不利,中高盐施磷显著减缓盐对幼苗生长的抑制作用。(2)台湾相思幼苗光合作用受盐胁迫影响显著;中低盐施磷后气孔关闭程度上升会加剧盐胁迫对幼苗光合作用的影响,高盐适当施磷可显著提高台湾相思幼苗光合能力。(3)盐胁迫显著降低叶绿素含量且对光系统Ⅱ造成危害;低盐胁迫施磷对台湾相思幼苗叶绿素合成不利,高盐适当施磷可以提高叶绿素合成量、稳定细胞膜结构以及提高叶片潜在光合能力...  相似文献   

17.
Natural regeneration of European beech (Fagus sylvatica L.) establishes under shade, but sudden exposure to high irradiance may occur due to openings in the canopy. To elucidate ecophysiological mechanisms associated with survival of European beech seedlings, the gas exchange, chlorophyll concentrations, and chlorophyll a fluorescence parameters of two different beech populations were studied under changing light conditions. Plants were grown both in a growth chamber and at a natural site (one population) where the seedlings were raised in containers placed in understory and in simulated canopy gaps. Upon exposure to high light in the growth chamber, photosynthetic rates of shade-acclimated leaves of seedlings from both populations increased severalfold and then decreased over several days to the rates of the low-light control seedlings. High-light seedlings always had the highest photosynthetic rates. Initial fluorescence displayed a trend opposite that of photosynthesis; it increased over time, and relative fluorescence and half-time rise declined continuously until the end of experiment to very low values. Exposure to high light of shade-acclimated seedlings resulted in a shift in chlorophyll concentrations to levels intermediate between high-light and low-light seedlings. The light treatment effects were statistically greater than population effects; however, seedlings from the Abetone population were found to be more susceptible to changing light conditions than seedlings from Sicily. Reciprocal light treatments on plants growing at the natural site confirmed the results obtained in the growth chamber experiment. Overall, beech seedlings grown in the field appeared to have a fairly large acclimation potential achieved by plasticity in the photosynthetic apparatus. The lack of pronounced acclimation to high light in seedlings grown in the growth chamber was ascribed to a threshold-type relationship between the acclimation capacity and the level of damage. These observations on the limited potential for acclimation to high light in leaves of European beech seedlings which show a clear capability to exploit sunflecks, are discussed in relation to regeneration following canopy gap formation and reinforce the view of the central role of gap formation in forest dynamics. We conclude that small forest gaps (in which sunflecks play a major role) may present a favorable environment for survival and growth of beech because of their limited ability to acclimate to a sudden increase in irradiance and because of the moderate levels of light stress found in small gaps.  相似文献   

18.
K Tsugane  K Kobayashi  Y Niwa  Y Ohba  K Wada    H Kobayashi 《The Plant cell》1999,11(7):1195-1206
Mutagenized Arabidopsis seedlings (ecotype Columbia) were screened for the ability to grow photoautotrophically on solid medium containing 200 mM NaCl. A novel mutant line, designated pst1 (for photoautotrophic salt tolerance1), was obtained. There were no significant differences between pst1 and wild-type plants with regard to their ability to induce proline as an osmoregulatory solute. In addition, the content of monovalent cations in pst1 plants grown with or without salt stress was equal to that in the wild type. We observed that light, even at moderate intensities, increased the effects of salt stress on wild-type plants. The pst1 seedlings were nearly 10 times more tolerant to methyl viologen than were wild-type seedlings. We also found that the activities of the active oxygen scavengers superoxide dismutase and ascorbate peroxidase were enhanced significantly in pst1 plants. The pst1 plants also were tolerant to other stresses, such as high light intensity and toxic monovalent cations. The recessive nature of the pst1 mutation indicates that the potential for salt-stress tolerance is blocked in wild-type Arabidopsis.  相似文献   

19.
耐盐植物引种和培育是开发利用盐碱地的主要方式,具有重要的研究价值。本试验以哈萨克斯坦引进的吉尔吉斯白桦(Betula kirghisorum)、欧洲白桦(B.pendula)、毛枝桦(B.pubescens)和本地的白桦(B.platyphylla Suk.)1年生幼苗为试验材料,于2014年7月在东北林业大学进行中性盐(NaCl)和碱性盐(NaHCO3)的胁迫试验,测定生长量、光合参数和叶绿素含量,并通过因子分析法,对比评价4种桦树幼苗的耐盐碱能力,筛选出综合性状优良的桦树树种,为耐盐植物引种和培育提供有价值的数据。结果表明:随着盐浓度的升高,桦树幼苗的高生长和光合效率受到显著抑制,而当浓度≥0.5%时,大部分幼苗枯死。株高增长量、基径增长量、净光合速率(Pn)、光能利用效率(SUE)、羧化效率(CUE)、表观量子效率(AQY)及叶绿素含量之间的相关性多数达到了显著水平;最后利用因子分析法分别构建了0.1% NaCl、0.3% NaCl、0.1% NaHCO3和0.3% NaHCO3胁迫处理的综合评价公式,并分别筛选出了综合性状相对优良的单株,其中NaCl胁迫下较优单株为32、33、34、35;NaHCO3胁迫下较优单株为262、263、264、35。综合比较认为,吉尔吉斯白桦对低中浓度的中性盐的抗性最强,本地对照白桦对低中浓度碱性盐的抗性最强,而吉尔吉斯白桦和毛枝桦对高浓度碱性盐抗性较强。  相似文献   

20.
Variation in tolerance to nutrient limitations may contribute to the differential success of sugar maple ( Acer saccharum Marsh.) and red maple ( Acer rubrum L.) on acid soils. The objectives of this study were to examine these relationships as influenced by light environment and test whether sensitivity to nutrient stress is mediated by oxidative stress. First-year sugar maple and red seedlings were grown on forest soil cores contrasting in nutrient availability under high or low light intensity. Foliar nutrition, photosynthesis, growth and antioxidant enzyme activity were assessed. Photosynthesis and growth of sugar maple were significantly lower on nutrient-poor soils and were correlated with leaf nutrient status with Ca and P having the strongest influence. For red maple, only chlorophyll content showed sensitivity to the nutrient-poor soils. High light exacerbated the negative effects of nutrient imbalances on photosynthesis and growth in sugar maple. Antioxidant enzyme activity in sugar maple was highest in seedlings growing on nutrient-poor soils and was inversely correlated with photosynthesis, Ca, P, and Mg concentrations. These results suggest that: (1) sugar maple is more sensitive to nutrient stresses associated with low pH soils than red maple; (2) high light increases sugar maple sensitivity to nutrient stress; (3) the negative effects of nutrient imbalances on sugar maple may be mediated by oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号