首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Comparison have been made of cell surface glycoproteins, concanavalin A agglutinability, and cloning efficiencies in liquid media of ICR 2A (haploid frog cells), ICR 2A M (three cloned populations of haploid frog cells resistant to 5 μg per ml of the polyene antibiotic mediocidin), and ICR 2A M/MV cells (five cloned populations of morphologically variant haploid frog cells produced by exposure of the parental cells to the combined effects of mediocidin and an RNA mammalian virus, Mengo virus). Independently isolated ICR 2A M/MV clones exhibited altered cell surface glycoproteins, increased concanavalin A agglutinability, and enhanced cloning efficiency in liquid media when compared with ICR 2A parental cells. In contrast, ICR 2A M cells had properties similar to ICR 2A cells, with the exception of the former's increased resistance to mediocidin. The differences in properties between ICR 2 M/MV and ICR 2 cells suggest that alterations resembling transformation have occurred in ICR 2A M/MV cells as a consequence of combined treatment with mediocidin and Mengo virus. This investigation was supported in part by Contract NIH 69-2161, NIH Grant AI-2095, and NIH Training Grant No. GM 507 from the National Institute of General Medical Sciences.  相似文献   

2.
We have examined the agglutination of Sindbis virus and of chick and hamster cells infected with Sindbis virus by two of the plant lectins, concanavalin A and Ricinus communis agglutinin. Both lectins agglutinate the virus by binding to the polysaccharide chains of the envelope glycoproteins. Both chick and hamster cells exhibit increased agglutination by the lectins after infection by Sindbis virus. In the case of chick cells infected with Sindbis virus, this increase in agglutinability occurs between 3 and 5 h after infection. Infected and mock-infected cells bind the same amount of (3)H-labeled concanavalin A, which suggests that the increase in agglutination after infection is due to rearrangements at the cell surface rather than to insertion of new lectin binding sites per se.  相似文献   

3.
Properties of the change from asparagine dependence (asn-) to independence (asn+) were investigated in the androgenetic haploid frog cell line ICR 2A. Two types of asn+ variants arose spontaneously during culture. Glutamine-dependent asparagine synthetase (AS) activity, found to be deficient in asn- cells, was repressed by asparagine in one type of variant and expressed constitutively in the other. No quantitative differences in AS-specific DNA sequences or changes in ploidy were evident between asn+ and asn- cells. The asn+ frequency in ICR 2A populations, not dramatically influenced by chemical mutagens, was increased 130-fold by exposure to 5-azacytidine. The methylation of CCGG sequences at the 5' end of the AS structural gene was found to be reduced equally in both types of asn+ variant. These results indicate that decreased DNA methylation is essential but not necessarily sufficient for the expression of AS activity in this frog cell system.  相似文献   

4.
Nutritional requirements of amphibian cells in culture were studied for the purpose of modifying a minimal medium in which frog cells could proliferate and which could be used for obtaining drug-resistant and auxotrophic variants. The serum, purine, CO2, and amino acid requirements for ICR 2A (a Rana pipiens haploid cell strain) have been investigated employing two different media: L-15, a nonbicarbonate, amino acid-buffered medium and Eagle's MEM, a bicarbonate-buffered medium. In this paper we present evidence to support the following conclusions: (1) With L-15 as the base medium, 10% fetal calf serum (FCS) supports optimal cell growth during exponential phase. Calf serum, whole, dialyzed, or heat-inactivated, cannot substitute for FCS and, in fact, is inhibitory. (2) Purines are required by ICR 2A cells only if grown in a nonbicarbonate-buffered medium, since the cells under these conditions cannot produce enough endogenous CO2 to support de novo purine synthesis. (3) In addition to the amino acids considered essential for mammalian cells in culture, ICR 2A cells depend upon exogenous asparagine. Glutamine and/or aspartic acid cannot replace the asparagine requirement. However, ICR 2A cells do utilized exogenous glutamine as an oxidative substrate.  相似文献   

5.
It has been previously observed that rabbit erythrocyte cell surface galactosyltransferase appears to play a role in concanavalin A agglutination of these erythrocytes (Podolsky et al., 1974). Further, a correlation between the occurrence or level of cell surface galactosyltransferase and concanavalin A agglutinability of other cell types has also been observed. The mechanism by which rabbit erythrocyte galactosyltransferase participates in concanavalin A agglutination has now been further defined. The enzyme was solubilized and purified. Characterization of the enzyme properties has shown them to be similar to those reported for other purified galactosyltransferases. Amino acid and carbohydrate analysis showed a high asparagine content and the presence of D-mannose. Specific alpha-mannosidase treatment of the enzyme showed that some of these D-mannose residues were terminal sugars. The purified enzyme also conferred concanavalin A agglutinability to non-agglutinable human erythrocytes. However, the ability to confer concanavalin A agglutinability was unrelated to the enzyme activity per se (as measured with fetuin acceptor) but appeared to be entirely dependent on the presence of terminal alpha-linked D-mannosyl residues in the enzyme structure. These findings suggest that the presence of terminal alpha-mannosidyl residues on cell surface glycoproteins such as galactosyltransferase may be the determining factor in agglutination of cells by concanavalin A.  相似文献   

6.
Naim HY  Ehler E  Billeter MA 《The EMBO journal》2000,19(14):3576-3585
In polarized epithelial cells measles virus (MV) is predominantly released at the apical cell surface, irrespective of the sorting of its two envelope glycoproteins F and H. It has been reported previously that the viral matrix (M) protein modulates the fusogenic capacity of the viral envelope glycoproteins. Here, extant MV mutants and chimeras were used to determine the role of M protein in the transport of viral glycoproteins and release of progeny virions in polarized epithelial CaCo2 cells. In the absence of M, envelope glycoproteins are sorted to the basolateral surface, suggesting that they possess intrinsic basolateral sorting signals. However, interactions of M with the glycoprotein cytoplasmic tails allow M-glycoprotein co-segregation to the apical surface, suggesting a vectorial function of M to retarget the glycoproteins for apical virion release. Whereas this may allow virus airway shedding, the intrinsic sorting of the glycoproteins to the basolateral surface may account for systemic host infection by allowing efficient cell-cell fusion.  相似文献   

7.
Changes in the cell surface after a single treatment with 7,12-dimethylbenz(a)anthracene (DMBA) of newborn rat carcass in cell culture have been studied by means of the agglutination reaction with concanavalin A. DMBA was shown to cause alterations in the cell surface. At 0.5 mkg/ml of DMBA, the difference in agglutinability of treated and untreated cells persists for 30 days. At 0.1 mkg/ml of DMBA, the agglutinability of drug-treated and control cells was similar on the 4th day after removal of carcinogen. A prolonged culturing of control cells results in an increased agglutinability of cells with concanavalin A, and in 2.5 months it becomes indistinguishable from the agglutinability level of tumor cells with concanavalin A. In 5 months, drastic karyotypic changes are registered in control cultures.  相似文献   

8.
A monoclonal antibody (MCI20.6) which inhibited measles virus (MV) binding to host cells was previously used to characterize a 57- to 67-kDa cell surface glycoprotein as a potential MV receptor. In the present work, this glycoprotein (gp57/67) was immunopurified, and N-terminal amino acid sequencing identified it as human membrane cofactor protein (CD46), a member of the regulators of complement activation gene cluster. Transfection of nonpermissive murine cells with a recombinant expression vector containing CD46 cDNA conferred three major properties expected of cells permissive to MV infection. First, expression of CD46 enabled MV to bind to murine cells. Second, the CD46-expressing murine cells were able to undergo cell-cell fusion when both MV hemagglutinin and MV fusion glycoproteins were expressed after infection with a vaccinia virus recombinant encoding both MV glycoproteins. Third, M12.CD46 murine B cells were able to support MV replication, as shown by production of infectious virus and by cell biosynthesis of viral hemagglutinin after metabolic labeling of infected cells with [35S]methionine. These results show that the human CD46 molecule serves as an MV receptor allowing virus-cell binding, fusion, and viral replication and open new perspectives in the study of MV pathogenesis.  相似文献   

9.
The interactions between concanavalin A and chick embryo fibroblasts, normal and infected with Rous sarcoma virus (RSV-BH) or its thermosensitive mutant RSV-BH-Ta, have been studied. Normal chick embryo cells and RSV-BH transformed cells showed at 4 and 25 degrees C a similar number of concanavalin A receptors per cell. Analysis of the binding data by the Scatchard relation showed that apparent changes in binding as a function of temperature are due to the thermodynamic properties of the process and not to endocytosis. The lectin receptors on the cell surface of normal and RSV-BH infected cells showed homogeneity in their binding properties. Chick cells infected with RSV-BH-Ta showed a lectin binding behavior that was dependent on the temperature at which the cells were grown. At the permissive temperature for transformation (37 degrees C), the binding process was similar to that observed for normal and RSV-BH infected cells. At the nonpermissive temperature (41 degrees C), the cells showed at least two sets of concanavalin A receptors. The new set of receptors on the cell surface had a lower lectin affinity than those observed in the same cells at 37 degrees C. Chick cells infected with RSV-BH showed an enhanced agglutinability by concanavalin A, as compared with normal cells. Cells infected with RSV-BH-Ta showed a reversal of the correlation between increased concanavalin A agglutinability and the transformed state. At the permissive temperature for transformation, the cells were not agglutinable, whereas at the nonpermissive temperature they presented agglutinability indexes as high as those observed with RSV-BH infected cells. This enhanced agglutinability observed with cells maintained at the nonpermissive temperature for transformation may be related to the new set of low affinity receptors present at 41 degrees C.  相似文献   

10.
In measles virus (MV)-infected cells the matrix (M) protein plays a key role in virus assembly and budding processes at the plasma membrane because it mediates the contact between the viral surface glycoproteins and the nucleocapsids. By exchanging valine 101, a highly conserved residue among all paramyxoviral M proteins, we generated a recombinant MV (rMV) from cloned cDNA encoding for a M protein with an increased intracellular turnover. The mutant rMV was barely released from the infected cells. This assembly defect was not due to a defective M binding to other matrix- or nucleoproteins, but could rather be assigned to a reduced ability to associate with cellular membranes, and more importantly, to a defective accumulation at the plasma membrane which was accompanied by the deficient transport of nucleocapsids to the cell surface. Thus, we show for the first time that M stability and accumulation at intracellular membranes is a prerequisite for M and nucleocapsid co-transport to the plasma membrane and for subsequent virus assembly and budding processes.  相似文献   

11.
We analyzed the roles of the individual measles virus (MV) surface glycoproteins in mediating functional and structural interactions with human CD46, the primary MV receptor. On one cell population, recombinant vaccinia virus vectors were used to produce the MV hemagglutinin (H) and fusion (F) glycoproteins. As fusion partner cells, various cell types were examined, without or with human CD46 (endogenous or recombinant vaccinia virus encoded). Fusion between the two cell populations was monitored by a quantitative reporter gene activation assay and by syncytium formation. MV glycoproteins promoted fusion with primate cells but not with nonprimate cells; recombinant CD46 rendered nonprimate cells competent for MV glycoprotein-mediated fusion. Markedly different fusion specificity was observed for another morbillivirus, canine distemper virus (CDV): recombinant CDV glycoproteins promoted fusion with primate and nonprimate cells independently of CD46. Fusion by the recombinant MV and CDV glycoproteins required coexpression of H plus F in either homologous or heterologous combinations. To assess the role of H versus F in determining the CD46 dependence of MV fusion, we examined the fusion specificities of cells producing heterologous glycoprotein combinations. The specificity of HMV plus FCDV paralleled that observed for the homologous MV glycoproteins: fusion occurred with primate cells but not with nonprimate cells unless they produced recombinant CD46. By contrast, the specificity of HCDV plus FMV paralleled that for the homologous CDV glycoproteins: fusion occurred with either primate or nonprimate cells with no dependence on CD46. Thus, for both MV and CDV, fusion specificity was determined by H. In particular, the results demonstrate a functional interaction between HMV and CD46. Flow cytometry and antibody coprecipitation studies provided a structural correlate to this functional interaction: CD46 formed a molecular complex with HMV but not with FMV or with either CDV glycoprotein. These results highlight the critical role of the H glycoprotein in determining MV specificity for CD46-positive cells.  相似文献   

12.
S F Nilsson  M J Waxdal 《Biochemistry》1976,15(12):2698-2705
The major glycoproteins which bind concanavalin A have been isolated and identified from murine spleen cells, thymocytes,and purified thymus-derived (T) lymphocytes, and from the spleen cells of congenitally athymic (nude) mice. The cells were radiolabeled by lactoperoxidase catalyzed 125I iodination or by culturing the cells in media containing [3H]leucine or [3H]fucose. The cell membrane was solubilized with Nonidet P-40 and the concanavalin A binding proteins were isolated by affinity chromatography and analyzed according to their mobility on polyacrylamide gel electrophoresis in sodium dodecyl sulfate. The major proteins from various lymphocyte preparations were identified by immunoprecipitation with specific antisera. The molecules coded by the histocompatibility-2 complex acted as concanavalin A binding proteins H-2K and H-2D were isolated from T lymphocytes, thymocytes, and bone marrow derived (B) lymphocytes. The Ia antigens were identified from B lymphocytes and tentatively identified from T lymphocytes. In addition to these H-2 complex proteins, immunoglobulin M and D on B lymphocytes also bound concanavalin A binding. All these glycoproteins have previously been identified as cell surface molecules. The presence of certain minor unidentified concanavalin A binding proteins on lymphoid cells is indicated.  相似文献   

13.
In vivo passage of a poorly replicating, nonpathogenic simian-human immunodeficiency virus (SHIV-HXBc2) generated an efficiently replicating virus, KU-1, that caused rapid CD4+ T-lymphocyte depletion and AIDS-like illness in monkeys (S. V. Joag, Z. Li, L. Foresman, E. B. Stephens, L.-J. Zhao, I. Adany, D. M. Pinson, H. M. McClure, and O. Narayan, J. Virol. 70:3189–3197, 1996). The env gene of the KU-1 virus was used to create a molecularly cloned virus, SHIV-HXBc2P 3.2, that differed from a nonpathogenic SHIV-HXBc2 virus in only 12 envelope glycoprotein residues. SHIV-HXBc2P 3.2 replicated efficiently and caused rapid and persistent CD4+ T-lymphocyte depletion in inoculated rhesus macaques. Compared with the envelope glycoproteins of the parental SHIV-HXBc2, the SHIV-HXBc2P 3.2 envelope glycoproteins supported more efficient infection of rhesus monkey peripheral blood mononuclear cells. Both the parental SHIV-HXBc2 and the pathogenic SHIV-HXBc2P 3.2 used CXCR4 but none of the other seven transmembrane segment receptors tested as a second receptor. Compared with the parental virus, viruses with the SHIV-HXBc2P 3.2 envelope glycoproteins were more resistant to neutralization by soluble CD4 and antibodies. Thus, changes in the envelope glycoproteins account for the ability of the passaged virus to deplete CD4+ T lymphocytes rapidly and specify increased replicative capacity and resistance to neutralization.  相似文献   

14.
The interactions between concanvalin A and chick embryo fibroblasts, normal and infected with Rous sarcoma virus (RSV-BH) or its thermosensitive mutant RSV-BH-Ta, have been studied. Normal chick embryo cells and RSV-BH transformed cells showed at 4 and 25 °C a similar number of concanavalin A receptors per cell. Analysis of the binding data by the Scatchard relation showed that apparent changes in binding as a function of temperature are due to the thermodynamic properties of the process and and not to endocytosis. The lectin receptors on the cell surface of normal and RSV-BH infected cells showed homogeneity in their binding properties. Chick cells infected with RSV-BH-Ta showed a lectin binding behavior that was dependent on the temperature at which the cells were grown. At the permissive temperature for transformation (37 °C), the binding process was similar to that observed for normal and RSV-BH infected cells. At the nonpermissive temperature (41 °C), the cells showed at least two sets of concanavalin A receptors. The new set of receptors on the cell surface had a lower lectin affinity than those observed in the same cells at 37 °C.Chick cells infected with RSV-BH showed an enhanced agglutinability by concanavalin A, as compared with normal cells. Cells infected with RSV-BH-Ta showed a reversal of the correlation between increased concanavalin A agglutinability and the transformed state. At the permissive temperature for transformation, the cells were not agglutinable, whereas at the nonpermissive temperature they presented agglutinability indexes as high as those observed with RSV-BH infected cells. This enhanced agglutinability observed with cells maintained at the nonpermissive temperature for transformation may be related to the new set of low affinity receptors present at 41 °C.  相似文献   

15.
Chemically transformed Syrian hamster cells exhibit marked agglutination in the presence of the plant lectin, concanavalin A. In this report, we describe conditions which can alter this concanavalin A agglutinability, and compare the surface proteins from transformed cells which express different degrees of agglutinability. Lactoperoxidase-catalyzed iodination of tertiary Syrian hamster cells reveals the major iodinatable protein to be approximately 220 000 daltons. The transformed Syrian hamster cells do not contain this protein in an iodinatable form. Analyses of the transformed cells grown under conditions which decrease the concanavalin A agglutinability do not demonstrate any iodination of the 220 000 mol. wt. protein. These results depict the effects of growth and dibutyryl cyclic AMP on the iodinatable cell surface proteins of transformed cells and indicate that the absence of the I-220 000 mol. wt. protein is probably not a major determinant of concanavalin A agglutination.  相似文献   

16.
Chemically transformed Syrian hamster cells exhibit marked agglutination in the presence of the plant lectin, concanavalin A. In this report, we describe conditions which can alter this concanavalin A agglutinability, and compare the surface proteins from transformed cells which express different degrees of agglutinability. Lactoperoxidase-catalyzed iodination of tertiary Syrian hamster cells reveals the major iodinatable protein to be approximately 220 000 daltons. The transformed Syrian hamster cells do not contain this protein in an iodinatable form. Analyses of the transformed cells grown under conditions which decrease the concanavalin A agglutinability do not demonstrate any iodination of the 220 000 mol. wt. protein. These results depict the effects of growth and dibutyryl cyclic AMP on the iodinatable cell surface proteins of transformed cells and indicate that the absence of the 1–220 000 mol. wt. protein is probably not a major determinant of concanavalin A agglutination.  相似文献   

17.
18.
Some membrane characteristics of normal and Rauscher leukemia virus (RLV)-infected mouse red blood cells (RBC) were compared, both with regard to total populations and young and old groups of cells. Osmotic fragility, density distribution of cells and agglutinability by poly- -lysine (pLys), concanavalin A (ConA), phytohemagglutinin (PHA) and soybean agglutinin (SBA), were examined. RBC from RLV-infected mice were agglutinated at a higher rate and to a higher degree than normal mice RBC by pLys and by the lectins PHA and ConA. These RBC were generally osmotically more resistant and contained a young cell population of unusually high specific gravity. Comparison of RBC from RLV-infected mice with old RBC from normal mice showed some common membrane characteristics. Similarly to old RBC, RBC from RLV-infected mice have a high specific gravity and high agglutinability by pLys. However, they differ in that the RBC from RLV-infected mice are osmotically more resistant and are agglutinated by ConA; they are also agglutinated at a higher rate by PHA.  相似文献   

19.
During measles virus (MV) replication, approximately half of the internal M and N proteins, together with envelope H and F glycoproteins, are selectively enriched in microdomains rich in cholesterol and sphingolipids called membrane rafts. Rafts isolated from MV-infected cells after cold Triton X-100 solubilization and flotation in a sucrose gradient contain all MV components and are infectious. Furthermore, the H and F glycoproteins from released virus are also partly in membrane rafts (S. N. Manié et al., J. Virol. 74:305-311, 2000). When expressed alone, the M but not N protein shows a low partitioning (around 10%) into rafts; this distribution is unchanged when all of the internal proteins, M, N, P, and L, are coexpressed. After infection with MGV, a chimeric MV where both H and F proteins have been replaced by vesicular stomatitis virus G protein, both the M and N proteins were found enriched in membrane rafts, whereas the G protein was not. These data suggest that assembly of internal MV proteins into rafts requires the presence of the MV genome. The F but not H glycoprotein has the intrinsic ability to be localized in rafts. When coexpressed with F, the H glycoprotein is dragged into the rafts. This is not observed following coexpression of either the M or N protein. We propose a model for MV assembly into membrane rafts where the virus envelope and the ribonucleoparticle colocalize and associate.  相似文献   

20.
Surface-contact-mediated signaling induced by the measles virus (MV) fusion and hemagglutinin glycoproteins is necessary and sufficient to induce T-cell unresponsiveness in vitro and in vivo. To define the intracellular pathways involved, we analyzed interleukin (IL)-2R signaling in primary human T cells and in Kit-225 cells. Unlike IL-2-dependent activation of JAK/STAT pathways, activation of Akt kinase was impaired after MV contact both in vitro and in vivo. MV interference with Akt activation was important for immunosuppression, as expression of a catalytically active Akt prevented negative signaling by the MV glycoproteins. Thus, we show here that MV exploits a novel strategy to interfere with T-cell activation during immunosuppression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号