首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 972 毫秒
1.
Summary Inoculation of lettuce, onion and clover with VA mycorrhizal fungus (Glomus mosseae) increased plant yields and phosphate uptake in three soils that had been depleted in phosphate. From two soils in which the labile pool of phosphate had been labelled with32P, the specific activity of plant phosphate was the same whether the plants were mycorrhizal or non-mycorrhizal. In a third soil (Sonning) the specific activity was lower in lettuce and clover when the plants were mycorrhizal. When the experiment was repeated with the same soil under conditions that gave lower growth rates, the specific activity was the same in mycorrhizal and non-mycorrhizal plants. The lower specific activity in lettuce and clover in the first experiment is atributed to greater release of slowly exchanging phosphate (which is not in equilibrium with the added32P), caused by the high uptake of phosphate by the mycorrhizal plants. When they occur, lower specific activities in mycorrhizal plants may therefore not necessarily indicate a solubilizing effect of the mycorrhiza on soil phosphate.  相似文献   

2.
In the present study we examine the effects of Al on the uptake of Ca2+ and H2PO-4 in beech (Fagus sylvatica L.) grown in inorganic nutrient solutions and nutrient solutions supplied with natural fulvic acids (FA). All the solutions used were chemically well characterized. The uptake of Al by roots of intact plants exposed to solutions containing 0, 0.15 or 0.3 mM AlCl3 for 24 h, was significantly less if FA (300 mg l−1) were also present in the solutions. The Ca2+(45Ca2+) uptake was less affected by Al in solutions supplied with FA than in solutions without FA. There was a strong negative correlation between the Al and Ca2+ uptake (r2=0.98). When the Al and Ca2+ (45Ca2+) uptake were plotted as a function of the Al3+ activity (or concentration of inorganic mononuclear Al), almost the same response curves were obtained for the -FA and +FA treatments. We conclude that FA-complexed Al was not available for root uptake and therefore could not affect the Ca2+ uptake. The competitive effect of Al on the Ca2+ uptake was also shown in a 5-week cultivation experiment, where the Ca concentration in shoots decreased at an AlCl3 concentration of 0.3 mM. The effect of Al on H2PO4 uptake was more complex. The P content in roots and shoots was not significantly affected, compared with the control, by cultivation for 5 weeks in a solution supplied with 0.3 mM AlCl3, despite a reduction of the H2PO4 concentration in the nutrient solution to about one-tenth. At this concentration Al obviously had a positive effect on H2PO4 uptake. The presence of FA decreased 32P-phosphate uptake by more than 60% during 24 h, and the addition of 0.15 or 0.3 mM AlCl3 to these solutions did not alter the uptake of 32P-phosphate.  相似文献   

3.
Yu. I. Sorokin 《Hydrobiologia》1992,242(2):105-114
Exchange of phosphate between components of the reef bottom and the water column were studied on reefs around Heron Island (Great Barrier Reef), both in aquaria and in in situ enclosures, using radioactive phosphorus (32P) as a tracer. Living corals, dead corals, coral rubble overgrown with periphyton, and soft sediments of coral sand were used in experiments. In all of these components of bottom reef biotopes, two opposite flows of inorganic phosphate were recorded and measured, i.e. the rate of PO4-P uptake from water (Ac), and its release (Ae). At ambient PO4-P concentrations in water of 0.1– 0.3 µmoll–1, both flows varied in living corals and coral rubble between 10 and 70 µg P kg–1 h–1, 3–10 mg P m–2 day–1, and in coral sand between 10 and 30 µg P kg–1 h–1, or 2–7 mg P m–2 day–1. Under the latter concentration range (which is typical for coral reef areas), the reciprocal PO4-P flows almost balanced each other, so that net uptake (At) was very low. Often it approached zero or was positive, showing that a net PO4-P release had taken place. The uptake flow (Ac) in living coral was much more dependent on the PO4-P content in overlying water than was the release flow (Ae). The influence of conditions of illumination upon the values of Ac and Ae was comparatively low. The data obtained are used to discuss problems of phosphorus balance and dynamics in coral reef ecosystems.  相似文献   

4.
Summary The phosphate uptake in the leaf cells of Elodea densa shows multiple isotherms in the range [S]>1 mmole P/l to 100 mmoles P/l. In the dark the uptake isotherms contain three distinct parts (II/1, II/2 and II/3); the first two obey Michaelis-Menten kinetics, whereas the third is exponential. In the light the phosphate uptake curve consists only of two parts (II/1 and II/2) agreeing with Michaelis-Menten kinetics, the exponential part being absent.Cellular phosphate content was found to be 45 mmoles/l. Data concerning the membrane potential E for Elodea densa were obtained from Jeschke (1970). In accordance with the Nernst equation a change from the hyperbolic curve to an exponential one was expected at a concentration of about 60 mmoles P/l in the dark and at above 100 mmoles P/l in the light. The results obtained agree with these theoretical calculations: in the dark, the change from the hyperbolic to the exponential curve was observed at [S]=50 mmoles P/l, which is in electro-chemical equilibrium with the cellular orthophosphate content of about 35 mmoles/l (inorganic P content amounting to 80 per cent of total phosphate). In the light no change towards an exponential curve was noticed.The effect of the uncoupler CCCP in the light and in the dark was examined in order to elucidate its influenc on 32P incorporation into the fractions of inorganic, organic and acid-insoluble phosphates, the inorganic fraction representing phosphate uptake. The inhibition of the uptake into the inorganic part decreases with an increasing inactive component of total uptake, while the fixation in the organic fraction is severely curtailed at all concentrations tested. The acid-insoluble fraction remains unaffected.
Abkürzungen und Symbole CCCP Carbonylcyanid m-Chlorphenylhydrazon - Du Dunkel FG Frischgewicht - GP Gesamtphosphat - [H2PO4 -]i Innenkonzentration - [H2PO4 -]o Außenkonzentration - Ko Kontrolle - Li Licht - P Phosphat - Pa anorganisches TCE-lösliches Phosphat - Po organisches TCE-lösliches Phosphat - Pu TCE-unlösliches Phosphat - Pgl TCE-gesamtlösliches Phosphat - [S] Außenkonzentration des H2PO4 --Ions - TCE Trichloressigsäure  相似文献   

5.
The availability to plants of phosphorus (P) derived from sparingly soluble iron and aluminium phosphates was directly assessed with 32P labelled compounds in two glasshouse trials.In the first experiment, the comparative availability of all mineral phosphate (P) compounds to maize increased with time (14 to 42 days post emergence) and plant total P uptake, but P source did not affect the growth or total plant uptake of P. The comparative availability of the amorphous AlPO4 (Al-P), crystalline AlPO4 (variscite), amorphous FePO4 (Fe-P), and crystalline FePO4 (strengite) compared to KH2PO4 (=100) was 53.1, 3.4, 38.9, and 1.9%, respectively. In the second experiment, the availability of Fe-P, strengite, and KH2PO4 to several topical crop species was examined. There was no difference between maize, sorghum, mungbean, cowpea or soybean in their ability to utilise Fe-P or KH2PO4, although maize utilised strengite more than the other species. The major difference between these species in their ability to acquire P appears to be a difference in ability to locate soluble soil P rather than differences in their ability to access different pools of soil P.The advantages of using neutron irradiation to directly measure P absorption from mineral P compounds over traditional methodologies is discussed.  相似文献   

6.
Thingstrup  Ida  Kahiluoto  Helena  Jakobsen  Iver 《Plant and Soil》2000,221(2):181-187
This study was conducted to elucidate the effect of P fertilisation on the function of field communities of arbuscular mycorrhizal fungi (AMF) measured as P transport to flax. Two methods were applied to soil from a long-term field experiment with NaHCO3-extractable soil P levels of 24 and 50 mg kg-1in an experiment under controlled conditions: i) Measurement of plant growth and P uptake in the presence or absence of the fungicide benomyl and ii) measurement of hyphal P transport from a root-free compartment labelled with 32P. Benomyl successfully prevented mycorrhizal function. The absolute contribution of AMF to plant P uptake was of the same magnitude with or without P fertilisation at 27 days after sowing. Therefore, even though plants grown at the higher soil P level had greater P uptake, the relative contribution of AMF to P uptake was greater at the lower P level than at the higher P level (77 and 49% of total P uptake, respectively). The AMF in P-fertilized soil transported less P32 from the root-free compartment to the plant after 23 days than the AMF in unfertilized soil, but this difference disappeared in plants harvested after 27 and 32 days. The production of hyphae was largely similar in both fertilization treatments, indicating that the capacity for P uptake and transport by hyphae of the two AMF communities was similar. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

7.
Ding  Na  Guo  Haichao  Kupper  Joseph V.  McNear  David H. 《Plant and Soil》2016,398(1-2):291-300
Aims

An experiment was performed to test how different fungal endophyte strains influenced tall fescue’s ability to access P from four P sources varying in solubility.

Methods

Novel endophyte infected (AR542E+ or AR584E+), common toxic endophyte infected (CTE+), or endophyte-free (E-) tall fescues were grown for 90 days in acidic soils amended with 30 mg kg?1 P of potassium dihydrogen phosphate (KH2PO4), iron phosphate (FePO4), aluminum phosphate (AlPO4), or tricalcium phosphate ((Ca3(PO4)2), respectively.

Results

Phosphorus form strongly influenced plant biomass, P acquisition, agronomic P use efficiency, microbial communities, P fractions. P uptake and vegetative biomass were similar for plants grown with AlPO4, Ca3(PO4)2, and KH2PO4 but greater than in control and FePO4 soils. Infection with AR542E+ resulted in significantly less shoot biomass than CTE+ and E- varieties; there was no influence of endophyte on root biomass. The biomarker for arbuscular mycorrhizal fungi (AM fungi, 16:1ω5c) was selected as an effective predictor of variations in P uptake and tall fescue biomass. Potential acid phosphatase activity was strongly influenced by endophyte x P form interaction.

Conclusions

Endophyte infection in tall fescue significantly affected the NaOH-extractable inorganic P fraction, but had little detectable influence on soil microbial community structure, root biomass, or P uptake.

  相似文献   

8.
Two grass species — Calamagrostis villosa (Chaix) J.F. Gmelin and Deschampsia flexuosa (L.) Trin. — are expanding in mountain Norway spruce (Picea abies L. Karst.) forests of Central Europe damaged by anthropogenic pollution constituted particularly of acid rain. This invasion of grasses may be caused by the higher irradiance reaching the forest floor after the pollution-induced tree defoliation. The relative abundance of the two grass species is changing during the process of forest decline. Our study investigated the effects of arbuscular mycorrhizal fungi (AMF) on the growth and coexistence of both species under simulated acid rain (SAR) and two levels of irradiance. Three microcosm experiments were conducted to investigate how both grasses are influenced by the AMF when grown separately or together interacting via extraradical mycelium (ERM). A positive growth response to inoculation with Glomus mosseae BEG 25 was found for both grass species when cultivated separately and the mycorrhizal dependence and the growth benefit for D. flexuosa was greater than for C. villosa. However, when both grass species were grown together in the rhizoboxes with separated root and hyphal compartments, the growth effect of the AMF was the opposite, i.e. C. villosa benefited more. The plants did not benefit from the AMF inoculation under the SAR treatment compared with dH2O treatment. The SAR also negatively influenced root length colonised by AMF, length of the ERM, alkaline phosphatase and NADH diaphorase activities of the ERM. The role of the ERM in transporting phosphorus between these grasses was verified by applying the radioisotope 32P. There was a greater transport of isotopic 32P between inoculated plants C. villosa and D. flexuosa grown in separated root compartments, as compared to non-inoculated plants. The amount of transported 32P was low: a maximum of 3% of applied 32P was detected in the shoots of receiver plants. Mechanical disturbance of the ERM significantly decreased the 32 P transport between plants. The 32P transport between mycorrhizal plants was higher in the D. flexuosa to C. villosa direction than in the opposite one. Neither the SAR nor the low level of irradiance influenced the amount of transported 32P. We discuss the role of ERM links between root systems in the coexistence of both grass species. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
Arbuscular mycorrhizal fungi (AMF) can improve plant nutrient acquisition, either by directly supplying nutrients to plants or by promoting soil organic matter mineralization, thereby affecting interspecific plant relationships in natural communities. We examined the mechanism by which the addition of P affects interspecific interactions between a C4 grass (Bothriochloa ischaemum, a dominant species in natural grasslands) and a C3 legume (Lespedeza davurica, a subordinate species in natural grasslands) via AMF and plant growth, by continuous 13C and 15N labelling, combined with soil enzyme analyses. The results of 15N labelling revealed that P addition affected the shoot uptake of N via AMF by Bischaemum and Ldavurica differently. Specifically, the addition of P significantly increased the shoot uptake of N via AMF by Bischaemum but significantly decreased that by Ldavurica. Interspecific plant interactions via AMF significantly facilitated the plant N uptake via AMF by B. ischaemum but significantly inhibited that by L. davurica under P-limited soil conditions, whereas the opposite effect was observed in the case of excess P. This was consistent with the impact of interspecific plant interaction via AMF on arbuscular mycorrhizal (AM) benefit for plant growth. Our data indicate that the capability of plant N uptake via AMF is an important mechanism that influences interspecific relationships between C4 grasses and C3 legumes. Moreover, the effect of AMF on the activities of the soil enzymes responsible for N and P mineralization substantially contributed to the consequence of interspecific plant interaction via AMF for plant growth.  相似文献   

10.
The effect of phosphate-solubilizing bacteria (PSB) application on phosphorus (P) availability in reclaimed soil in coal mining subsidence region was investigated. Seven treatments were carried out including control, chicken manure (CM), PSB, PSB + tricalcium phosphate (TCP), CM?+?TCP, PSB?+?ground phosphate rock (GPR) and CM?+?GPR. The results showed soil Olsen-P concentration and phosphatase level as well as the yield of pakchoi (Brassica chinensis L.) were significantly higher in PSB application treatments compared to the corresponding CM application treatments. Soil phosphatase, invertase and urease contents were increased most significantly in PSB treatment, 1.18-, 1.31- and 2.32-fold higher than those in the control, respectively. Soil Ca2-P, Ca8-P, Fe-P and Al-P concentrations exhibited the greatest increases in PSB?+?TCP treatment, while occluded-P showed minor changes in different treatments. Application of PSB fertilizer reduced the transformation of Olsen-P to Ca10-P, thus increasing P availability in reclaimed soil of coal mining subsidence area.  相似文献   

11.
Arbuscular mycorrhizal fungi (AMF) can promote plant growth and reduce plant uptake of heavy metals. Phosphorus (P) fertilization can affect this relationship. We investigated maize (Zea mays L.) uptake of heavy metals after soil AMF inoculation and P fertilization. Maize biomass, glomaline and chlorophyll contents and uptake of Fe, Mn, Zn, Cu, Cd and Pb have been determined in a soil inoculated with AMF (Glomus aggregatum, or Glomus intraradices) and treated with 30 or 60 µg P-K2HPO4 g?1 soil. Consistent variations were found between the two mycorrhizal species with respect to the colonization and glomalin content. Shoot dry weight and chlorophyll content were higher with G. intraradices than with G. aggregatum inoculation. The biomass was highest with 30 µg P g?1 soil. Shoot concentrations of Cd, Pb and Zn decreased with G. aggregatum inoculation, but that of Cd and Pb increased with G. intraradices inoculation. Addition of P fertilizers decreased Cd and Zn concentrations in the shoot. AMF with P fertilization greatly reduced maize content of heavy metals. The results provide that native AMF with a moderate application rate of P fertilizers can be exploited in polluted soils to minimize the heavy metals uptake and to increase maize growth.  相似文献   

12.
The effects of liming and inoculation with the arbuscular mycorrhizal fungus, Glomus intraradices Schenck and Smith on the uptake of phosphate (P) by maize (Zea mays L.) and soybean (Glycine max [L.] Merr.) and on depletion of inorganic phosphate fractions in rhizosphere soil (Al-P, Fe-P, and Ca-P) were studied in flat plastic containers using two acid soils, an Oxisol and an Ultisol, from Indonesia. The bulk soil pH was adjusted in both soils to 4.7, 5.6, and 6.4 by liming with different amounts of CaCO3.In both soils, liming increased shoot dry weight, total root length, and mycorrhizal colonization of roots in the two plant species. Mycorrhizal inoculation significantly increased root dry weight in some cases, but much more markedly increased shoot dry weight and P concentration in shoot and roots, and also the calculated P uptake per unit root length. In the rhizosphere soil of mycorrhizal and non-mycorrhizal plants, the depletion of Al-P, Fe-P, and Ca-P depended in some cases on the soil pH. At all pH levels, the extent of P depletion in the rhizosphere soil was greater in mycorrhizal than in non-mycorrhizal plants. Despite these quantitative differences in exploitation of soil P, mycorrhizal roots used the same inorganic P sources as non-mycorrhizal roots. These results do not suggest that mycorrhizal roots have specific properties for P solubilization. Rather, the efficient P uptake from soil solution by the roots determines the effectiveness of the use of the different soil P sources. The results indicate also that both liming and mycorrhizal colonization are important for enhancing P uptake and plant growth in tropical acid soils.  相似文献   

13.
Fusarium oxysporum grown in a low phosphate medium was found to take up several times as much K from KH2PO4 as from KCI solutions. Large amounts of phosphate also were taken up from KH2PO4. Similar large uptakes of Na and phosphate took place from solutions of NaH2PO4. Substantial quanties of phosphate were taken up from solutions of Ca(H2PO4)2 in the absence of any appreciable Ca uptake. When the fungus was grown in a medium containing high phosphate, little or no uptake of phosphate from KH2PO4 solutions occured and the K Uptake was at the same level as from KCI solutions. During large phosphate uptake sizable reductions in the organic acid content of the fungal cells were observed. Much, but not all, of the data could be explained on the basis of maintenance of charge balance within the cells. – The respiratory rate of fungus, grown in a low P medium, was markedly increased in KH2PO4 solution. Fungus, grown in a medium with high phosphate, had a higher respiratory rate which showed only a slight response to KH2PO4 solution. Fungus, grown in a medium with high phosphate, had a higher respiratory rate which showed only a slight response to KH2PO4.  相似文献   

14.
Arbuscular mycorrhizal fungi (AMF) form symbioses with most crops, potentially improving their nutrient assimilation and growth. The effects of cultivar and atmospheric CO2 concentration ([CO2]) on wheat–AMF carbon‐for‐nutrient exchange remain critical knowledge gaps in the exploitation of AMF for future sustainable agricultural practices within the context of global climate change. We used stable and radioisotope tracers (15N, 33P, 14C) to quantify AMF‐mediated nutrient uptake and fungal acquisition of plant carbon in three wheat (Triticum aestivum L.) cultivars. We grew plants under current ambient (440 ppm) and projected future atmospheric CO2 concentrations (800 ppm). We found significant 15N transfer from fungus to plant in all cultivars, and cultivar‐specific differences in total N content. There was a trend for reduced N uptake under elevated atmospheric [CO2]. Similarly, 33P uptake via AMF was affected by cultivar and atmospheric [CO2]. Total P uptake varied significantly among wheat cultivars and was greater at the future than current atmospheric [CO2]. We found limited evidence of cultivar or atmospheric [CO2] effects on plant‐fixed carbon transfer to the mycorrhizal fungi. Our results suggest that AMF will continue to provide a route for nutrient uptake by wheat in the future, despite predicted rises in atmospheric [CO2]. Consideration should therefore be paid to cultivar‐specific AMF receptivity and function in the development of climate smart germplasm for the future.  相似文献   

15.
张宇亭  朱敏  线岩相洼  申鸿  赵建  郭涛 《生态学报》2012,32(22):7091-7101
在温室盆栽条件下,分别模拟单作、间作和尼龙网分隔种植,比较接种丛枝菌根(arbuscular mycorrhizal, AM)真菌Glomus intraradicesGlomus mosseae对菌根植物玉米和非菌根植物油菜生长和磷吸收状况的影响,并分析土壤中各无机磷组分的变化。结果发现,接种AM真菌可以促进土壤中难溶性磷(Ca10-P和O-P)向有效态磷转化,并显著降低总无机磷含量 (P<0.05),显著提高菌根植物玉米的生物量和磷吸收量(P<0.05),特别是在间作体系中使玉米的磷营养竞争比率显著提高了45.0%-104.1% (P<0.05),显著降低了油菜的生物量和磷吸收量(P<0.05),从而增强了了菌根植物的竞争优势,降低了非菌根植物与菌根植物的共存能力。揭示了石灰性土壤中AM真菌对植物物种多样性的影响,有助于更加全面地理解AM真菌在农业生态系统中的作用。  相似文献   

16.
Lolium perenne cv. S.23 and Trifolium repens cv. Olwen were sown together in 1975, fertilised then and in 1976, and finally given nitrogen doses of either 50, 100, 200 or 400 kg/ha (as N) combined with 0.64 times as much potassium (as K2O) in 1977. As nitrogen increased, grass yield increased, but clover decreased. Grass roots absorbed more 32P than clover roots, and nitrogen increased this difference. Grass roots bore more mycorrhiza than clover roots. The difference in 32P uptake between grass and clover was less in June and July than in August. Clover roots took up most phosphate from the upper layers of soil, while grass absorbed 32P rather uniformly down to 25 cm. It was concluded that optimum fertiliser placement for clover growth was a surface dressing in the early season.  相似文献   

17.
 Plant ability to withstand acidic soil mineral deficiencies and toxicities can be enhanced by root-arbuscular mycorrhizal fungus (AMF) symbioses. The AMF benefits to plants may be attributed to enhanced plant acquisition of mineral nutrients essential to plant growth and restricted acquisition of toxic elements. Switchgrass (Panicum virgatum L.) was grown in pHCa (soil:10 mM CaCl2, 1 : 1) 4 and 5 soil (Typic Hapludult) inoculated with Glomus clarum, G. diaphanum, G. etunicatum, G. intraradices, Gigaspora albida, Gi. margarita, Gi. rosea, and Acaulospora morrowiae to determine differences among AMF isolates for mineral acquisition. Shoots of mycorrhizal (AM) plants had 6.2-fold P concentration differences when grown in pHCa 4 soil and 2.9-fold in pHCa 5 soil. Acquisition trends for the other mineral nutrients essential for plant growth were similar for AM plants grown in pHCa 4 and 5 soil, and differences among AMF isolates were generally higher for plants grown in pHCa 4 than in pHCa 5 soil. Both declines and increases in shoot concentrations of N, S, K, Ca, Mg, Zn, Cu, and Mn relative to nonmycorrhizal (nonAM) plants were noted for many AM plants. Differences among AM plants for N and Mg concentrations were relatively small (<2-fold) and were large (2- to 9-fold) for the other minerals. Shoot concentrations of mineral nutrients did not relate well to dry matter produced or to percentage root colonization. Except for Mn and one AMF isolate, shoot concentrations of Mn, Fe, B, and Al in AM plants were lower than in nonAM plants, and differences among AM plants for these minerals ranged from a low of 1.8-fold for Fe to as high as 6.9-fold for Mn. Some AMF isolates were effective in overcoming acidic soil mineral deficiency and toxicity problems that commonly occur with plants grown in acidic soil. Accepted: 14 June 1999  相似文献   

18.
The mineral phosphate-solubilizing (MPS) activity of a Pantoea agglomerans strain, namely MMB051, isolated from an iron-rich, acidic soil near Ciudad Piar (Bolívar State, Venezuela), was characterized on a chemically defined medium (NBRIP). Various insoluble inorganic phosphates, including tri-calcium phosphate [Ca3(PO4)2], iron phosphate (FePO4), aluminum phosphate (AlPO4), and Rock Phosphate (RP) were tested as sole sources of P for bacterial growth. Solubilization of Ca3(PO4)2 was very efficient and depended on acidification of the external milieu when MMB051 cells were grown in the presence of glucose. This was also the case when RP was used as the sole P source. On the other hand, the solubilization efficiency toward more insoluble mineral phosphates (FePO4 and AlPO4) was shown to be very low. Even though gluconic acid (GA) was detected on culture supernatants of strain MMB051, a consequence of the direct oxidation pathway of glucose, inorganic-P solubilization seemed also to be related to other processes dependent on active cell growth. Among these, proton release by ammonium (NH4+) fixation appeared to be of paramount importance to explain inorganic-P solubilization mediated by strain MMB051. On the contrary, the presence of nitrate (NO3) salts as the sole N source affected negatively the ability of MMB051 cells to solubilize inorganic P.  相似文献   

19.
Arbuscular mycorrhizal fungi (AMF) are promoted as biofertilizers for sustainable agriculture. So far, most researchers have investigated the effects of AMF on plant growth under highly controlled conditions with sterilized soil, soil substrates or soils with low available P or low inoculum potential. However, it is still poorly documented whether inoculated AMF can successfully establish in field soils with native AMF communities and enhance plant growth. We inoculated grassland microcosms planted with a grass–clover mixture (Lolium multiflorum and Trifolium pratense) with the arbuscular mycorrhizal fungus Rhizoglomus irregulare. The microcosms were filled with eight different unsterilized field soils that varied greatly in soil type and chemical characteristics and indigenous AMF communities. We tested whether inoculation with AMF enhanced plant biomass and R. irregulare abundance using a species specific qPCR. Inoculation increased the abundance of R. irregulare in all soils, irrespective of soil P availability, the initial abundance of R. irregulare or the abundance of native AM fungal communities. AMF inoculation had no effect on the grass but significantly enhanced clover yield in five out of eight field soils. The results demonstrate that AMF inoculation can be successful, even when soil P availability is high and native AMF communities are abundant.  相似文献   

20.
Most terrestrial plant species form associations with arbuscular mycorrhizal fungi (AMF) that transfer soil P to the plant via their external hyphae. The distribution of nutrients in soils is typically patchy (heterogeneous) but little is known about the ability of AMF to exploit P patches in soil. This was studied by growing symbioses of Linum usitatissimum and three AMF (Glomus intraradices, G. mosseae and Gigaspora margarita) in pots with two side-arms, which were accessible to hyphae, but not to roots. Soil in one side-arm was either unamended (P0) or enriched with P; simultaneous labelling of this soil with 32P revealed that G. intraradices responded to P enrichment both in terms of hyphal proliferation and P uptake, whereas the other AMF did not. Labelling with 33P of P0 soil in the other side arm revealed that the increased P uptake by G. intraradices from the P-enriched patch was paralleled by decreased P uptake by other parts of the mycelium. This is the first demonstration of variation in growth and nutrient uptake by an AMF as influenced by a localized P enrichment of the soil. The results are discussed in the context of functional diversity of AMF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号