首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The crystal structure of ligand-free E. coli glutaminyl-tRNA synthetase (GlnRS) at 2.4 A resolution shows that substrate binding is essential to construction of a catalytically proficient active site. tRNA binding generates structural changes throughout the enzyme, repositioning key active site peptides that bind glutamine and ATP. The structure gives insight into longstanding questions regarding the tRNA dependence of glutaminyl adenylate formation, the coupling of amino acid and tRNA selectivities, and the roles of specific pathways for transmission of tRNA binding signals to the active site. Comparative analysis of the unliganded and tRNA-bound structures shows, in detail, how flexibility is built into the enzyme architecture and suggests that the induced-fit transitions are a key underlying determinant of both amino acid and tRNA specificity.  相似文献   

2.
Protein structure networks are constructed for the identification of long-range signaling pathways in cysteinyl tRNA synthetase (CysRS). Molecular dynamics simulation trajectory of CysRS-ligand complexes were used to determine conformational ensembles in order to gain insight into the allosteric signaling paths. Communication paths between the anticodon binding region and the aminoacylation region have been identified. Extensive interaction between the helix bundle domain and the anticodon binding domain, resulting in structural rigidity in the presence of tRNA, has been detected. Based on the predicted model, six residues along the communication paths have been examined by mutations (single and double) and shown to mediate a coordinated coupling between anticodon recognition and activation of amino acid at the active site. This study on CysRS clearly shows that specific key residues, which are involved in communication between distal sites in allosteric proteins but may be elusive in direct structure analysis, can be identified from dynamics of protein structure networks.  相似文献   

3.
Uter NT  Perona JJ 《Biochemistry》2006,45(22):6858-6865
Structure-based mutational analysis was employed to probe an unusual intramolecular interaction between partially buried glutamate residues adjacent to the active site of Escherichia coli glutaminyl-tRNA synthetase (GlnRS). The crystal structures of unliganded GlnRS and the GlnRS-tRNA(Gln) complex reveal that the Glu34 and Glu73 side chain carboxylates contact each other only in the tRNA-bound state and that the interaction is formed via mutual induced-fit transitions that occur en route to the ground-state Michaelis complex. Steady-state and transient kinetic analysis of mutant enzymes suggest that the formation of this intermolecular contact is a key event that facilitates the proper formation of the active site. Mutants at both positions destabilize the binding of the substrate glutamine at the opposite side of the active-site cleft, whereas Glu73 appears to play an additional important role by promoting the correct binding of the 3'-acceptor end of tRNA adjacent to both ATP and glutamine. The data suggest the existence of multiple structural pathways by which the binding of tRNA propagates conformational transitions leading to the proper formation of the glutamine binding site. The single-turnover kinetic analysis also establishes that the Glu34 carboxylate does not play a direct enzymatic role as a catalytic base to help deprotonate the tRNA-A76 nucleophilic 2'-hydroxyl group. The elimination of this previously proposed mechanism, together with recent chemical modification experiments in the histidyl-tRNA synthetase system, emphasizes that substrate-assisted catalysis by the phosphate of the aminoacyl adenylate may be a common means by which all tRNA synthetases facilitate the aminoacyl transfer step of the reaction.  相似文献   

4.
Interaction between Escherichia coli glutaminyl-tRNA synthetase (GlnRS) and its substrates have been studied by fluorescence quenching. In the absence of other substrates, glutamine, tRNA(Gln) and ATP bind with dissociation constants of 460, 0.22 and 180 microM, respectively. The presence of other substrates has either no effect or, at best a weak effect, on binding of ligands. Attempts to isolate enzyme-bound aminoacyl adenylate did not succeed. Binding of the phosphodiester, 5'-(methyl)adenosine monophosphate (MeAMP), to GlnRS was studied by fluorescence quenching and radioactive-ligand binding. tRNA also only has a weak effect on phosphodiester binding. Selectively pyrene-labeled GlnRS was used to obtain shape and size information for free GlnRS. A comparison with the GlnRS shape in the GlnRS/tRNA(Gln) crystal structure indicates that no major change in shape and size occurs upon tRNA(Gln) binding to GlnRS. 5,5'-Bis(8-anilino-1-naphthalene sulfonate) (bis-ANS), a non-covalent fluorescent probe, was also used to probe for conformational changes in GlnRS. This probe also indicated that no major conformational change occurs upon tRNA(Gln) binding. We conclude that lack of tRNA-independent pyrophosphate-exchange activity in this enzyme is not a result of either lack of glutamine or ATP binding in the absence of tRNA, or formation of aminoacyl adenylate and slow release of pyrophosphate. A conformational change is implied upon tRNA binding, which promotes pyrophosphate exchange. Fluorescence studies indicate that this conformational change must be limited and local in nature.  相似文献   

5.
Nucleotide sequences of the region that corresponds to the site of tRNA primer binding for a functional retrovirus were determined in five murine leukemia virus-related sequence clones from mouse chromosomal DNA, which contain a unique 170 to 200-base-pair additional internal segment in the long terminal repeats. The 3'-terminal 18-nucleotide sequence of a major glutamine tRNA isoacceptor was found to match well with the putative primer binding site: 18 of 18 in three clones, 17 of 18 in one clone, and 16 of 18 in one clone. This implies that most of these endogenous proviral sequences of the mouse genome, if replicated as retroviruses, will be different from ecotropic murine leukemia viruses and most mammalian type C retroviruses in using glutamine tRNA, rather than proline tRNA, as a primer.  相似文献   

6.
The glutamine phosphoribosylpyrophosphate (PRPP) amidotransferase-catalyzed synthesis of phosphoribosylamine from PRPP and glutamine is the sum of two half-reactions at separated catalytic sites in different domains. Binding of PRPP to a C-terminal phosphoribosyltransferase domain is required to activate the reaction at the N-terminal glutaminase domain. Interdomain signaling was monitored by intrinsic tryptophan fluorescence and by measurements of glutamine binding and glutamine site catalysis. Enzymes were engineered to contain a single tryptophan fluorescence reporter in key positions in the glutaminase domain. Trp(83) in the glutamine loop (residues 73-84) and Trp(482) in the C-terminal helix (residues 471-492) reported fluorescence changes in the glutaminase domain upon binding of PRPP and glutamine. The fluorescence changes were perturbed by Ile(335) and Tyr(74) mutations that disrupt interdomain signaling. Fluoresence titrations of PRPP and glutamine binding indicated that signaling defects increased the K(d) for glutamine but had little or no effect on PRPP binding. It was concluded that the contact between Ile(335) in the phosphoribosyltransferase domain and Tyr(74) in the glutamine site is a primary molecular interaction for interdomain signaling. Analysis of enzymes with mutations in the glutaminase domain C-terminal helix and a 404-420 peptide point to additional signaling interactions that activate the glutamine site when PRPP binds.  相似文献   

7.
Recently, it was shown that wild-type glutamine tRNAs in yeast cause low-level nonsense suppression that can be enhanced by increasing glutamine tRNA gene copy number. In order to investigate glutamine tRNA behavior further, anticodon mutations that confer nonsense suppression were identified in yeast sup70 gene, which codes for glutamine tRNA(CAG). In this study we show that suppressors derived by mutation severely limit growth such that suppressor-bearing spores germinate but arrest cell division at approximately the 50 cell stage. Analysis of a sup70 deletion was used to establish that growth limitation results from loss of wild-type glutamine tRNA(CAG) function. By exploiting the growth inhibition of sup70 alleles, some exceptional codon recognition properties of glutamine tRNAs were revealed. Our results indicate that amber suppressor glutamine tRNA(UAG) can translate 5'-CAG-3' glutamine codons with low efficiency in the presence of an A/C mismatch at the first position of the codon, suggesting that reading may occur at a low level by a two-out-of-three reading mechanism. In addition, when glutamine tRNA(CAA) is over-expressed in vivo, it translates 5'-CAG-3' codons using a mechanism that resembles prokaryotic-like U/G wobble, which normally does not occur in yeast. Our studies also suggest that the yeast glutamine tRNA suppressors could potentially be exploited to express ciliated protozoan genes that normally contain internal 5'-UAG-3' and 5'-UAA-3' codons.  相似文献   

8.
9.
All three kingdoms of life employ two methionine tRNAs, one for translation initiation and the other for insertion of methionines at internal positions within growing polypeptide chains. We have used a reconstituted yeast translation initiation system to explore the interactions of the initiator tRNA with the translation initiation machinery. Our data indicate that in addition to its previously characterized role in binding of the initiator tRNA to eukaryotic initiation factor 2 (eIF2), the initiator-specific A1:U72 base pair at the top of the acceptor stem is important for the binding of the eIF2.GTP.Met-tRNA(i) ternary complex to the 40S ribosomal subunit. We have also shown that the initiator-specific G:C base pairs in the anticodon stem of the initiator tRNA are required for the strong thermodynamic coupling between binding of the ternary complex and mRNA to the ribosome. This coupling reflects interactions that occur within the complex upon recognition of the start codon, suggesting that these initiator-specific G:C pairs influence this step. The effect of these anticodon stem identity elements is influenced by bases in the T loop of the tRNA, suggesting that conformational coupling between the D-loop-T-loop substructure and the anticodon stem of the initiator tRNA may occur during AUG codon selection in the ribosomal P-site, similar to the conformational coupling that occurs in A-site tRNAs engaged in mRNA decoding during the elongation phase of protein synthesis.  相似文献   

10.
Steady-state and transient kinetic analyses of glutaminyl-tRNA synthetase (GlnRS) reveal that the enzyme discriminates against noncognate glutamate at multiple steps during the overall aminoacylation reaction. A major portion of the selectivity arises in the amino acid activation portion of the reaction, whereas the discrimination in the overall two-step reaction arises from very weak binding of noncognate glutamate. Further transient kinetics experiments showed that tRNA(Gln) binds to GlnRS approximately 60-fold weaker when noncognate glutamate is present and that glutamate reduces the association rate of tRNA with the enzyme by 100-fold. These findings demonstrate that amino acid and tRNA binding are interdependent and reveal an important additional source of specificity in the aminoacylation reaction. Crystal structures of the GlnRS x tRNA complex bound to either amino acid have previously shown that glutamine and glutamate bind in distinct positions in the active site, providing a structural basis for the amino acid-dependent modulation of tRNA affinity. Together with other crystallographic data showing that ligand binding is essential to assembly of the GlnRS active site, these findings suggest a model for specificity generation in which required induced-fit rearrangements are significantly modulated by the identities of the bound substrates.  相似文献   

11.
The aminoacyl tRNA synthetases arose early in evolution to establish the genetic code during translation. Long thought of as cytoplasmic enzymes with a single defined function, new studies have demonstrated their roles in nuclear and extracellular signaling pathways, where they regulate angiogenesis, inflammation, mTor signaling, tumorigenesis, and more. These novel functions are typically associated with novel domains added to higher eukaryote tRNA synthetases, and specific resected forms that are generated by alternative splicing and natural proteolysis. The tRNA synthetases are now seen as central “nodes” that use their novel domains to connect with multiple-cell signaling pathways through a variety of interacting partners. These partners include nuclear proteins, extracellular receptors, cytoplasmic proteins, and cellular RNAs. This new biology from tRNA synthetases is an endless frontier.  相似文献   

12.
13.
We present a novel missense suppression system for the selection of tRNA(2GIn) mutants that can efficiently translate the CGA (arginine) codon as glutamine. tRNA(2Gln) mutants were cloned from a partially randomized synthetic gene pool using a plasmid vector that simultaneously expresses the tRNA gene and, to ensure efficient aminoacylation, the glutamine aminoacyl-tRNA synthetase gene (glnS). tRNA mutants that insert glutamine at CGA were selected as missense suppressors of a lacZ mutant (lacZ625(CGA)) that contains CGA substituted for an essential glutamine codon. Preliminary characterizations of four suppressors is presented. All of them contain two anticodon mutations: C-->U at position 34 and U-->C at position 35, which allow for cognate translation of CGA. U35 was previously shown to be an important determinant for glutaminylation of tRNA(2Gln) in vitro; suppression in vivo requires overexpression of the glutaminyl-tRNA synthetase gene (glnS). One tRNA variant contains no further mutations and has the highest missense suppression activity (8%). Three other isolates each contain an additional point mutation that alters suppression efficiency. This system will be useful for further studies of tRNA structure and function. In addition, because relatively efficient translation of the rare CGA codon as glutamine is not toxic for Escherichia coli, it may be possible to translate this sense codon with other alternate meanings, a property which could greatly facilitate protein engineering.  相似文献   

14.
The 2.5 A crystal structure of Escherichia coli glutaminyl-tRNA synthetase in a quaternary complex with tRNA(Gln), an ATP analog and glutamate reveals that the non-cognate amino acid adopts a distinct binding mode within the active site cleft. In contrast to the binding of cognate glutamine, one oxygen of the charged glutamate carboxylate group makes a direct ion-pair interaction with the strictly conserved Arg30 residue located in the first half of the dinucleotide fold domain. The nucleophilic alpha-carboxylate moiety of glutamate is mispositioned with respect to both the ATP alpha-phosphate and terminal tRNA ribose groups, suggesting that a component of amino acid discrimination resides at the catalytic step of the reaction. Further, the other side-chain carboxylate oxygen of glutamate is found in a position identical to that previously proposed to be occupied by the NH(2) group of the cognate glutamine substrate. At this position, the glutamate oxygen accepts hydrogen bonds from the hydroxyl moiety of Tyr211 and a water molecule. These findings demonstrate that amino acid specificity by GlnRS cannot arise from hydrogen bonds donated by the cognate glutamine amide to these same moieties, as previously suggested. Instead, Arg30 functions as a negative determinant to drive binding of non-cognate glutamate into a non-productive orientation. The poorly differentiated cognate amino acid-binding site in GlnRS may be a consequence of the late emergence of this enzyme from the eukaryotic lineage of glutamyl-tRNA synthetases.  相似文献   

15.
We showed recently that a mutant of Escherichia coli initiator tRNA with a CAU-->CUA anticodon sequence change can initiate protein synthesis from UAG by using formylglutamine instead of formylmethionine. We further showed that coupling of the anticodon sequence change to mutations in the acceptor stem that reduced Vmax/Km(app) in formylation of the tRNAs in vitro significantly reduced their activity in initiation in vivo. In this work, we have screened an E. coli genomic DNA library in a multicopy vector carrying one of the mutant tRNA genes and have found that the gene for E. coli methionyl-tRNA synthetase (MetRS) rescues, partially, the initiation defect of the mutant tRNA. For other mutant tRNAs, we have examined the effect of overproduction of MetRS on their activities in initiation and their aminoacylation and formylation in vivo. Some but not all of the tRNA mutants can be rescued. Those that cannot be rescued are extremely poor substrates for MetRS or the formylating enzyme. Overproduction of MetRS also significantly increases the initiation activity of a tRNA mutant which can otherwise be aminoacylated with glutamine and fully formylated in vivo. We interpret these results as follows. (i) Mutant initiator tRNAs that are poor substrates for MetRS are aminoacylated in part with methionine when MetRS is overproduced. (ii) Mutant tRNAs aminoacylated with methionine are better substrates for the formylating enzyme in vivo than mutant tRNAs aminoacylated with glutamine. (iii) Mutant tRNAs carrying formylmethionine are significantly more active in initiation than those carrying formylglutamine. Consequently, a subset of mutant tRNAs which are defective in formylation and therefore inactive in initiation when they are aminoacylated with glutamine become partially active when MetRS is overproduced.  相似文献   

16.
An in vitro system to assay translational readthrough of the UAG termination codon at the murine leukemia virus (MuLV) gag-pol junction was developed by using rabbit reticulocyte lysates programmed by SP6-generated Moloney MuLV gag-pol mRNA. Under conditions in which the suppressor activity of the lysate was dependent on addition of tRNA, it could be shown that readthrough synthesis was stimulated to approximately the same extent by equivalent amounts of tRNA from MuLV-infected and uninfected NIH 3T3 cells. Analysis of glutamine tRNA, which mediates suppression in vivo, showed that the level of glutamine acceptor activity and the chromatographic profile of glutamine isoacceptors were unchanged following virus infection. On the basis of these results, we conclude that the suppressor tRNA occurs normally within the tRNA population of uninfected cells and need not be induced in response to virus infection.  相似文献   

17.
Tertiary core rearrangements in a tight binding transfer RNA aptamer   总被引:5,自引:0,他引:5  
Guided by an in vitro selection experiment designed to obtain tight binding aptamers of Escherichia coli glutamine specific tRNA (tRNAGln) for glutaminyl-tRNA synthetase (GlnRS), we have engineered a tRNA mutant in which the five-nucleotide variable loop sequence 5'-44CAUUC48-3' is replaced by 5'-44AGGU48-3'. This mutant tRNA binds to GlnRS with 30-fold improved affinity compared to the wild type. The 2.7 A cocrystal structure of the RNA aptamer-GlnRS complex reveals major rearrangements in the central tertiary core of the tRNA, while maintaining an RNA-protein interface identical to the wild type. The repacked RNA core features a novel hydrogen bonding arrangement of the trans Levitt pair G15-U48, a new sulfate binding pocket in the major groove, and increased hydrophobic stacking interactions among the bases. These data suggest that enhanced protein binding to a mutant globular RNA can arise from stabilization of RNA tertiary interactions rather than optimization of RNA-protein contacts.  相似文献   

18.
Aminoacyl-tRNA for protein synthesis is produced through the action of a family of enzymes called aminoacyl-tRNA synthetases. A general rule is that there is one aminoacyl-tRNA synthetase for each of the standard 20 amino acids found in all cells. This is not universal, however, as a majority of prokaryotic organisms and eukaryotic organelles lack the enzyme glutaminyl-tRNA synthetase, which is responsible for forming Gln-tRNAGln in eukaryotes and in Gram-negative eubacteria. Instead, in organisms lacking glutaminyl-tRNA synthetase, Gln-tRNAGln is provided by misacylation of tRNAGln with glutamate by glutamyl-tRNA synthetase, followed by the conversion of tRNA-bound glutamate to glutamine by the enzyme Glu-tRNAGln amidotransferase. The fact that two different pathways exist for charging glutamine tRNA indicates that ancestral prokaryotic and eukaryotic organisms evolved different cellular mechanisms for incorporating glutamine into proteins. Here, we explore the basis for diverging pathways for aminoacylation of glutamine tRNA. We propose that stable retention of glutaminyl-tRNA synthetase in prokaryotic organisms following a horizontal gene transfer event from eukaryotic organisms (Lamour et al. 1994) was dependent on the evolving pool of glutamate and glutamine tRNAs in the organisms that acquired glutaminyl-tRNA synthetase by this mechanism. This model also addresses several unusual aspects of aminoacylation by glutamyl- and glutaminyl-tRNA synthetases that have been observed.Based on a presentation made at a workshop—Aminoacyl-tRNA Synthetases and the Evolution of the Genetic Code—held at Berkeley, CA, July 17–20, 1994 Correspondence to: D. Söll  相似文献   

19.
—[14C]-Glutamate and [14C]-glutamine were incorporated into calf brain tRNA in the presence of homologous aminoacyl-tRNA synthetases. When the tRNAs were then deaminoacylated and chromatographed, a number of radioactive products were found in addition to the original amino acids. One of the products of glutamate transformation was identified to be glutamine. Formation of the radioactive products of glutamate in the presence and absence of tRNA indicated that glutamine was produced from glutamate at the level of the free amino acid followed by the incorporation of both substances into tRNA. Examination of the products of deaminoacylation of glutaminyl-tRNA showed that glutamine underwent structural alterations at the level of the aminoacyl-tRNAs to give rise to a cyclic derivative of glutarimide. This reaction was specific for glutamine, and constituted approximately 15 per cent of the total radioactivity in the deaminoacylation products of glutaminyl-tRNA.  相似文献   

20.
The Notch signaling pathway, a known regulator of cell fate decisions, proliferation, and apoptosis, has recently been implicated in the regulation of glycolysis, which affects tumor progression. However, the impact of Notch on other metabolic pathways remains to be elucidated. To gain more insights into the Notch signaling and its role in regulation of metabolism, we studied the mitochondrial proteome in Notch1-activated K562 cells using a comparative proteomics approach. The proteomic study led to the identification of 10 unique proteins that were altered due to Notch1 activation. Eight of these proteins belonged to mitochondria-localized metabolic pathways like oxidative phosphorylation, glutamine metabolism, Krebs cycle, and fatty acid oxidation. Validation of some of these findings showed that constitutive activation of Notch1 deregulated glutamine metabolism and Complex 1 of the respiratory chain. Furthermore, the deregulation of glutamine metabolism involved the canonical Notch signaling and its downstream effectors. The study also reports the effect of Notch signaling on mitochondrial function and status of high energy intermediates ATP, NADH, and NADPH. Thus our study shows the effect of Notch signaling on mitochondrial proteome, which in turn affects the functioning of key metabolic pathways, thereby connecting an important signaling pathway to the regulation of cellular metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号