首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
翻译后修饰在调控蛋白质构象变化、活性以及功能方面具有重要作用,并参与了几乎所有细胞通路和过程。蛋白质翻译后修饰的鉴定是阐明细胞内分子机理的基础。相对于劳动密集的、耗费时间的实验工作,利用各种生物信息学方法开展翻译后修饰预测,能够提供准确、简便和快速的研究方案,并产生有价值的信息为进一步实验研究提供参考。文章主要综述了中国生物信息学者在翻译后修饰生物信息学领域所取得的研究进展,包括修饰底物与位点预测的计算方法学设计与完善、在线或本地化工具的设计与维护、修饰相关数据库及数据资源的构建及基于修饰蛋白质组学数据的生物信息学分析。通过比较国内外的同类研究,发现优势和不足,并对未来的研究作出前瞻。  相似文献   

2.
Post‐translational modifications (PTMs) of proteins are central in any kind of cellular signaling. Modern mass spectrometry technologies enable comprehensive identification and quantification of various PTMs. Given the increased numbers and types of mapped protein modifications, a database is necessary that simultaneously integrates and compares site‐specific information for different PTMs, especially in plants for which the available PTM data are poorly catalogued. Here, we present the Plant PTM Viewer (http://www.psb.ugent.be/PlantPTMViewer), an integrative PTM resource that comprises approximately 370 000 PTM sites for 19 types of protein modifications in plant proteins from five different species. The Plant PTM Viewer provides the user with a protein sequence overview in which the experimentally evidenced PTMs are highlighted together with an estimate of the confidence by which the modified peptides and, if possible, the actual modification sites were identified and with functional protein domains or active site residues. The PTM sequence search tool can query PTM combinations in specific protein sequences, whereas the PTM BLAST tool searches for modified protein sequences to detect conserved PTMs in homologous sequences. Taken together, these tools help to assume the role and potential interplay of PTMs in specific proteins or within a broader systems biology context. The Plant PTM Viewer is an open repository that allows the submission of mass spectrometry‐based PTM data to remain at pace with future PTM plant studies.  相似文献   

3.
Post-translational modifications (PTMs) regulate protein activity, stability and interaction profiles and are critical for cellular functioning. Further regulation is gained through PTM interplay whereby modifications modulate the occurrence of other PTMs or act in combination. Integration of global acetylation, ubiquitination and tyrosine or serine/threonine phosphorylation datasets with protein interaction data identified hundreds of protein complexes that selectively accumulate each PTM, indicating coordinated targeting of specific molecular functions. A second layer of PTM coordination exists in these complexes, mediated by PTM integration (PTMi) spots. PTMi spots represent very dense modification patterns in disordered protein regions and showed an equally high mutation rate as functional protein domains in cancer, inferring equivocal importance for cellular functioning. Systematic PTMi spot identification highlighted more than 300 candidate proteins for combinatorial PTM regulation. This study reveals two global PTM coordination mechanisms and emphasizes dataset integration as requisite in proteomic PTM studies to better predict modification impact on cellular signaling.  相似文献   

4.
In this decade, the demands of energy saving and diverse personal thermoregulation requirements along with the emergence of wearable electronics and smart textiles give rise to the resurgence of personal thermal management (PTM) technologies. PTM, including personal cooling, heating, insulation, and thermoregulation, are far more flexible and extensive than the traditional air/liquid cooling garments for the human body. Concomitantly, many new advanced materials and strategies have emerged in this decade, promoting the thermoregulation performance and the wearing comfort of PTM simultaneously. In this review, an overview is presented of the state‐of‐the‐art and the prospects in this burgeoning field. The emerging materials and strategies of PTM are introduced, and classed by their thermal functions. The concept of infrared‐transparent visible‐opaque fabric (ITVOF) is first highlighted, as it triggers the work on advanced PTM by combining it with radiative cooling, and the corresponding implementations and realizations are subsequently introduced, followed by wearable heaters, flexible thermoelectric devices, and sweat‐management Janus textiles. Finally, critical considerations on the challenges and opportunities of PTM are presented and future directions are identified, including thermally conductive polymers and fibers, physiological/psychological statistical analysis, and smart PTM strategies.  相似文献   

5.
Post‐translational modifications (PTMs) are critical regulators of protein function, and nearly 200 different types of PTM have been identified. Advances in high‐resolution mass spectrometry have led to the identification of an unprecedented number of PTM sites in numerous organisms, potentially facilitating a more complete understanding of how PTMs regulate cellular behavior. While databases have been created to house the resulting data, most of these resources focus on individual types of PTM, do not consider quantitative PTM analyses or do not provide tools for the visualization and analysis of PTM data. Here, we describe the Functional Analysis Tools for Post‐Translational Modifications (FAT‐PTM) database ( https://bioinformatics.cse.unr.edu/fat-ptm/ ), which currently supports eight different types of PTM and over 49 000 PTM sites identified in large‐scale proteomic surveys of the model organism Arabidopsis thaliana. The FAT‐PTM database currently supports tools to visualize protein‐centric PTM networks, quantitative phosphorylation site data from over 10 different quantitative phosphoproteomic studies, PTM information displayed in protein‐centric metabolic pathways and groups of proteins that are co‐modified by multiple PTMs. Overall, the FAT‐PTM database provides users with a robust platform to share and visualize experimentally supported PTM data, develop hypotheses related to target proteins or identify emergent patterns in PTM data for signaling and metabolic pathways.  相似文献   

6.
马铃薯块茎蛾生物学、生态学与综合治理   总被引:2,自引:0,他引:2  
闫俊杰  张梦迪  高玉林 《昆虫学报》2019,62(12):1469-1482
马铃薯块茎蛾又称烟草潜叶蛾Phthorimaea operculella,起源于中美洲和南美洲北部地区,现已分布在亚洲、欧洲、北美洲、非洲等100多个国家,是茄科作物的世界性农业害虫,尤其对马铃薯有毁灭性的危害。目前,该虫在我国南方马铃薯产区普遍发生,尤其是在云南、四川、贵州等地区该害虫发生极为严重,且随着气候的变化该虫可能会扩散到其他马铃薯生产区。马铃薯块茎蛾主要进行两性生殖,少数孤雌生殖,其幼虫钻蛀叶片和薯块危害。初孵幼虫无性二态性,4龄幼虫、蛹和成虫均可依据外形特征进行雌雄区分。马铃薯块茎蛾发生世代数取决于当地的农业气候条件,年发生2~12代。马铃薯块茎蛾对温度有广泛的适应性,且在干燥炎热的年份该虫容易大爆发。马铃薯块茎蛾早期防控主要集中在种植抗性品种、深种、灌溉等农业防治措施上,但化学防治依然是马铃薯生产过程中防治马铃薯块茎蛾的主要方式,由于化学农药的广泛使用,该虫对有机磷类、拟除虫菊酯类等杀虫剂均产生了不同程度的抗性;为了减少化学农药的使用,延缓抗药性的发展,发现并筛选到多种对马铃薯块茎蛾具有防治作用的天敌昆虫和昆虫病原微生物。以(E4,Z7) 十三碳二烯基乙酸酯和(E4,Z7,Z10) 十三碳三烯基乙酸酯为主要成分的马铃薯块茎蛾性信息素在马铃薯块茎蛾监测和防治中也取得了较好的效果。桉树、皱叶薄荷等植物源化合物能够抑制马铃薯块茎蛾产卵;转基因抗虫马铃薯、遗传不育技术等绿色防控技术也成为了防控马铃薯块茎蛾的新方法。以往的研究发现使用单一生物防治手段很难达到理想的防控效果,集成与生物防控技术相容的化学物质、自然天敌和病原微生物等技术是有效控制马铃薯块茎蛾种群的重要趋势。本文系统综述了国内外马铃薯块茎蛾发生为害规律及综合防控技术研究进展,以期为马铃薯块茎蛾的持续治理提供参考依据。  相似文献   

7.
Many post-translational modifications, including glycosylation, are pivotal for the structural integrity, location and functional activity of glycoproteins. Sub-populations of proteins that are relocated or functionally changed by such modifications can change resting proteins into active ones, mediating specific effector functions, as in the case of monoclonal antibodies. To ensure safe and efficacious drugs it is essential to employ appropriate robust, quantitative analytical strategies that can (i) perform detailed glycan structural analysis, (ii) characterise specific subsets of glycans to assess known critical features of therapeutic activities (iii) rapidly profile glycan pools for at-line monitoring or high level batch to batch screening. Here we focus on these aspects of glycan analysis, showing how state-of-the-art technologies are required at all stages during the production of recombinant glycotherapeutics. These data can provide insights into processing pathways and suggest markers for intervention at critical control points in bioprocessing and also critical decision points in disease and drug monitoring in patients. Importantly, these tools are now enabling the first glycome/genome studies in large populations, allowing the integration of glycomics into other ‘omics platforms in a systems biology context.  相似文献   

8.
Introduction: Post-translational modifications (PTMs) have an important role in the regulation of protein function, localization, and interaction with other molecules. PTMs apply a dynamic control of proteins in both physiological and pathological conditions. The study of disease-specific PTMs allows identifying potential biomarkers and developing effective drugs. Enrichment techniques combined with high-resolution mass spectrometry (MS)/MS analysis provide attractive results on PTM characterization. Selected reaction monitoring/multiple reaction monitoring (SRM/MRM) is a powerful targeted assay for the quantitation and validation of PTMs in complex biological samples.

Areas covered: The most frequent PTMs are described in terms of biological role and analytical methods commonly used to detect them. The applications of SRM/MRM for the absolute quantitation of PTMs are reported, and a specific section is focused on PTM detection in proteins that are involved in the cardiovascular system and heart diseases.

Expert commentary: PTM characterization in relation to disease pathology is still in progress, but targeted proteomics by LC-MS/MS has significantly upgraded our knowledge in the last few years. Advances in enrichment strategies and software tools will facilitate the interpretation of high PTM complexity. Promising studies confirm the great potential of SRM/MRM to study PTMs in the cardiovascular field, and PTMomics could be very useful in the clinical perspective.  相似文献   


9.
Protein posttranslational modifications (PTMs) are of increasing interest in biomedical research, yet studies rarely examine more than one PTM. One barrier to multi‐PTM studies is the time cost for both sample preparation and data acquisition, which scale linearly with the number of modifications. The most prohibitive requirement is often the need for large amounts of sample, which must be increased proportionally with the number of PTM enrichment steps. Here, a streamlined, quantitative label‐free proteomic workflow—“one‐pot” PTM enrichment—that enables comprehensive identification and quantification of peptides containing acetylated and succinylated lysine residues from a single sample containing as little as 1 mg mitochondria protein is described. Coupled with a label‐free, data‐independent acquisition (DIA), 2235 acetylated and 2173 succinylated peptides with the one‐pot method are identified and quantified and peak areas are shown to be highly correlated between the one‐pot and traditional single‐PTM enrichments. The ‘one‐pot’ method makes possible detection of multiple PTMs occurring on the same peptide, and it is shown that it can be used to make unique biological insights into PTM crosstalk. Compared to single‐PTM enrichments, the one‐pot workflow has equivalent reproducibility and enables direct assessment of PTM crosstalk from biological samples in less time from less tissue.  相似文献   

10.
11.
Predicting the biological function potential of post-translational modifications (PTMs) is becoming increasingly important in light of the exponential increase in available PTM data from high-throughput proteomics. We developed structural analysis of PTM hotspots (SAPH-ire)—a quantitative PTM ranking method that integrates experimental PTM observations, sequence conservation, protein structure, and interaction data to allow rank order comparisons within or between protein families. Here, we applied SAPH-ire to the study of PTMs in diverse G protein families, a conserved and ubiquitous class of proteins essential for maintenance of intracellular structure (tubulins) and signal transduction (large and small Ras-like G proteins). A total of 1728 experimentally verified PTMs from eight unique G protein families were clustered into 451 unique hotspots, 51 of which have a known and cited biological function or response. Using customized software, the hotspots were analyzed in the context of 598 unique protein structures. By comparing distributions of hotspots with known versus unknown function, we show that SAPH-ire analysis is predictive for PTM biological function. Notably, SAPH-ire revealed high-ranking hotspots for which a functional impact has not yet been determined, including phosphorylation hotspots in the N-terminal tails of G protein gamma subunits—conserved protein structures never before reported as regulators of G protein coupled receptor signaling. To validate this prediction we used the yeast model system for G protein coupled receptor signaling, revealing that gamma subunit–N-terminal tail phosphorylation is activated in response to G protein coupled receptor stimulation and regulates protein stability in vivo. These results demonstrate the utility of integrating protein structural and sequence features into PTM prioritization schemes that can improve the analysis and functional power of modification-specific proteomics data.Post-translational modifications (PTMs)1 are a rapidly expanding and important class of protein feature that broaden the functional diversity of proteins in a proteome. By definition, PTMs change protein structure and therefore have the potential to affect protein function by altering protein interactions, protein stability or catalytic activity (1, 2). As they have been found to occur on nearly every protein in the eukaryotic proteome, PTMs broadly impact nearly all known cellular processes. Over 300 different types of PTM are known, ranging from single atom modifications (e.g. oxide) to small protein modifiers (e.g. ubiquitin), which can occur on all but five amino acid residues resulting from enzymatic or nonenzymatic processes (3). Over 220,000 distinct PTM sites have been experimentally identified across ∼77,000 different proteins to date (dbPTM; http://dbptm.mbc.nctu.edu.tw/statistics.php) – numbers that continue to grow exponentially because of improved methods for high throughput detection by mass spectrometry (MS). By virtue of how they are detected, most PTM data are sequence-linked and lack structural context.The function of most PTMs is unknown because the rate of PTM detection far surpasses the rate at which any one modification can be studied empirically. Moreover, the functional impact of every PTM is likely not equivalent (4). For example, computational analysis of phosphorylation sites in yeast and human proteomes indicate that well-conserved phosphosites are more likely to have a functional consequence compared with poorly conserved sites, yet only a fraction of phosphosites are well conserved (5, 6). Consequently, the development of tools that provide functional prioritization of PTMs could have a broad impact on our understanding of protein regulation, biological mechanism, and molecular evolution.The emerging need for methods that predict the functional impact of a PTM has not yet been met. Longstanding methods capitalize predominantly on the sequence context of PTMs and have been used to predict sites of modification (expasy.org/proteomics/post-translational_modification) and to compare enzyme/substrate interactions (79). More recently, studies aimed at expanding the parameters associated with functional PTMs have emerged. In these cases, a set of common features correlated with functional importance are derived from the analysis of PTMs within and between organisms including: number of PTM observations at a multiple sequence alignment position (i.e. hotspots), measures of co-occurrence between different PTMs (e.g. distance between phosphorylation and ubiquitination sites), biological dynamics (up or down-regulation), and protein–protein interaction influence (7, 1012). Recent efforts to provide structural context by linking individual PTMs to three-dimensional structures in the protein data bank (PDB) have also been described (13, 14). However, these resources are extensions of existing PTM databases that allow visualization of single instances of modification onto individual proteins, but do not provide quantitative or analytical value.In principle, combining PTM hotspot and structural analysis would offer multiple advantages over any one approach used in isolation. Sequence homology provides protein family membership—thereby clustering PTMs into hotspots for groups of proteins to provide information about: (1) the evolutionary conservation and (2) observation frequencies of PTMs within the family. A primary consequence of their sequence homology is that members of a protein family will exhibit similar structures and protein interactions—features that dictate the function of protein systems. A secondary consequence is that PTM hotspots generated by alignment can be projected onto family-representative protein structures, which places each PTM hotspot into a three-dimensional context that can be visualized for each family. The structural context enabled by this projection can also provide spatial information about the PTM site that can supplement the sequence characteristics of the hotspot, namely: (3) solvent accessibility, which provides an estimate of whether a modification could occur on the folded protein; and (4) protein interface residence, which indicates the potential of the PTM to disrupt protein–protein interactions. Despite the theoretical advantages, no single tool has been developed that exploits the quantitative output from both sequence and structural data to evaluate the function potential of PTMs.Here we describe a new analytical method – Structural Analysis of PTM Hotspots (SAPH-ire), which ranks PTM hotspots by their potential to impact biological function for distinct protein families (Fig. 1). We demonstrate the application of SAPH-ire to the complete set of PTMs for eight distinct protein families including large heterotrimeric G proteins—revealing high-ranking hotspots for which a biological function has not yet been determined. In particular, SAPH-ire revealed the N-terminal tail (Nt) of G protein gamma (Gγ) subunits as one of the highest ranking PTM hotspots for heterotrimeric G proteins (Gα, Gβ, and Gγ). We tested this prediction by monitoring the phosphorylation state and mutation effects of phosphorylation sites in the N terminus of the yeast Gγ subunit (Ste18). Consistent with SAPH-ire predictions, we found that phosphorylation of Ste18-Nt is biologically responsive to a GPCR stimulus and that phospho-null or phospho-mimic mutation of these sites controls protein abundance in an opposite manner in vivo. Thus, SAPH-ire is a powerful new method for predicting the function potential of PTM hotspots, which can guide empirical research toward the discovery of new protein regulatory elements based on high-throughput proteomics.Open in a separate windowFig. 1.Schematic diagram of the SAPH-ire method. A, SAPH-ire integrates InterPro, the Protein Data bank (PDB) and a customized database of experimentally validated PTMs. Uniprot entries with PTMs that belong to specific InterPro-classified protein families undergo multiple-sequence alignment (MSA) and PTM hotspot analysis (HSA), which layers all PTMs for a given alignment position in the MSA. The total PTMs observed in each hotspot and the conservation of a modifiable residue (e.g. conservation lysine at a ubiquitination hotspot) at the hotspot are quantified. B, PTM hotspots within the protein family are then projected onto all known crystal structures for the family using the Structural Projection of PTMs (SPoP) tool. From the structural topology of PTM hotspots generated by SPoP, the solvent accessible surface area (SASA) and protein interface residence is quantified for each hotspot. C, PTM Function Potential Calculator (FPC) integrates the output from HSA and SPoP, resulting in PTM function potential scores for each hotspot. The function potential score can be used to rank PTM hotspots within or between protein families – prioritizing hotspots with the greatest potential to be biologically regulated and/or effect a biological function for the protein family of interest.  相似文献   

12.
13.
The proteomic studies, although, tend to be analytical in nature, yet many strategies of preparative protein purification can be usefully employed in such studies. This review points out the importance of purification techniques which are capable of dealing with samples which are suspensions rather than clear solution, e.g. aqueous two phase partitioning, three phase partitioning, expanded bed chromatography, etc. The review also outlines the potential of non-chromatographic techniques in dealing with fractionation of proteomes. Separation protocols which can deal with post-translationally modified (PTM) proteins are also considered.  相似文献   

14.
This review focuses on techniques for quantification and identification in proteomics by stable isotope coding. Methods are examined for analyzing expression, post-translational modifications, protein:protein interactions, single amino acid polymorphism, and absolute quantification. The bulk of the quantification literature in proteomics focuses on expression analysis, where a wide variety of methods targeting different features of proteins are described. Methods for the analysis of post-translational modification (PTM) focus primarily on phosphorylation and glycosylation, where quantification is achieved in two ways, either by substitution or tagging of the PTM with an isotopically coded derivatizing agent in a single process or by coding and selecting PTM modified peptides in separate operations. Absolute quantification has been achieved by age-old internal standard methods, in which an isotopically labeled isoform of an analyte is synthesized and added to a mixture at a known concentration. One of the surprises is that isotope coding can be a valuable aid in the examination of intermolecular association of proteins through stimulus:response studies. Preliminary efforts to recognize single amino acid polymorphism are also described. The review ends with the conclusion that (1) isotope ratio analysis of protein concentration between samples does not necessarily relate directly to protein expression and rate of PTM and (2) that multiple new methods must be developed and applied simultaneously to make existing stable isotope quantification methods more meaningful. Although stable isotope coding is a powerful, wonderful new technique, multiple analytical issues must be solved for the technique to reach its full potential as a tool to study biological systems.  相似文献   

15.
Jens Allmer 《Amino acids》2012,42(1):129-138
Mass spectrometry (MS)-based proteomics, by itself, is a vast and complex area encompassing various mass spectrometers, different spectra, and search result representations. When the aim is quantitation performed in different scanning modes at different MS levels, matters become additionally complex. Quantitation of post-translational modifications (PTM) represents the greatest challenge among these endeavors. Many different approaches to quantitation have been described and some of these can be directly applied to the quantitation of PTMs. The amount of data produced via MS, however, makes manual data interpretation impractical. Therefore, specialized software tools meet this challenge. Any software currently able to quantitate differentially labeled samples may theoretically be adapted to quantitate differential PTM expression among samples as well. Due to the heterogeneity of mass spectrometry-based proteomics; this review will focus on quantitation of PTM using liquid chromatography followed by one or more stages of mass spectrometry. Currently available free software, which either allow analysis of PTM or are easily adaptable for this purpose, is briefly reviewed in this paper. Selected studies, especially those related to phosphoproteomics, shall be used to highlight the current ability to quantitate PTMs.  相似文献   

16.
Post-translational modifications (PTMs) play an essential role in most biological processes. PTMs on human proteins have been extensively studied. Studies on bacterial PTMs are emerging, which demonstrate that bacterial PTMs are different from human PTMs in their types, mechanisms and functions. Few PTM studies have been done on the microbiome. Here, we reviewed several studied PTMs in bacteria including phosphorylation, acetylation, succinylation, glycosylation, and proteases. We discussed the enzymes responsible for each PTM and their functions. We also summarized the current methods used to study microbiome PTMs and the observations demonstrating the roles of PTM in the microbe-microbe interactions within the microbiome and their interactions with the environment or host. Although new methods and tools for PTM studies are still needed, the existing technologies have made great progress enabling a deeper understanding of the functional regulation of the microbiome. Large-scale application of these microbiome-wide PTM studies will provide a better understanding of the microbiome and its roles in the development of human diseases.  相似文献   

17.
Spliceosome-mediated RNA trans-splicing (SMaRT) has been used previously to reprogram mutant endogenous CFTR and factor VIII mRNAs in human epithelial cell and tissue models and knockout mice, respectively. Those studies used 3' exon replacement (3'ER); a process in which the distal portion of RNA is reprogrammed. Here, we also show that the 5' end of mRNA can be completely rewritten by 5'ER. For proof-of-concept, and to test whether 5'ER could generate functional CFTR, we generated a mutant minigene target containing CFTR exons 10-24 (deltaF508) and a mini-intron 10, and a pretrans-splicing molecule (targeted to intron 10) containing CFTR exons 1-10 (+F508), and tested these two constructs in 293T cells for anion efflux transport. Cells cotransfected with target and PTM showed a consistent increase in anion efflux, but there was no response in control cells that received PTM or target alone. Using a LacZ reporter system to accurately quantify trans-splicing efficiency, we tested several unique PTM designs. These studies provided two important findings as follows: (1) efficient trans-splicing can be achieved by binding the PTM to different locations in the target, and (2) relatively few changes in PTM design can have a profound impact on trans-splicing activity. Tethering the PTM close to the target 3' splice site (as opposed to the donor site) and inserting an intron in the PTM coding resulted in a 65-fold enhancement of LacZ activity. These studies demonstrate that (1) SMaRT can be used to reprogram the 5' end of mRNA, and (2) efficiency can be improved substantially.  相似文献   

18.
Formalin-fixed paraffin-embedded (FFPE) tissues are a real treasure for retrospective analysis considering the amount of samples present in hospital archives, combined with pathological, clinical, and outcome information available for every sample. Although unlocking the proteome of these tissues is still a challenge, new approaches are being developed. In this review, we summarize the different mass spectrometry platforms that are used in human clinical studies to unravel the FFPE proteome. The different ways of extracting crosslinked proteins and the analytical strategies are pointed out. Also, the pitfalls and challenges concerning the quality of FFPE proteomic approaches are depicted. We also evaluated the potential of these analytical methods for future clinical FFPE proteomics applications.  相似文献   

19.
Advances in plant proteomics   总被引:1,自引:0,他引:1  
Chen S  Harmon AC 《Proteomics》2006,6(20):5504-5516
  相似文献   

20.
《Theriogenology》2015,84(9):1445-1450
The freezing of bull semen significantly hamper the motility of sperm which reduces the conception rate in dairy cattle. The prediction of postthaw motility (PTM) before freezing will be useful to take the decision on discarding or freezing of the germplasm. The artificial neural network (ANN) methodology found to be useful in prediction and classification problems related to animal science, and hence, the present study was undertaken to compare the efficiency of ANN in prediction of PTM on the basis of the number of ejaculates, volume, and concentration of sperms. The combined effect of Y-specific microsatellite alleles on the actual and predicted PTM was also studied. The results revealed that the prediction accuracy of PTM based on the semen quality parameters was comparatively lower because of higher variability in the data set. The ANN gave better prediction accuracy (34.88%) than the multiple regression analysis models (32.04%). The root mean square error was lower for ANN (8.4353) than that in the multiple regression analysis (8.6168). The haplotype or combined effect of microsatellite alleles on actual and predicted PTM was found to be highly significant (P < 0.01). On the basis of results, it was concluded that the ANN methodology can be used for prediction of PTM in crossbred bulls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号