首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Identification and functional analysis of TopBP1 and its homologs   总被引:1,自引:0,他引:1  
Garcia V  Furuya K  Carr AM 《DNA Repair》2005,4(11):1227-1239
  相似文献   

2.
Biological complexity is a key component of evolvability, yet its study has been hampered by a focus on evolutionary trends of complexification and inconsistent definitions. Here, we demonstrate the utility of bringing complexity into the framework of epigenetics to better investigate its utility as a concept in evolutionary biology. We first analyze the existing metrics of complexity and explore the link between complexity and adaptation. Although recently developed metrics allow for a unified framework, they omit developmental mechanisms. We argue that a better approach to the empirical study of complexity and its evolution includes developmental mechanisms. We then consider epigenetic mechanisms and their role in shaping developmental and evolutionary trajectories, as well as the development and organization of complexity. We argue that epigenetics itself could have emerged from complexity because of a need to self‐regulate. Finally, we explore hybridization complexes and hybrid organisms as potential models for studying the association between epigenetics and complexity. Our goal is not to explain trends in biological complexity but to help develop and elucidate novel questions in the investigation of biological complexity and its evolution.  相似文献   

3.
The quest to determine the function of a protein can represent a profound challenge. Although this task is the mandate of countless research groups, a general framework for how it can be approached is conspicuously lacking. Moreover, even expectations for when the function of a protein can be considered to be ‘known’ are not well defined. In this review, we begin by introducing concepts pertinent to the challenge of protein function assignments. We then propose a framework for inferring a protein's function from four data categories: ‘inheritance’, ‘distribution’, ‘interactions’ and ‘phenotypes’ (IDIP). We document that the functions of proteins emerge at the intersection of inferences drawn from these data categories and emphasise the benefit of considering them in an evolutionary context. We then apply this approach to the cellular prion protein (PrPC), well known for its central role in prion diseases, whose function continues to be considered elusive by many investigators. We document that available data converge on the conclusion that the function of the prion protein is to control a critical post-translational modification of the neural cell adhesion molecule in the context of epithelial-to-mesenchymal transition and related plasticity programmes. Finally, we argue that this proposed function of PrPC has already passed the test of time and is concordant with the IDIP framework in a way that other functions considered for this protein fail to achieve. We anticipate that the IDIP framework and the concepts analysed herein will aid the investigation of other proteins whose primary functional assignments have thus far been intractable.  相似文献   

4.
Several computational models of chemical reaction networks have been presented in the literature in the past, showing the appearance and (potential) evolution of autocatalytic sets. However, the notion of autocatalytic sets has been defined differently in different modeling contexts, each one having some shortcoming or limitation. Here, we review four such models and definitions, and then formally describe and analyze them in the context of a mathematical framework for studying autocatalytic sets known as RAF theory. The main results are that: (1) RAF theory can capture the various previous definitions of autocatalytic sets and is therefore more complete and general, (2) the formal framework can be used to efficiently detect and analyze autocatalytic sets in all of these different computational models, (3) autocatalytic (RAF) sets are indeed likely to appear and evolve in such models, and (4) this could have important implications for a possible metabolism-first scenario for the origin of life.  相似文献   

5.
A proposed unified framework for biological invasions   总被引:1,自引:0,他引:1  
There has been a dramatic growth in research on biological invasions over the past 20 years, but a mature understanding of the field has been hampered because invasion biologists concerned with different taxa and different environments have largely adopted different model frameworks for the invasion process, resulting in a confusing range of concepts, terms and definitions. In this review, we propose a unified framework for biological invasions that reconciles and integrates the key features of the most commonly used invasion frameworks into a single conceptual model that can be applied to all human-mediated invasions. The unified framework combines previous stage-based and barrier models, and provides a terminology and categorisation for populations at different points in the invasion process.  相似文献   

6.
With the advent of technologies for the derivation of embryonic stem cells and reprogrammed stem cells, use of the term “pluripotent” has become widespread. Despite its increased scientific and political importance, there are ambiguities with this designation and a common standard for experimental approaches that precisely define this state in human cells remains elusive. Recent studies have revealed that reprogramming may occur via many pathways which do not always lead to pluripotency. In addition, the pluripotent state itself appears to be highly dynamic, leading to significant variability in the results of molecular studies. Establishment of a stringent set of criteria for defining pluripotency will be vital for biological studies and potential clinical applications in this rapidly evolving field. In this review, we explore the various definitions of pluripotency, examine the current status of pluripotency testing in the field and provide an analysis of how these assays have been used to establish pluripotency in the scientific literature. J. Cell. Physiol. 220: 21–29, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
Horizontal gene transfer (HGT) has been well documented in prokaryotes and unicellular eukaryotes, but its role in plants and animals remains elusive. In a recent study, we showed that at least 57 families of nuclear genes in the moss Physcomitrella patens were acquired from prokaryotes, fungi or viruses and that HGT played a critical role in plant colonization of land. In this paper, we categorize all acquired genes based on their putative functions and biological processes, and further address the importance of HGT in plant innovation and evolution.  相似文献   

8.
9.
Dominance is a basic property of inheritance systems describing the link between a diploid genotype at a single locus and the resulting phenotype. Models for the evolution of dominance have long been framed as an opposition between the irreconcilable views of Fisher in 1928 supporting the role of largely elusive dominance modifiers and Wright in 1929, who viewed dominance as an emerging property of the structure of enzymatic pathways. Recent theoretical and empirical advances however suggest that these opposing views can be reconciled, notably using models investigating the regulation of gene expression and developmental processes. In this more comprehensive framework, phenotypic dominance emerges from departures from linearity between any levels of integration in the genotype-to-phenotype map. Here, we review how these different models illuminate the emergence and evolution of dominance. We then detail recent empirical studies shedding new light on the diversity of molecular and physiological mechanisms underlying dominance and its evolution. By reconciling population genetics and functional biology, we hope our review will facilitate cross-talk among research fields in the integrative study of dominance evolution.  相似文献   

10.
Understanding the mechanisms governing and regulating self-organisation in the developing embryo is a key challenge that has puzzled and fascinated scientists for decades. Since its conception in 1952 the Turing model has been a paradigm for pattern formation, motivating numerous theoretical and experimental studies, though its verification at the molecular level in biological systems has remained elusive. In this work, we consider the influence of receptor-mediated dynamics within the framework of Turing models, showing how non-diffusing species impact the conditions for the emergence of self-organisation. We illustrate our results within the framework of hair follicle pre-patterning, showing how receptor interaction structures can be constrained by the requirement for patterning, without the need for detailed knowledge of the network dynamics. Finally, in the light of our results, we discuss the ability of such systems to pattern outside the classical limits of the Turing model, and the inherent dangers involved in model reduction.  相似文献   

11.
Speciation is a central but elusive issue in evolutionary biology. Over the past sixty years, the subject has been studied within a framework conceived by Ernst Mayr and Theodosius Dobzhansky and subsequently developed further by numerous other workers. In this "isolation" theory, the evolution of reproductive isolation is a key element of speciation; natural selection is given only secondary importance while gene flow is considered prohibitive to the process. In this paper, I argue that certain elements in this approach have produced confusion and irreconcilability among students of speciation. The more prominent debates in speciation (i.e., the species definition, sympatry/allopatry, and the role of reinforcement) all derive from an inherent conflict between the "isolation" theory and Darwin's "selection" view on species and speciation (in which disruptive selection is crucial). New data, mainly from field ecology, molecular population genetics, laboratory studies with Drosophila and computer analysis, all suggest that the isolation theory may no longer be the most desirable vantage point from which to explore speciation. Instead, environmental selection in large populations, often unimpeded by ongoing gene flow, appears to be the decisive element. The traditional preoccupation with reproductive isolation has created gaps in our knowledge of several crucial issues, mainly regarding the role of environmental selection and its connection with mate selection.  相似文献   

12.
Cell migration in healthy and diseased systems is a combination of single and collective cell motion. While single cell motion has received considerable attention, our understanding of collective cell motion remains elusive. A new computational framework for the migration of groups of cells in three dimensions is presented, which focuses on the forces acting at the microscopic scale and the interactions between cells and their extracellular matrix (ECM) environment. Cell-cell adhesion, resistance due to the ECM and the factors regulating the propulsion of each cell through the matrix are considered. In particular, our approach emphasizes the role of receptors that mediate cell-cell and cell-matrix interactions, and examines how variation in their properties induces changes in cellular motion. As an important case study, we analyze two interacting cells. Our results show that the dynamics of cell pairs depends on the magnitude and the stochastic nature of the forces. Stronger intercellular stability is generally promoted by surface receptors that move. We also demonstrate that matrix resistance, cellular stiffness and intensity of adhesion contribute to migration behaviors in different ways, with memory effects present that can alter pair motility. If adhesion weakens with time, our findings show that cell pair break-up depends strongly on the way cells interact with the matrix. Finally, the motility for cells in a larger cluster (size 50 cells) is examined to illustrate the full capabilities of the model and to stress the role of cellular pairs in complex cellular structures. Overall, our framework shows how properties of cells and their environment influence the stability and motility of cellular assemblies. This is an important step in the advancement of the understanding of collective motility, and can contribute to knowledge of complex biological processes involving migration, aggregation and detachment of cells in healthy and diseased systems.  相似文献   

13.
We have previously shown that the yeast Cathepsin D (CatD) Pep4p translocates from the vacuole to the cytosol during acetic acid-induced apoptosis and is required for efficient mitochondrial degradation, though its specific role in this process is still elusive. Here, we show that the protective role of Pep4p in acetic acid-induced apoptosis depends on its catalytic activity and is independent of the yeast voltage-dependent anion channel Por1p (which has no role on mitochondrial degradation) but dependent on AAC proteins, the yeast adenine nucleotide translocator. Our results demonstrate a differential interplay between yeast vacuolar CatD and mitochondrial proteins involved in apoptosis regulation.  相似文献   

14.
Squalene monooxygenase (SM) is a vital sterol synthesis enzyme across eukaryotic life. In yeast, it is a therapeutic target for treating certain fungal infections, and in mammals it is a rate-limiting enzyme that represents a key control point in the cholesterol synthesis pathway. SM introduces an oxygen atom to squalene, which becomes the signature oxygen of the hydroxyl group in cholesterol. Our knowledge of SM has advanced tremendously since its initial cloning and characterization. Early research developed mammalian SM inhibitors to target SM for cholesterol-lowering purposes. The substrate squalene has gained considerable interest for its health benefits and in nanomedicine for delivery of drugs. More recently, SM has been implicated as a key dysregulated component in certain cancers. In this review, we summarize our present knowledge of SM, focusing on the regulation of SM and the gene encoding it, SQLE. Furthermore, we offer insights into the role of SM across different organisms and its significance in human health and disease.  相似文献   

15.

Background  

The subclass Enoplia (Phylum Nematoda) is purported to be the earliest branching clade amongst all nematode taxa, yet the deep phylogeny of this important lineage remains elusive. Free-living marine species within the order Enoplida play prominent roles in marine ecosystems, but previous molecular phylogenies have provided only the briefest evolutionary insights; this study aimed to firmly resolve internal relationships within the hyper-diverse but poorly understood Enoplida. In addition, we revisited the molecular framework of the Nematoda using a rigorous phylogenetic approach in order to investigate patterns of early splits amongst the oldest lineages (Dorylaimia and Enoplia).  相似文献   

16.
Rapid growth in nanotechnology toward the development of nanomedicine agents holds massive promise to improve therapeutic approaches against cancer. Nanomedicine products represent an opportunity to achieve sophisticated targeting strategies and multifunctionality. Nowadays, nanoparticles (NPs) have multiple applications in different branches of science. In recent years, NPs have repetitively been reported to play a significant role in modern medicine. They have been analyzed for different clinical applications, such as drug carriers, gene delivery to tumors, and contrast agents in imaging. A wide range of nanomaterials based on organic, inorganic, lipid, or glycan compounds, as well as on synthetic polymers has been utilized for the development and improvement of new cancer therapeutics. In this study, we discuss the role of NPs in treating cancer among different drug delivery methods for cancer therapy.  相似文献   

17.
18.
A tiered framework for assessing groundwater ecosystem health   总被引:1,自引:0,他引:1  
The notion of ecosystem health has been widely adopted in environmental policy, particularly in the management of river systems. Despite this, even a notional understanding of ecosystem health and its assessment in connected aquifer ecosystems remains elusive. In this article, we propose a definition and provide a tiered framework for the assessment of ecosystem health in groundwater. From the literature we identify general attributes of a healthy groundwater ecosystem and from these develop primary (Tier 1) indicators of health. Where Tier 1 benchmarks are exceeded or more detailed assessment is required, we discuss a range of indicators (Tier 2) that may together generate a multimetric index of groundwater health. Our case study using samples from an alluvial aquifer in north-western New South Wales, Australia, demonstrates the utility of both tiers of the framework, and the ability of the approach to separate disturbed and undisturbed sites. The process of multimetric development is simple and our Tier 2 benchmarks determined from limited data. Nevertheless, our framework will be applicable and readily adaptable to site-specific contexts.  相似文献   

19.
Comparative studies of the proteomes from different organisms have provided valuable information about protein domain distribution in the kingdoms of life. Earlier studies have been limited by the fact that only about 50% of the proteomes could be matched to a domain. Here, we have extended these studies by including less well-defined domain definitions, Pfam-B and clustered domains, MAS, in addition to Pfam-A and SCOP domains. It was found that a significant fraction of these domain families are homologous to Pfam-A or SCOP domains. Further, we show that all regions that do not match a Pfam-A or SCOP domain contain a significantly higher fraction of disordered structure. These unstructured regions may be contained within orphan domains or function as linkers between structured domains. Using several different definitions we have re-estimated the number of multi-domain proteins in different organisms and found that several methods all predict that eukaryotes have approximately 65% multi-domain proteins, while the prokaryotes consist of approximately 40% multi-domain proteins. However, these numbers are strongly dependent on the exact choice of cut-off for domains in unassigned regions. In conclusion, all eukaryotes have similar fractions of multi-domain proteins and disorder, whereas a high fraction of repeating domain is distinguished only in multicellular eukaryotes. This implies a role for repeats in cell-cell contacts while the other two features are important for intracellular functions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号