首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The nucleosides Ia and IIa exist in syn and anti conformations, respectively, both in solid state and solution. Compound Ia undergoes significant conformational change, accompanied by increased population of the anti conformer, upon conversion to the corresponding 5'-mono- and- diphosphate derivatives, whereas conformation of IIa remains reasonably constant between nucleoside and nucleotides. While Ia possessed the C2'-endo-C3'-exo geometry, IIa had the opposite C2'-exo-C3'-endo conformation. The C5' of the two nucleosides bore axial and equatorial conformations, respectively.  相似文献   

2.
The x-ray crystal structures of two new anti-HIV compounds, 9-(2,3-dideoxy-2-fluoro-beta-D-threo-pentofuranosyl)adenine (2'-F-dd-araA) and 9-(2,3-dideoxy-2-fluoro-beta-D-threo- pentofuranosyl)hypoxanthine (2'-F-dd-aral), have been determined at two temperatures. Both crystals are in the space group P2(1)2(1)2(1), and their structures were solved by direct methods. Least-squares refinement produced final R-factors of 0.027 for the 2'-F-dd-araA structure and of 0.044 for the 2'-F-dd-aral structure, respectively. The latter structure contains a two-fold disordered conformation of the sugar moiety. All three conformers (one for 2'-F-dd-araA and two for 2'-F-dd-aral) adopt an anti chi CN glycosyl torsion angle. The sugar in the 2'-F-dd-araA structure has a C2'-endo pucker conformation, whereas the sugar in the 2'-F-dd-aral structure has a mixture of C2'-endo and C3'-endo pucker conformations. When the sugar adopts the C2'-endo conformation, the torsion angle about the C4'-C5' bond is in a transgauche+ conformation. In contrast, when the sugar adopts the C3'-endo conformation, the torsion angle about the C4'-C5' bond is in a gauche(+)-gauche- conformation. The C2'-F bond distance is 1.406(3) A, similar to that found in other aliphatic C-F bonds. The results suggest that the 2'-fluoro-2',3'-dideoxyarabinosyl nucleosides do not have a strong preference for either C2'-endo or C3'-endo sugar pucker.  相似文献   

3.
Two novel C-linked oxadiazole carboxamide nucleosides 5-(2'-deoxy-3',5'-beta-D-erythro-pentofuranosyl)-1,2,4-oxadiazole-5-carboxamide (1) and 5-(2'-deoxy-3',5'-beta-D-erythro-pentofuranosyl)-1,2,4-oxadiazole-3-carboxamide (2) were successfully synthesized and characterized by X-ray crystallography. The crystallographic analysis shows that both unnatural nucleoside analogs 1 and 2 adapt the C2'-endo ("south") conformation. The orientation of the oxadiazole carboxamide nucleobase moiety was determined as anti (conformer A) and high anti (conformer B) in the case of the nucleoside analog 1 whereas the syn conformation is adapted by the unnatural nucleoside 2. Furthermore, nucleoside analogs 1 and 2 were converted with high efficiency to corresponding nucleoside triphosphates through the combination chemo-enzymatic approach. Oxadiazole carboxamide deoxyribonucleoside analogs represent valuable tools to study DNA polymerase recognition, fidelity of nucleotide incorporation, and extension.  相似文献   

4.
The sugar ring conformations of 2',3'-dideoxyribosyladenine (ddA), 2',3'-dideoxyribosylcytosine (ddC), 2',3'-dideoxyribosylguanine (ddG), 2',3'-dideoxyribosylhypoxanthine (ddI), 3'-azido-2',3'-dideoxyribosylthymine (AZT), 3'-azido-2',3'-dideoxyribosyluracil (AZU) and 3'-fluoro-2',3'-dideoxyribosylthymine (FddT) have been investigated by 1H NMR spectroscopy. While the sugar ring in FddT exists almost totally in C2'-endo geometry, other nucleosides show equilibrium between sugar puckers of C3'-endo family (N-type) and C2'-endo family (S-type). For unsubstituted dideoxynucleosides C3'-endo conformer is favoured (congruent to 75%), whereas for AZT and AZU both the conformers have almost equal populations. Unlike X-ray diffraction studies, the NMR results do not support the suggestion that C3'-exo sugar puckers are desirable for the anti-HIV activity of these nucleosides.  相似文献   

5.
tRNA from Salmonella enterica serovar Typhimurium contains five thiolated nucleosides, 2-thiocytidine (s(2)C), 4-thiouridine (s(4)U), 5-methylaminomethyl-2-thiouridine (mnm(5)s(2)U), 5-carboxymethylaminomethyl-2-thiouridine (cmnm(5)s(2)U), and N-6-(4-hydroxyisopentenyl)-2-methylthioadenosine (ms(2)io(6)A). The levels of all of them are significantly reduced in cells with a mutated iscS gene, which encodes the cysteine desulfurase IscS, a member of the ISC machinery that is responsible for [Fe-S] cluster formation in proteins. A mutant (iscU52) was isolated that carried an amino acid substitution (S107T) in the IscU protein, which functions as a major scaffold in the formation of [Fe-S] clusters. In contrast to the iscS mutant, the iscU52 mutant showed reduced levels of only two of the thiolated nucleosides, ms(2)io(6)A (10-fold) and s(2)C (more than 2-fold). Deletions of the iscU, hscA, or fdx genes from the isc operon lead to a similar tRNA thiolation pattern to that seen for the iscU52 mutant. Unexpectedly, deletion of the iscA gene, coding for an alternative scaffold protein for the [Fe-S] clusters, showed a novel tRNA thiolation pattern, where the synthesis of only one thiolated nucleoside, ms(2)io(6)A, was decreased twofold. Based on our results, we suggest two principal distinct routes for thiolation of tRNA: (i) a direct sulfur transfer from IscS to the tRNA modifying enzymes ThiI and MnmA, which form s(4)U and the s(2)U moiety of (c)mnm(5)s(2)U, respectively; and (ii) an involvement of [Fe-S] proteins (an unidentified enzyme in the synthesis of s(2)C and MiaB in the synthesis of ms(2)io(6)A) in the transfer of sulfur to the tRNA.  相似文献   

6.
The conformation of a representative molecule of a new, potent class of antiviral-active modified nucleosides is determined. A bicyclic nucleoside, 3-(2'-deoxy-beta-D-ribofuranosyl)-6-(4-methylphenyl)-2,3-dihydrofuro[2,3-d]pyrimidin-2-one, shows C2'-endo and C3'-endo ribose conformations in solution (63:37, 37 degrees C; DMSO-d6), as determined by 1H NMR studies. The crystal structure of a 3',5'-di-O-acetyl-protected derivative (monoclinic, P21, a/b/c= 6.666(1)/12.225(1)/24.676(2) A, beta=90.24(1) degrees , Z=4) shows exclusively C2'-endo deoxyribose puckering. The base is found in the anti position both in solution and in crystalline form.  相似文献   

7.
The interactions of the monovalent ions Li+, Na+, K+, NH4+, Rb+ and Cs+ with adenosine-5'-monophosphoric acid (H2-AMP), guanosine-5'-monophosphoric acid (H2-GMP) and deoxyguanosine-5'-monophosphoric acid (H2-dGMP) were investigated in aqueous solution at physiological pH. The crystalline salts M2-nucleotide.nH2O, where M = Li+, Na+, K+ NH4+, Rb+ and Cs+, nucleotide = AMP, GMP and dGMP anions and n = 2-4 were isolated and characterized by Fourier Transform infrared (FTIR) and 1H-NMR spectroscopy. Spectroscopic evidence showed that these ions are in the form of M(H2O)n+ with no direct metal-nucleotide interaction, in aqueous solution. In the solid state, Li+ ions bind to the base N-7 site and the phosphate group (inner-sphere), while the NH4+ cations are in the vicinity of the N-7 position and the phosphate group, through hydrogen bonding systems. The Na-nucleotides and K-nucleotides are structurally similar. The Na+ ions bind to the phosphate group of the AMP through metal hydration shell (outer-sphere), whereas in the Na2-GMP, the hydrated metal ions bind to the base N-7 or the ribose hydroxyl groups (inner-sphere). The Na2-dGMP contains hydrated metal-carbonyl and metal-phosphate bindings (inner-sphere). The Rb+ and Cs+ ions are directly bonded to the phosphate groups and indirectly to the base moieties (via H2O). The ribose moiety shows C2'-endo/anti conformation for the free AMP acid and its alkali metal ion salts. In the free GMP acid, the ribose ring exhibits C3'-endo/anti conformer, while a C2'-endo/anti sugar pucker was found in the Na2-GMP and K2-GMP salts and a C3'-endo/anti conformation for the Li+, NH4+, Rb+ and Cs+ salts. The deoxyribose has C3'-endo/anti conformation in the free dGMP acid and O4'-endo/anti in the Na2-dGMP, K2-dGMP and a C3'-endo/anti for the Li+, NH4+, Rb+ and Cs+ salts. An equilibrium mixture of the C2'-endo/anti and C3'-endo/anti sugar puckers was found for these metal-nucleotide salts in aqueous solution.  相似文献   

8.
Deficiency of a modified nucleoside in tRNA often mediates suppression of +1 frameshift mutations. In Salmonella enterica serovar Typhimurium strain TR970 (hisC3737), which requires histidine for growth, a potential +1 frameshifting site, CCC-CAA-UAA, exists within the frameshifting window created by insertion of a C in the hisC gene. This site may be suppressed by peptidyl-tRNAProcmo5UGG (cmo(5)U is uridine-5-oxyacetic acid), making a frameshift when decoding the near-cognate codon CCC, provided that a pause occurs by, e.g., a slow entry of the tRNAGlnmnm5s2UUG (mnm(5)s(2)U is 5-methylaminomethyl-2-thiouridine) to the CAA codon located in the A site. We selected mutants of strain TR970 that were able to grow without histidine, and one such mutant (iscS51) was shown to have an amino acid substitution in the L-cysteine desulfurase IscS. Moreover, the levels of all five thiolated nucleosides 2-thiocytidine, mnm(5)s(2)U, 5-carboxymethylaminomethyl-2-thiouridine, 4-thiouridine, and N-6-(4-hydroxyisopentenyl)-2-methylthioadenosine present in the tRNA of S. enterica were reduced in the iscS51 mutant. In logarithmically growing cells of Escherichia coli, a deletion of the iscS gene resulted in nondetectable levels of all thiolated nucleosides in tRNA except N-6-(4-hydroxyisopentenyl)-2-methylthioadenosine, which was present at only 1.6% of the wild-type level. After prolonged incubation of cells in stationary phase, a 20% level of 2-thiocytidine and a 2% level of N-6-(4-hydroxyisopentenyl)-2-methylthioadenosine was observed, whereas no 4-thiouridine, 5-carboxymethylaminomethyl-2-thiouridine, or mnm(5)s(2)U was found. We attribute the frameshifting ability mediated by the iscS51 mutation to a slow decoding of CAA by the tRNAGlnmnm5s2UUG due to mnm(5)s(2)U deficiency. Since the growth rate of the iscS deletion mutant in rich medium was similar to that of a mutant (mnmA) lacking only mnm(5)s(2)U, we suggest that the major cause for the reduced growth rate of the iscS deletion mutant is the lack of mnm(5)s(2)U and 5-carboxymethylaminomethyl-2-thiouridine and not the lack of any of the other three thiolated nucleosides that are also absent in the iscS deletion mutant.  相似文献   

9.
In order to elucidate roles of the 2'-O-methylation of pyrimidine nucleotide residues of tRNAs, conformations of 2'-O-methyluridylyl(3'----5')uridine (UmpU), 2'-O-methyluridine 3'-monophosphate (Ump), and 2'-O-methyluridine (Um) in 2H2O solution were analyzed by one- and two-dimensional proton NMR spectroscopy and compared with those of related nucleotides and nucleoside. As for UpU and UmpU, the 2'-O-methylation was found to stabilize the C3'-endo form of the 3'-nucleotidyl unit (Up-/Ump-moiety). This stabilization of the C3'-endo form is primarily due to an intraresidue effect, since the conformation of the 5'-nucleotidyl unit (-pU moiety) was only slightly affected by the 2'-O-methylation of the 3'-nucleotide unit. In fact even for Up and Ump, the 2'-O-methylation significantly stabilizes the C3'-endo form by 0.8 kcal/.mol-1. By contrast, for nucleosides (U and Um), the C3'-endo form is slightly stabilized by 0.1 kcal/.mol-1. Accordingly, the stabilization of the C3'-endo form by the 2'-O-methylation is primarily due to the steric repulsion among the 2-carbonyl group, the 2'-O-methyl group and the 3'-phosphate group in the C2'-endo form. For some tRNA species, 2-thiolation of pyrimidine residues is found in positions where the 2'-O-methylation is found for other tRNA species.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Several new N1-substituted uncommon purine nucleosides, including doridosine (1-methyl-isoguanosine; m-iG), 1-allyl-isoguanosine (a-iG) and 1-allyl-xanthosine (a-X), have been synthesized and tested as agonists for the adenosine receptors. Some have smooth muscle relaxant or negative chronotropic activities. The X-ray crystal structure of these compounds has been determined at atomic resolution in order to understand the structure-activity relationship. The structures were solved by direct methods and refined by full-matrix least-squares refinement procedure. The crystallographic parameters are: a-iG, space group P2(1), a = 10.573 (1) A, b = 21.955 (2) A, c = 14.360 (1) A, beta = 110.65 (1) degree, no. of 3 sigma Fo's = 4585, R = 0.047; a-X, space group P2(1)2(1)2(1), a = 16.015 (2) A, b = 16.239 (1) A, (1) A, c = 5.3723 (5) A, no. of 3 sigma Fo's = 1169, R = 0.031. In the a-iG crystal, there are 4 independent molecules (with different conformation) per asymmetric unit. While all 4 molecules adopt anti chi CN glycosyl torsion angle, their riboses have 3 distinct puckers (C2'-exo, C2'-endo and C1'-exo). In contrast, the a-X structure adopts a syn chi CN glycosyl torsion angle, which is stabilized by an intramolecular hydrogen bond between the N3 of purine base and the O5' of the ribose (in C2'-endo pucker). Both purine bases (a-iG and a-X) are mainly in the keto tautomer form. For the isoguanine base, the averaged N1-C2 bond distance (1.42 A) is significantly longer than that (1.375 A) of the guanine base. For the xanthine base, N3 nitrogen has an imino proton attached which is unambiguously located in the electron density map. The surprising flexibility in the ribose ring of these N1-substituted uncommon purine nucleosides suggests that the ribose moiety may not participate in the binding of nucleoside to the adenosine receptors.  相似文献   

11.
2-Thiouracil-containing nucleosides are essential modified units of natural and synthetic nucleic acids. In particular, the 5-substituted-2-thiouridines (S2Us) present in tRNA play an important role in tuning the translation process through codon–anticodon interactions. The enhanced thermodynamic stability of S2U-containing RNA duplexes and the preferred S2U-A versus S2U-G base pairing are appreciated characteristics of S2U-modified molecular probes. Recently, we have demonstrated that 2-thiouridine (alone or within an RNA chain) is predominantly transformed under oxidative stress conditions to 4-pyrimidinone riboside (H2U) and not to uridine. Due to the important biological functions and various biotechnological applications for sulfur-containing nucleic acids, we compared the thermodynamic stabilities of duplexes containing desulfured products with those of 2-thiouracil-modified RNA and DNA duplexes. Differential scanning calorimetry experiments and theoretical calculations demonstrate that upon 2-thiouracil desulfuration to 4-pyrimidinone, the preferred base pairing of S2U with adenosine is lost, with preferred base pairing with guanosine observed instead. Therefore, biological processes and in vitro assays in which oxidative desulfuration of 2-thiouracil-containing components occurs may be altered. Moreover, we propose that the H2U-G base pair is a suitable model for investigation of the preferred recognition of 3′-G-ending versus A-ending codons by tRNA wobble nucleosides, which may adopt a 4-pyrimidinone-type structural motif.  相似文献   

12.
The mutation sufY204 mediates suppression of a +1 frameshift mutation in the histidine operon of Salmonella enterica serovar Typhimurium and synthesis of two novel modified nucleosides in tRNA. The sufY204 mutation, which results in an amino-acid substitution in a protein, is, surprisingly, dominant over its wild-type allele and thus it is a "gain of function" mutation. One of the new nucleosides is 5-methylaminomethyl-2-thiouridine (mnm(5)s(2)U34) modified by addition of a C(10)H(17) side chain of unknown structure. Increased amounts of both nucleosides in tRNA are correlated to gene dosage of the sufY204 allele, to an increased efficiency of frameshift suppression, and to a decreased amount of the wobble nucleoside mnm(5)s(2)U34 in tRNA. Purified tRNA(Gln)(cmnm(5)s(2)UUG) in the mutant strain contains a modified nucleoside similar to the novel nucleosides and the level of aminoacylation of tRNA(Gln)(cmnm(5)s(2)UUG) was reduced to 26% compared to that found in the wild type (86%). The results are discussed in relation to the mechanism of reading frame maintenance and the evolution of modified nucleosides in tRNA.  相似文献   

13.
Crystal structures of (Z)-5-(2-bromovinyl)-2'-deoxyuridine, 3',5'-di-O-acetyl-(E)-5-(2-bromovinyl)-2'-deoxyuridine and 3',5'-di-O-p-chlorobenzoyl-5-(2-dibromovinyl)-2'-deoxyuridine are compared with each other and with that of the most potent antiviral agent (E)-5-(2-bromovinyl)-2'-deoxyuridine (E-BVDU) reported earlier. A comparison of the conformation of 3',5'-di-O-acetyl-pyrimidine nucleoside structures in which intermolecular hydrogen bond network formation is minimized, with those of their parent compounds has shown that the greatest change in rotation about the glycosyl bond and in the sugar ring pucker is exhibited by E-BVDU. Upon acylation this molecule changes from C2'-endo/C3'-exo conformation to C3'-endo/C4'-exo conformation. The relevance of these structures upon the biological activity of the nucleosides and in particular to their ability to be a substrate for thymidine kinase is discussed.  相似文献   

14.
The interaction of adenosine-5'-monophosphate (5'-AMP), guanosine-5'-monophosphate (5'-GMP) and 2'-deoxyguanosine-5'-monophosphate (5'-dGMP) with the [Co(NH3)6]3+, [Co(NH3)5Cl]2+ and [Co(NH3)4Cl2]+ cations has been investigated in aqueous solution with metal/nucleotide ratios (r) of 1/2, 1 and 2 at neutral pH. The solid complexes have been isolated and characterized by FT-IR and 1H-NMR spectroscopy. The complexes are polymeric in nature both in the crystalline solid and aqueous solution. The binding of the cobalt-hexammine cation is indirectly (via NH3) through the N-7 and the PO3(2-) groups of the AMP and via O-6, N-7 and the PO3(2-) of the GMP and dGMP anions (outer-sphere). The cobalt-pentammine and cobalt-tetrammine bindings are through the phosphate groups (inner-sphere) and the N-7 site (outer-sphere) of these nucleotide anions. The ribose moiety shows C2'-endo/anti conformation, in the free AMP and GMP anions as well as in the cobalt-ammine-AMP complexes, whereas a mixture of teh C2'-endo/anti and C3'-endo/anti sugar puckers were observed for the Co(NH3)6-GMP, Co(NH3)5-GMP and a C3'-endo/anti conformer for the Co(NH3)4-GMP complexes. The deoxyribose showed an O4'-endo/anti conformation for the free dGMP anion and a C3'-endo/anti for the Co(NH3)6-dGMP, Co(NH3)5-dGMP and Co(NH3)4-dGMP complexes.  相似文献   

15.
Antisuppressor mutations reduce the efficiency of nonsense suppressors. A mutation in the gene sin4 of Schizosaccharomyces pombe leads to loss of 5-(methoxycarbonylmethyl) thiouridine (mcm5s2U) from the first anticodon position of tRNAs. This resembles the phenotype of sin3 (Heyer, W. D., Thuriaux, P., Kohli, J., Ebert, P., Kersten, H., Gehrke, C., Kuo, K. C., and Agris, P. F. (1984) J. Biol. Chem. 259, 2856-2862), but the mutations reside in different genes. In vivo 35S-labeled tRNA from the parental suppressor strain sup3, the antisuppressor strains sin3 and sin4, and the double mutant sin3 sin4 has been digested to nucleosides and analyzed with high performance liquid chromatography methods. The major sulfur-carrying nucleoside in wild-type S. pombe tRNA is mcm5s2U. It is reduced in the mutant strains. Two other thiolated nucleosides are also present: 2-thiouridine and a nucleoside of unknown structure. Neither was affected by the antisuppressor mutations. Thiocytidine has not been found. Independent from their effect on suppressors, the two mutations sin3 and sin4 reduce the growth rate of cells, and sin3 also increases cell length. In vivo decoding of the serine codon UCG by the UCA reading serine tRNA is not promoted by the two antisuppressor mutations.  相似文献   

16.
Structural studies using 500 MHz 1H NMR spectroscopy on Bam H1 recognition site d(GGATCC)2 in solution at 19 degrees is reported. The resonances from the sugar ring and base protons have been assigned from the 2D-COSY and NOESY spectra. Analyses of the NOESY cross-peaks between the base protons H8/H6 and sugar protons H2'/H2", H3' reveal that the nucleotide units G2, A3 and C6 adopt (C3'-endo, chi = 200 degrees-220 degrees) conformation while G1, T4 and C5 exhibit (C2'-endo, chi = 240 degrees-260 degrees) conformation. NMR data clearly suggest that the two strands of d(GGATCC)2 are conformationally equivalent and there is a structural two-fold between the two A-T pairs. The above information and the NOESY data are used to generate a structural model of d(GGATCC)2. The important features are: (i) G1-G2 stack, the site of cleavage, shows an alternation in sugar pucker i.e. C2'-endo, C3'-endo as in a B-A junction, (ii) G2-A3 stack adopts a mini A-DNA, both the sugars being C3'-endo, (iii) A3-T4 stack, the site of two-fold, displays an A-B junction with alternation in sugar pucker as C3'-endo, C2'-endo, (iv) T4-C5 stack adopts a mini B-DNA both the sugars being C2'-endo and (v) C5-C6 stack exhibits a B-A junction with C2'-endo, C3'-endo sugar puckers. Thus, our studies demonstrate that conformational microheterogeneity with a structural two fold, is present in the Bam H1 recognition site.  相似文献   

17.
The 2-thiomodified nucleosides, located at first position of tRNAs anticodon, may constitute a primary target for oxidative attack under conditions of oxidative stress. Desulfuration of 2-thiouridine (S2U) was investigated in the 1H NMR scale in the presence of 100 mM H2O2 and phosphate buffer in the physiological pH range, from pH 6.6 to 7.6. The obtained data demonstrate an intriguing result that within one unit of the pH range uridine is the major product of the S2U desulfuration in the pH 7.6, while the 4-pyrimidinone nucleoside (H2U) is dominant in pH 6.6. The possible desulfuration pathway and the biological importance of the transformation of S2U either to U or H2U are discussed in the context of the tRNA oxidative damage.  相似文献   

18.
In germinating radish seeds, [U-14C]-4-thiouridine was convertedto 4-thio-UMP, 4-thio-UDP, 4-thio-UTP, 4-thio-UDP glucose and4-thiouracil, of which 4-thiouracil accounted for 60–85%.4-Thio-UTP is incorporated into RNAs of radish seedlings [Shibataet al. (1980) FEBS Lett. 119: 85]. These same metabolites werelabeled following germination of radish seeds with [2-14C]-4-thiouracil.4-Thiouridine was hydrolyzed by the uridine nucleosidase (EC3.2.2.3 [EC] ) of radish seedlings as effectively as was uridine.The activity of uridine nucleosidase was increased by germinationwith 4-thiouridine. These results are a strong indication that4-thiouridine is converted to 4-thiouracil, then to 4-thio-UMPby uracil phosphoribosyltransferase (EC 2.4.2.9 [EC] ). The alternativeformation of 4-thio-UMP from 4-thiouridine by uridine kinase(EC 2.7.1.48 [EC] ) also was suggested. A possible mechanism whichmay cause inhibition of chloroplast biogenesis in 4-thiouridine-culturedseedlings is discussed. (Received October 12, 1981; Accepted January 14, 1982)  相似文献   

19.
Crystals of 5-fluorouridine (5FUrd) have unit cell dimensions a = 7.716(1), b = 5.861(2), c = 13.041(1)A, alpha = gamma = 90 degrees, beta = 96.70 degrees (1), space group P2(1), Z = 2, rho obs = 1.56 gm/c.c and rho calc = 1574 gm/c.c The crystal structure was determined with diffractometric data and refined to a final reliability index of 0.042 for the observed 2205 reflections (I > or = 3sigma). The nucleoside has the anti conformation [chi = 53.1(4) degrees] with the furanose ring in the favorite C2'-endo conformation. The conformation across the sugar exocyclic bond is g+, with values of 49.1(4) and -69.3(4) degrees for phi(theta c) and phi (infinity) respectively. The pseudorotational amplitude tau(m) is 34.5 (2) with a phase angle of 171.6(4) degrees. The crystal structure is stabilized by a network of N-H...O and O-H...O involving the N3 of the uracil base and the sugar 03' and 02' as donors and the 02 and 04 of the uracil base and 03' oxygen as acceptors respectively. Fluorine is neither involved in the hydrogen bonding nor in the stacking interactions. Our studies of several 5-fluorinated nucleosides show the following preferred conformational features: 1) the most favored anti conformation for the nucleoside [chi varies from -20 to + 60 degrees] 2) an inverse correlation between the glycosyl bond distance and the chi angle 3) a wide variation of conformations of the sugar ranging froni C2'-endo through C3'-endo to C4'-exo 4) the preferred g+ across the exocyclic C4'-C5' bond and 5) no role for the fluorine atom in the hydrogen bonding or base stacking interactions.  相似文献   

20.
PCILO (perturbative configuration interaction using localized orbitals) computations have been carried out for the conformational properties of 8-azapurine nucleosides. The results indicate an anti conformation for Xcn and a gg conformation for phiC(4')-C(5') for C(2')-endo 8-aza analogs compared to the syn and gg conformation for the corresponding purine nucleosides. For C(3')-endo sugar puckering, both molecules prefer the syn conformation due to intramolecular hydrogen bonding between O(5')-H of the sugar and N(3) of the base, the preference being more profound in 8-aza analogs. The crystallographic conformation 8-azaadenosine has been attributed to crystal forces. The available NMR data on 8-azapurine nucleosides are in agreement with the PCILO predictions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号