首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA postreplication repair (PRR) is defined as an activity to convert DNA damage-induced single-stranded gaps into large molecular weight DNA without actually removing the replication-blocking lesions. In bacteria such as Escherichia coli, this activity requires RecA and the RecA-mediated SOS response and is accomplished by recombination and mutagenic translesion DNA synthesis. Eukaryotic cells appear to share similar DNA damage tolerance pathways; however, some enzymes required for PRR in eukaryotes are rather different from those of prokaryotes. In the yeast Saccharomyces cerevisiae, PRR is centrally controlled by RAD6 and RAD18, whose products form a stable complex with single-stranded DNA-binding, ATPase and ubiquitin-conjugating activities. PRR can be further divided into translesion DNA synthesis and error-free modes, the exact molecular events of which are largely unknown. This error-free PRR is analogous to DNA damage-avoidance as defined in mammalian cells, which relies on recombination processes. Two possible mechanisms by which recombination participate in PRR to resolve the stalled replication folk are discussed. Recombination and PRR are also genetically regulated by a DNA helicase and are coupled to the cell-cycle. The PRR processes appear to be highly conserved within eukaryotes, from yeast to human.  相似文献   

2.
In the yeast Saccharomyces cerevisiae, the Rad6–Rad18 DNA damage tolerance pathway constitutes a major defense system against replication fork blocking DNA lesions. The Rad6–Rad18 ubiquitin-conjugating/ligase complex governs error-free and error-prone translesion synthesis by specialized DNA polymerases, as well as an error-free Rad5-dependent postreplicative repair pathway. For facilitating replication through DNA lesions, translesion synthesis polymerases copy directly from the damaged template, while the Rad5-dependent damage tolerance pathway obtains information from the newly synthesized strand of the undamaged sister duplex. Although genetic data demonstrate the importance of the Rad5-dependent pathway in tolerating DNA damages, there has been little understanding of its mechanism. Also, the conservation of the yeast Rad5-dependent pathway in higher order eukaryotic cells remained uncertain for a long time. Here we summarize findings published in recent years regarding the role of Rad5 in promoting error-free replication of damaged DNA, and we also discuss results obtained with its human orthologs, HLTF and SHPRH.  相似文献   

3.
During replication, bypass of DNA lesions is orchestrated by the Rad6 pathway. Monoubiquitination of proliferating cell nuclear antigen (PCNA) by Rad6/Rad18 leads to recruitment of translesion polymerases for direct and potentially mutagenic damage bypass. An error-free bypass pathway may be initiated via K63-linked PCNA polyubiquitination by Ubc13/Mms2 and the E3 ligase Rad5 in yeast, or HLTF/SHPRH in vertebrates. For the latter two enzymes, redundancy with a third E3 ligase and alternative functions have been reported. We have previously shown that the Rad6 pathway is involved in somatic hypermutation of immunoglobulin genes in B lymphocytes. Here, we have used knockout strategies targeting expression of the entire SHPRH protein or functionally significant domains in chicken DT40 cells that do not harbor a HLTF ortholog. We show that SHPRH is apparently redundant with another E3 ligase during DNA damage-induced PCNA modification. SHPRH plays no substantial role in cellular resistance to drugs initiating excision repair and the Rad6 pathway, but is important in survival of topoisomerase II inhibitor treatment. Removal of only the C-terminal RING domain does not interfere with this SHPRH function. SHPRH inactivation does not substantially impact on the overall efficacy of Ig diversification. Redundancy of E3 ligases in the Rad6 pathway may be linked to its different functions in genome maintenance and genetic plasticity.  相似文献   

4.
The changes in molecular weight of deoxyribonucleic acid (DNA) synthesized after ultraviolte irradiation of Escherichia coli WP28 uvrA, and strains additionally mutant at polA, exrA, recA, and exrA and polA loci, were examined by alkaline sucrose gradient centrifugation. In a repari=deficient uvrA recA strain, the frequency of breaks in newly synthesized DNA was equal to that for pyrimidine dimers in parental DNA. Measurements of the amounts and rates of postreplication repair of these breaks indicate that (i) repair is two to three times faster when DNA polymerase I is present, although (ii) almost all breaks are repaired regardless of DNA polymerase I activity. (iii) Increased ultraviolet doses lead to an increase in the proportion of breaks remaining unrepaired in uvrA recA, UVRA exrA, and uvrA exrA polA strains. The numbers of unrepaired breaks resemble the numbers expected if repair of one lesion is prevented by proximity of a second lesion.  相似文献   

5.
Histone amino-terminal tails (N-tails) are required for cellular resistance to DNA damaging agents; therefore, we examined the role of histone N-tails in regulating DNA damage response pathways in Saccharomyces cerevisiae. Combinatorial deletions reveal that the H2A and H3 N-tails are important for the removal of MMS-induced DNA lesions due to their role in regulating the basal and MMS-induced expression of DNA glycosylase Mag1. Furthermore, overexpression of Mag1 in a mutant lacking the H2A and H3 N-tails rescues base excision repair (BER) activity but not MMS sensitivity. We further show that the H3 N-tail functions in the Rad9/Rad53 DNA damage signaling pathway, but this function does not appear to be the primary cause of MMS sensitivity of the double tailless mutants. Instead, epistasis analyses demonstrate that the tailless H2A/H3 phenotypes are in the RAD18 epistasis group, which regulates postreplication repair. We observed increased levels of ubiquitylated PCNA and significantly lower mutation frequency in the tailless H2A/H3 mutant, indicating a defect in postreplication repair. In summary, our data identify novel roles of the histone H2A and H3 N-tails in (i) regulating the expression of a critical BER enzyme (Mag1), (ii) supporting efficient DNA damage signaling and (iii) facilitating postreplication repair.  相似文献   

6.
A genetic screen has been developed in Drosophila for identifying host-repair genes responsible for processing DNA lesions formed during mobilization of P transposable elements. Application of that approach to repair deficient mutants has revealed that the mei-41 and mus302 genes are necessary for recovery of P-bearing chromosomes undergoing transposition. Both of these genes are required for normal postreplication repair. Mutants deficient in excision repair, on the other hand, have no detected effect on the repair of transposition-induced lesions. These observations suggest that P element-induced lesions are repaired by a postreplication pathway of DNA repair. The data further support recent studies implicating double-strand DNA breaks as intermediates in P transposition, because the mei-41 gene has been genetically and cytologically associated with the repair of interrupted chromosomes. Analysis of this system has also revealed a striking stimulation of site-specific gene conversion and recombination by P transposition. This result strongly suggests that postreplication repair in this model eukaryote operates through a conversion/recombination mechanism. Our results also support a recently developed model for a conversion-like mechanism of P transposition (Engels et al., 1990). Involvement of the mei-41 and mus302 genes in the repair of P element-induced double-strand breaks and postreplication repair points to a commonality in the mechanisms of these processes.  相似文献   

7.
Nohmi T  Kim SR  Yamada M 《Mutation research》2005,591(1-2):60-73
Chromosome DNA is continuously exposed to various endogenous and exogenous mutagens. Among them, oxidation is one of the most common threats to genetic stability, and multiple DNA repair enzymes protect chromosome DNA from the oxidative damage. In Escherichia coli, three repair enzymes synergistically reduce the mutagenicity of oxidized base 8-hydroxy-guanine (8-OH-G). MutM DNA glycosylase excises 8-OH-G from 8-OH-G:C pairs in DNA and MutY DNA glycosylase removes adenine incorporated opposite template 8-OH-G during DNA replication. MutT hydrolyzes 8-OH-dGTP to 8-OH-dGMP in dNTP pool, thereby reducing the chance of misincorporation of 8-OH-dGTP by DNA polymerases. Simultaneous inactivation of MutM and MutY dramatically increases the frequency of spontaneous G:C to T:A mutations, and the deficiency of MutT leads to the enhancement of T:A to G:C transversions more than 1000-fold over the control level. In humans, the functional homologues of MutM, MutY and MutT, i.e., OGG1, MUTYH (MYH) and MTH1, contribute to the protection of genomic DNA from oxidative stress. Interestingly, several polymorphic forms of these proteins exist in human populations, and some of them are suggested to be associated with cancer susceptibility. Here, we review the polymorphic forms of OGG1, MUTYH and MTH1 involved in repair of 8-OH-G and 8-OH-dGTP, and discuss the significance of the polymorphisms in the maintenance of genomic integrity. We also summarize the polymorphic forms of human DNA polymerase eta, which may be involved in damage tolerance and mutagenesis induced by oxidative stress.  相似文献   

8.
The plasma protein C4 and its androgen-dependent homologue Slp are encoded by genes located in the mouse major histocompatibility complex, H-2. The C4 and Slp protein levels and liver mRNA levels are influenced by non-H-2-linked regulatory genes. The allele-specific regulation of C4 expression and the androgen regulation of Slp expression are manifest only in some of the tissues where these genes are expressed. Therefore, we studied tissues in which the effects of the non-H-2 regulatory genes are apparent. We show that these genes only affect the Slp expression in tissues where it is androgen-dependent. This indicates that the non-H-2 regulatory genes most likely act through interaction with the androgen regulation of Slp expression. We also show that liver cells of mice with the Slp o allele, which do not produce Slp protein, do express Slp mRNA; this expression is also androgen-induced and regulated by non-H-2 genes. Thus, both the Slp a and Slp o alleles appear to be regulated in the same way.  相似文献   

9.
On the basis of differences in crossing-over frequency and in radiation sensitivity, two stocks of Phryne cincta can be distinguished. The higher sensitivity of the Alpine stock (as), compared with the Berlin stock (bs), seemed to be due to its higher site number in tightly spiralized pronucleus chromosomes (Israelewski, 1979). A mathematical model was tested to arrive at an estimate of the maximal site number in Phryne. Deducing from this model, repair in a 2-break site would result with the probability of 1/6 in restitution, 1/6 in balanced chromosome aberration and 4/6 in unbalanced chromosome aberration. The maximal site number available is 13 in bs and 20 in as. It is suggested that a high proportion of 2-break sites are repaired after replication of the paternal pronucleus chromosomes. The proportion of prae- and postreplication repair is estimated to be 50% each, possibly in agreement with the distribution of nucleosomal and internucleosomal DNA in eukaryotic chromatin.  相似文献   

10.
Brown M  Zhu Y  Hemmingsen SM  Xiao W 《DNA Repair》2002,1(11):869-880
DNA postreplication repair (PRR) is a cellular process by which cells survive replication-blocking lesions without removing the lesion. In the budding yeast Saccharomyces cerevisiae, MMS2 plays a key role in the error-free PRR pathway: the mms2 null mutant displays an increased spontaneous mutation rate and sensitivity to a variety of DNA damaging agents. In contrast, its human homologs appear to play a different role. In order to address whether the MMS2-mediated PRR pathway is conserved in eukaryotes, we isolated a Schizosaccharomyces pombe cDNA homologous to MMS2, which we named spm2(+). Using spm2(+) as a bait in a yeast two-hybrid screen, we identified a fission yeast cDNA homologous to UBC13 from various species and named it spu13(+). Two-hybrid analysis confirmed physical interaction between Spm2 and Spu13, and between Spm2 and budding yeast Ubc13. Genetic analysis shows that both spm2(+) and spu13(+) are able to functionally complement the corresponding budding yeast mutants. Furthermore, deletion of either spm2(+), spu13(+) or both genes from fission yeast results in an increased sensitivity to DNA damaging agents, suggesting that spm2(+) and spu13(+) indeed function in PRR. The fact that the spm2(-) spu13(-) double mutant showed sensitivity similar to that of the single mutant indicates that these two gene products act at the same step. Hence, our data strongly support the hypothesis that the PRR function mediated by UBC13-MMS2 is conserved throughout eukaryotes.  相似文献   

11.
Staphylococci are a major cause of infections associated with indwelling medical devices. Biofilm formation on these devices adds to the antibiotic resistance seen among clinical isolates. RNAIII-inhibiting peptide (RIP) is a heptapeptide that inhibits staphylococcal pathogenesis, including biofilm formation, by obstructing quorum sensing mechanisms. Bismuth ethanedithiol (BisEDT) also prevents biofilm formation at subinhibitory concentrations. RIP and BisEDT were combined to prevent infections in a rat graft model, using antibiotic sensitive and resistant strains of Staphylococcus aureus and Staphylococcus epidermidis. BisEDT, RIP, or rifampin, or their combinations reduced the graft associated bacterial load over seven days. BisEDT–RIP was the best combination, reducing bacterial load to undetectable levels. BisEDT–RIP may prove useful for coating medical devices to prevent staphylococcal infections.  相似文献   

12.
Ashley C  Pastushok L  McKenna S  Ellison MJ  Xiao W 《Gene》2002,285(1-2):183-191
The E2 enzyme, Ubc13, and the E2 enzyme variants, Uevs, form stable, high affinity complexes for the assembly of Lys63-linked ubiquitin chains. This process is involved in error-free DNA postreplication repair, the activation of kinases in the NF-kappaB signaling pathway and possibly other cellular processes. To further investigate the roles played by Ubc13 in a whole animal model, we report here the molecular cloning of mouse UBC13 and show for the first time that a mammalian UBC13 gene is able to complement the yeast ubc13 null mutant. Furthermore, in vitro analyses and a yeast two-hybrid assay show that mUbc13 is able to form stable complexes with various Uevs. In the presence of E1 and ATP, mUbc13 forms thiolesters with ubiquitin; however, the formation of Lys63-linked di-ubiquitin and multi-ubiquitin chains is dependent on Uevs. These results suggest that the roles of UBC13 are conserved throughout eukaryotes and that the mouse is an appropriate model for the study of Ubc13-mediated Lys63-linked ubiquitin signaling pathways in humans.  相似文献   

13.
14.
Summary Mutants carrying recF143 or recF144 show wild type levels of host cell reactivation of UV-irradiated vir and wild type rates of excision gap closure in repairing UV damage to their own DNA. The same mutants showed reduced rates of postreplication repair strand joining. When uvrA - recF- or uvrB - recF- strains are tested, postreplication repair strand joining is incomplete or does not occur at fluences above 1 J/m2. We suggest that there may be a UvrAB and a RecF pathway of postreplication repair or that the repair functions controlled or determined by uvrA uvrB and by recF may be similar. An intermediate in postreplication repair may accumulate in the uvr - recF- strain.  相似文献   

15.
The Saccharomyces cerevisiae DNA2 gene encodes a DNA-stimulated ATPase and DNA helicase/nuclease essential for DNA replication. In characterizing dna2 mutants, we have found that Dna2p also participates in DNA repair or in damage avoidance mechanisms. dna2 mutants are sensitive to X rays, although they are less sensitive than rad52 mutants. The X-ray sensitivity of dna2 mutants is suppressed by overexpression of a 5' to 3' exonuclease, the yeast FEN-1 structure-specific nuclease, encoded by the RAD27 gene, which also suppresses the growth defect of dna2-ts mutants. SGS1 encodes a helicase with similar properties to Dna2 protein. Although sgs1Delta mutants are resistant to X rays, dna2-2 sgs1Delta double mutants are more sensitive to X rays than the dna2-2 mutant. Temperature sensitive dna2 mutants are only slightly sensitive to UV light, show normal levels of spontaneous and UV induced mutagenesis, and have only a 2.5-fold elevated level of dinucleotide tract instability compared to wildtype. However, dna2Delta strains kept alive by overproduction of RAD27 are highly sensitive to UV light. These phenotypes, in addition to the epistasis analysis reported, allow us to propose that Dna2 is involved in postreplication and DSB repair pathways.  相似文献   

16.
Using strains of Escherichia coli K-12 that are deleted for the polA gene, we have reexamined the role of DNA polymerase I (encoded by polA) in postreplication repair after UV irradiation. The polA deletion (in contrast to the polA1 mutation) made uvrA cells very sensitive to UV radiation; the UV radiation sensitivity of a uvrA delta polA strain was about the same as that of a uvrA recF strain, a strain known to be grossly deficient in postreplication repair. The delta polA mutation interacted synergistically with a recF mutation in UV radiation sensitization, suggesting that the polA gene functions in pathways of postreplication repair that are largely independent of the recF gene. When compared to a uvrA strain, a uvrA delta polA strain was deficient in the repair of DNA daughter strand gaps, but not as deficient as a uvrA recF strain. Introduction of the delta polA mutation into uvrA recF cells made them deficient in the repair of DNA double-strand breaks after UV irradiation. The UV radiation sensitivity of a uvrA polA546(Ts) strain (defective in the 5'----3' exonuclease of DNA polymerase I) determined at the restrictive temperature was very close to that of a uvrA delta polA strain. These results suggest a major role for the 5'----3' exonuclease activity of DNA polymerase I in postreplication repair, in the repair of both DNA daughter strand gaps and double-strand breaks.  相似文献   

17.
18.
19.
The molecular mechanisms for the recF-dependent and recB-dependent pathways of postreplication repair were studied by sedimentation analysis of DNA from UV-irradiated Escherichia coli cells. When the ability to repair DNA daughter strand gaps was compared, uvrB recF cells showed a gross deficiency, whereas uvrB recB cells showed only a small deficiency. Nevertheless, the uvrB recF cells were able to perform some limited repair of daughter strand gaps compared with a "repairless" uvrB recA strain. The introduction of a recB mutation into the uvrB recF strain greatly increased its UV radiation sensitivity, yet decreased only slightly its ability to repair daughter strand gaps. Kinetic studies of DNA repair with alkaline and neutral sucrose gradients indicated that the accumulation of unrepaired daughter strand gaps led to the formation of low-molecular-weight DNA duplexes (i.e., DNA double-strand breaks were formed). The uvrB recF cells were able to regenerate high-molecular-weight DNA from these low-molecular-weight DNA duplexes, whereas the uvrB recF recB and uvrB recA cells were not. A model for the recB-dependent pathway of postreplication repair is presented.  相似文献   

20.
Vascular endothelial growth factor (VEGF) is an essential regulator of vascularization. It is expressed as several splice variants; the major forms contain 120 amino acids, 164 amino acids, and 188 amino acids. We utilized transformed cells nullizygous for VEGF to specifically express each of these isoforms in isolation, in order to determine the role of each in tumorigenic neo-vascularization. We found that only the intermediate isoform, VEGF164, could fully rescue tumor growth; VEGF120 partially rescued tumor growth, and VEGF188 failed completely to rescue tumor expansion. Surprisingly, the vascular density of VEGF188 isoform-expressing tumors is significantly greater than that of wild-type VEGF cells and the other isoform-specific tumors. The failure of the hypervascular VEGF188-expressing tumors to grow may be due to inadequate perfusion of the massive number of microvessels in these tumors; three-dimensional imaging of the tumorigenic vasculature indicated little or no recruitment of the peripheral vasculature. This demonstrates that the VEGF isoforms perform unique functions which together enable tumorigenic vascularization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号