首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
pharaonis phoborhodopsin (ppR; also called pharaonis sensory rhodopsin II, psR-II) is a photoreceptor for negative phototaxis in Natronobacterium pharaonis. During the photocycle of ppR, the Schiff base of the retinal chromophore is deprotonated upon formation of the M intermediate (ppR(M)). The present FTIR spectroscopy of ppR(M) revealed that the Schiff base proton is transferred to Asp-75, which corresponds to Asp-85 in a light-driven proton-pump bacteriorhodopsin (BR). In addition, the C==O stretching vibrations of Asn-105 were assigned for ppR and ppR(M). The common hydrogen-bonding alterations in Asn-105 of ppR and Asp-115 of BR were found in the process from photoisomerization (K intermediate) to the primary proton transfer (M intermediate). These results implicate similar protein structural changes between ppR and BR. However, BR(M) decays to BR(N) accompanying a proton transfer from Asp-96 to the Schiff base and largely changed protein structure. In the D96N mutant protein of BR that lacks a proton donor to the Schiff base, the N-like protein structure was observed with the deprotonated Schiff base (called M(N)) at alkaline pH. In ppR, such an N-like (M(N)-like) structure was not observed at alkaline pH, suggesting that the protein structure of the M state activates its transducer protein.  相似文献   

2.
Sensory rhodopsin II (SRII), a repellent phototaxis receptor found in Halobacterium salinarum, has several homologous residues which have been found to be important for the proper functioning of bacteriorhodopsin (BR), a light-driven proton pump. These include Asp73, which in the case of bacteriorhodopsin (Asp85) functions as the Schiff base counterion and proton acceptor. We analyzed the photocycles of both wild-type SRII and the mutant D73E, both reconstituted in Halobacterium salinarum lipids, using FTIR difference spectroscopy under conditions that favor accumulation of the O-like, photocycle intermediate, SII540. At both room temperature and -20 degrees C, the difference spectrum of SRII is similar to the BR-->O640 difference spectrum of BR, especially in the configurationally sensitive retinal fingerprint region. This indicates that SII540 has an all-trans chromophore similar to the O640 intermediate in BR. A positive band at 1761 cm-1 downshifts 40 cm-1 in the mutant D73E, confirming that Asp73 undergoes a protonation reaction and functions in analogy to Asp85 in BR as a Schiff base proton acceptor. Several other bands in the C=O stretching regions are identified which reflect protonation or hydrogen bonding changes of additional Asp and/or Glu residues. Intense bands in the amide I region indicate that a protein conformational change occurs in the late SRII photocycle which may be similar to the conformational changes that occur in the late BR photocycle. However, unlike BR, this conformational change does not reverse during formation of the O-like intermediate, and the peptide groups giving rise to these bands are partially accessible for hydrogen/deuterium exchange. Implications of these findings for the mechanism of SRII signal transduction are discussed.  相似文献   

3.
The nop-1 gene from Neurospora crassa is predicted to encode a seven-helix protein exhibiting conservation with the rhodopsins of the archaeon Halobacterium salinarum. In the work presented here we have expressed this gene heterologously in the yeast Pichia pastoris, obtaining a relatively high yield of 2.2 mg of NOP-1 protein/L of cell culture. The expressed protein is membrane-associated and forms with all-trans retinal a visible light-absorbing pigment with a 534 nm absorption maximum and approximately 100 nm half-bandwidth typical of retinylidene protein absorption spectra. Its lambda(max) indicates a protonated Schiff base linkage of the retinal. Laser flash kinetic spectroscopy demonstrates that the retinal-reconstituted pigment undergoes a photochemical reaction cycle with a near-UV-absorbing intermediate that is similar to the M intermediates produced by transient Schiff base deprotonation of the chromophore in the photocycles of bacteriorhodopsin and sensory rhodopsins I and II. The slow photocycle (seconds) and long-lived intermediates (M and O) are most similar to those of the phototaxis receptor sensory rhodopsin II. The results demonstrate a photochemically reactive member of the archaeal rhodopsin family in a eukaryotic cell.  相似文献   

4.
Sensory rhodopsin II (NpSRII) from Natronobacterium pharaonis was studied by resonance Raman (RR) spectroscopic techniques. Using gated 413-nm excitation, time-resolved RR measurements of the solubilized photoreceptor were carried out to probe the photocycle intermediates that are formed in the submillisecond time range. For the first time, two M-like intermediates were identified on the basis of their C=C stretching bands at 1568 and 1583 cm(-1), corresponding to the early M(L)(400) state with a lifetime of 30 micro s and the subsequent M(1)(400) state with a lifetime of 2 ms, respectively. The unusually high C=C stretching frequency of M(1)(400) has been attributed to an unprotonated retinal Schiff base in a largely hydrophobic environment, implying that the M(L)(400) --> M(1)(400) transition is associated with protein structural changes in the vicinity of the chromophore binding pocket. Time-resolved surface enhanced resonance Raman experiments of NpSRII electrostatically bound onto a rotating Ag electrode reveal that the photoreceptor runs through the photocycle also in the immobilized state. Surface enhanced resonance Raman spectra are very similar to the RR spectra of the solubilized protein, ruling out adsorption-induced structural changes in the retinal binding pocket. The photocycle kinetics, however, is sensitively affected by the electrode potential such that at 0.0 V (versus Ag/AgCl) the decay times of M(L)(400) and M(1)(400) are drastically slowed down. Upon decreasing the potential to -0.4 V, that corresponds to a decrease of the interfacial potential drop and thus of the electric field strength at the protein binding site, the photocycle kinetics becomes similar to that of NpSRII in solution. The electric-field dependence of the protein structural changes associated with the M-state transitions, which in the present spectroscopic work is revealed on a molecular level, appears to be related to the electric-field control of bacteriorhodopsin's photocycle, which has been shown to be of functional relevance.  相似文献   

5.
The photocycle of the photophobic receptor sensory rhodopsin II from N. pharaonis was analyzed by varying measuring wavelengths, temperature, and pH, and by exchanging H2O with D2O. The data can be satisfactorily modeled by eight exponents over the whole range of modified parameters. The kinetic data support a model similar to that of bacteriorhodopsin (BR) if a scheme of irreversible first-order reactions is assumed. Eight kinetically distinct protein states can then be identified. These states are formed from five spectrally distinct species. The chromophore states Si correspond in their spectral properties to those of the BR photocycle, namely pSRII510 (K), pSRII495 (L), pSRII400 (M), pSRII485 (N), and pSRII535 (O). In comparison to BR, pSRII400 is formed approximately 10 times faster than the M state; however, the back-reaction is almost 100 times slower. Comparison of the temperature dependence of the rate constants with those from the BR photocycle suggests that the differences are caused by changes of DeltaS. The rate constants of the pSRII photocycle are almost insensitive to the pH variation from 9.0 to 5.5, and show only a small H2O/D2O effect. This analysis supports the idea that the conformational dynamics of pSRII controls the kinetics of the photocycle of pSRII.  相似文献   

6.
G Váró  J K Lanyi 《Biochemistry》1990,29(9):2241-2250
The photocycle of bacteriorhodopsin (BR) was studied at alkaline pH with a gated multichannel analyzer, in order to understand the origins of kinetic complexities in the rise and decay of the M intermediate. The results indicate that the biphasic rise and decay kinetics are unrelated to a photoreaction of the N intermediate of the BR photocycle, proposed earlier by others [Kouyama et al. (1988) Biochemistry 27, 5855-5863]. Rather, under conditions where N did not accumulate in appreciable amounts (high pH, low salt concentration), they were accounted for by conventional kinetic schemes. These contained reversible interconversions, either M in equilibrium with N in one of two parallel photocycles or L in equilibrium with as well as M in equilibrium with N in a single photocycle. Monomeric BR also showed these kinetic complications. Conditions were then created where N accumulated in a photo steady state (high pH, high salt concentration, background illumination). The apparent increase in the proportion of the slow M decay component by the background illumination could be quantitatively accounted for with the single photocycle model, by the mixing of the relaxation of the background light induced photo steady state with the inherent kinetics of the photocycle. Postulating a new M intermediate which is produced by the photoreaction of N was neither necessary nor warranted by the data. The difference spectra suggested instead that absorption of light by N generates only one intermediate, observable between 100 ns and 1 ms, which absorbs near 610 nm. Thus, the photoreaction of N resembles in some respects that of BR containing 13-cis-retinal.  相似文献   

7.
Bacteriorhodopsin (BR) with the single-site substitutions Arg-82----Gln (R82Q), Asp-85----Asn (D85N), and Asp-96----Asn (D96N) is studied with time-resolved absorption spectroscopy in the time regime from nanoseconds to seconds. Time-resolved spectra are analyzed globally by using multiexponential fitting of the data at multiple wavelengths and times. The photocycle kinetics for BR purified from each mutant are determined for micellar solutions in two detergents, nonyl glucoside and CHAPSO, and are compared to results from studies on delipidated BR (d-BR) in the same detergents. D85N has a red-shifted ground-state absorption spectrum, and the formation of an M intermediate is not observed. R82Q undergoes a pH-dependent transition between a purple and a blue form with different pKa values in the two detergents. The blue form has a photocycle resembling that for D85N, while the purple form of R82Q forms an M intermediate that decays more rapidly than in d-BR. The purple form of R82Q does not light-adapt to the same extent as d-BR, and the spectral changes in the photocycle suggest that the light-adapted purple form of R82Q contains all-trans- and 13-cis-retinal in approximately equal proportions. These results are consistent with the suggestions of others for the roles of Arg-82 and Asp-85 in the photocycle of BR, but results for D96N suggest a more complex role for Asp-96 than previously suggested. In nonyl glucoside, the apparent decay of the M-intermediate is slower in D96N than in d-BR, and the M decay shows biphasic kinetics. However, the role of Asp-96 is not limited to the later steps of the photocycle. In D96N, the decay of the KL intermediate is accelerated, and the rise of the M intermediate has an additional slow phase not observed in the kinetics of d-BR. The results suggest that Asp-96 may play a role in regulating the structure of BR and how it changes during the photocycle.  相似文献   

8.
Proton transfers in the photochemical reaction cycle of proteorhodopsin   总被引:2,自引:0,他引:2  
The spectral and photochemical properties of proteorhodopsin (PR) were determined to compare its proton transport steps to those of bacteriorhodopsin (BR). Static and time-resolved measurements on wild-type PR and several mutants were done in the visible and infrared (FTIR and FT-Raman). Assignment of the observed C=O stretch bands indicated that Asp-97 and Glu-108 serve as the proton acceptor and donor, respectively, to the retinal Schiff base, as do the residues at corresponding positions in BR, but there are numerous spectral and kinetic differences between the two proteins. There is no detectable dark-adaptation in PR, and the chromophore contains nearly entirely all-trans retinal. Because the pK(a) of Asp-97 is relatively high (7.1), the proton-transporting photocycle is produced only at alkaline pH. It contains at least seven transient states with decay times in the range from 10 micros to 200 ms, but the analysis reveals only three distinct spectral forms. The first is a red-shifted K-like state. Proton release does not occur during the very slow (several milliseconds) rise of the second, M-like, intermediate, consistent with lack of the residues facilitating extracellular proton release in BR. Proton uptake from the bulk, presumably on the cytoplasmic side, takes place prior to release (tau approximately 2 ms), and coincident with reprotonation of the retinal Schiff base. The intermediate produced by this process contains 13-cis retinal as does the N state of BR, but its absorption maximum is red-shifted relative to PR (like the O state of BR). The decay of this N-like state is coupled to reisomerization of the retinal to all-trans, and produces a state that is O-like in its C-C stretch bands, but has an absorption maximum apparently close to that of unphotolyzed PR.  相似文献   

9.
The dynamics of protein conformational change of Natronobacterium pharaonis sensory rhodopsin II (NpSRII) and of NpSRII fused to cognate transducer (NpHtrII) truncated at 159 amino acid sequence from the N-terminus (NpSRII-DeltaNpHtrII) are investigated in solution phase at room temperature by the laser flash photolysis and the transient grating methods in real time. The diffusion coefficients of both species indicate that the NpSRII-DeltaNpHtrII exists in the dimeric form in 0.6% dodecyl-beta-maltopyranoside (DM) solution. Rate constants of the reaction processes in the photocycles determined by the transient absorption and grating methods agree quite well. Significant differences were found in the volume change and the molecular energy between NpSRII and NpSRII-DeltaNpHtrII samples. The enthalpy of the second intermediate (L) of NpSRII-DeltaNpHtrII is more stabilized compared with that of NpSRII. This stabilization indicates the influence of the transducer to the NpSRII structure in the early intermediate species by the complex formation. Relatively large molecular volume expansion and contraction were observed in the last two steps for NpSRII. Additional volume expansion and contraction were induced by the presence of DeltaNpHtrII. This volume change, which should reflect the conformational change induced by the transducer protein, suggested that this is the signal transduction process of the NpSRII-DeltaNpHtrII.  相似文献   

10.
The sensory rhodopsin II from Natronobacterium pharaonis (NpSRII) was mutated to try to create functional properties characteristic of bacteriorhodopsin (BR), the proton pump from Halobacterium salinarum. Key residues from the cytoplasmic and extracellular proton transfer channel of BR as well as from the retinal binding site were chosen. The single site mutants L40T, F86D, P183E, and T204A did not display altered function as determined by the kinetics of their photocycles. However, the photocycle of each of the subsequent multisite mutations L40T/F86D, L40T/F86D/P183E, and L40T/F86D/P183E/T204A was quite different from that of the wild-type protein. The reprotonation of the Schiff base could be accelerated approximately 300- to 400-fold, to approximately two to three times faster than the corresponding reaction in BR. The greatest effect is observed for the quadruple mutant in which Thr-204 is replaced by Ala. This result indicates that mutations affecting conformational changes of the protein might be of decisive importance for the creation of BR-like functional properties.  相似文献   

11.
Kandori H  Shimono K  Shichida Y  Kamo N 《Biochemistry》2002,41(14):4554-4559
pharaonis phoborhodopsin (ppR; also called pharaonis sensory rhodopsin II, psR-II) is a photoreceptor for negative phototaxis in Natronobacterium pharaonis. ppR has a blue-shifted absorption spectrum with a spectral shoulder, which is highly unique for the archaeal rhodopsin family. The primary reaction of ppR is a cis-trans photoisomerization of the retinal chromophore to form the K intermediate, like the well-studied proton pump bacteriorhodopsin (BR). Recent comparative FTIR spectroscopy of the K states in ppR and BR revealed that more extended structural changes take place in ppR than in BR with respect to chromophore distortion and protein structural changes [Kandori, H., Shimono, K., Sudo, Y., Iwamoto, M., Shichida, Y., and Kamo, N. (2001) Biochemistry 40, 9238-9246]. FTIR spectroscopy of the N105D mutant protein reported here assigns the vibrational bands at 1704 and 1700 cm(-1) as C=O stretches of Asn105 in ppR and ppR(K), respectively. A comparative investigation between ppR and BR further reveals that the structure at position 105 in ppR is similar to that of the corresponding position (Asp115) in BR; this observation is supported by the recent X-ray crystallographic structures of ppR [Luecke, H., Schobert, B., Lanyi, J. K., Spudich, E. N., and Spudich, J. L. (2001) Science 293, 1499-1503; Royant, A., Nollert, P., Edman, K., Neutze, R., Landau, E. M., Pebay-Peyroulla, E., and Navarro, J. (2001) Proc. Natl. Acad. Sci. U.S.A. 98, 10131-10136]. Nevertheless, structural changes upon photoisomerization at position 105 in ppR are greater than those at position 115 in BR. As a consequence of a unique chromophore-protein interaction in ppR, extended protein structural changes accompanying retinal photoisomerization occur, and these include Asn105 which is approximately 7 A from the retinal chromophore.  相似文献   

12.
In a light-driven proton-pump protein, bacteriorhodopsin (BR), protonated Schiff base of the retinal chromophore and Asp85 form ion-pair state, which is stabilized by a bridged water molecule. After light absorption, all-trans to 13-cis photoisomerization takes place, followed by the primary proton transfer from the Schiff base to Asp85 that triggers sequential proton transfer reactions for the pump. Fourier transform infrared (FTIR) spectroscopy first observed O-H stretching vibrations of water during the photocycle of BR, and accurate spectral acquisition has extended the water stretching frequencies into the entire stretching frequency region in D(2)O. This enabled to capture the water molecules hydrating with negative charges, and we have identified the water O-D stretch at 2171 cm(-1) as the bridged water interacting with Asp85. We found that retinal isomerization weakens the hydrogen bond in the K intermediate, but not in the later intermediates such as L, M, and N. On the basis of the observation particularly on the M intermediate, we proposed a model for the mechanism of proton transfer from the Schiff base to Asp85. In the "hydration switch model", hydration of a water molecule is switched in the M intermediate from Asp85 to Asp212. This will have raised the pK(a) of the proton acceptor, and the proton transfer is from the Schiff base to Asp85.  相似文献   

13.
Unlike wild-type bacteriorhodopsin (BR), the BR triple mutant D96G/F171C/F219L has been shown to undergo only minor structural rearrangements during its photocycle. Nonetheless, the mutant is capable of transporting protons at a rate of 125(+/-40) H+/BR per minute under light-saturating conditions. Light adaptation of the triple mutant's retinal proceeds in a pH-dependent manner up to a maximum of 63% all-trans. These two findings imply that the transport activity of the triple mutant comprises 66% of the wild-type activity. Time-resolved spectroscopy reveals that the identity and sequence of intermediates in the photocycle of the triple mutant in the all-trans configuration correspond to that of wild-type BR. The only differences relate to a slower rise and decay of the M and O intermediates, and a significant spectral contribution from a 13-cis component. No indication for accumulation of the N intermediate is found under a variety of conditions that normally favor the formation of this species in wild-type BR. The Fourier transform infrared (FTIR) spectrum of the M intermediate in the triple mutant resembles that of wild type. Minor changes in the amide I region during the photocycle suggest that only small movements of the protein backbone occur. Electron microscopy reveals large differences in conformation between the unilluminated state of the mutant protein and wild-type but no light-induced changes in time-resolved measurements. Evidently, proton transport by the triple mutant does not require the major conformational rearrangements that occur on the same time-scale with wild-type. Thus, we conclude that large conformational changes observed in the photocycle of the wild-type and many BR mutants are not a prerequisite for the change in accessibility of the Schiff base nitrogen atom that must occur during vectorial catalysis to allow proton transport.  相似文献   

14.
Sensory rhodopsins are the primary receptors of vision in animals and phototaxis in microorganisms. Light triggers the rapid isomerization of a buried retinal chromophore, which the protein both accommodates and amplifies into the larger structural rearrangements required for signaling. We trapped an early intermediate of the photocycle of sensory rhodopsin II from Natronobacterium pharaonis (pSRII) in 3D crystals and determined its X-ray structure to 2.3 A resolution. The observed structural rearrangements were localized near the retinal chromophore, with a key water molecule becoming disordered and the retinal's beta-ionone ring undergoing a prominent movement. Comparison with the early structural rearrangements of bacteriorhodopsin illustrates how modifications in the retinal binding pocket of pSRII allow subtle differences in the early relaxation of photoisomerized retinal.  相似文献   

15.
Time-resolved difference spectra have been obtained for the photocycle of delipidated bacteriorhodopsin monomers (d-BR) in six different detergent micelle environments that were prepared by two new detergent-exchange techniques. A global kinetic analysis of the photocycle spectra for d-BR in each detergent environment was performed. Comparison of these results with those obtained for the photocycle of bacteriorhodopsin in purple membrane (PM) shows that there is one fewer kinetically distinguishable process for monomeric BR between the decay of the K intermediate and the rise of the M intermediate. Assuming a sequential pathway occurs in the photocycle, it appears that the equilibrium between the L and M intermediates is reached much more rapidly in the detergent micelles. This is attributed to a more direct interaction between Asp-85 and the proton on the nitrogen of the Schiff base of retinal for BR in the detergents. Equilibrium concentrations of late photocycle intermediates are also altered in detergents. The later steps of the photocycle, including the decay of the M intermediate, are slowed in detergents with rings in their hydrocarbon region. This is attributed to effects on conformational changes occurring during the decay of M and/or other later photocycle intermediates. The lifetime of dark adaptation of light-adapted d-BR in different detergent environments increases in environments where the lifetime of the M intermediate increases. These results suggest that the high percentage of either unsaturated or methyl-branched lipids in PM and the membranes of other retinal proteins may be important for their effective functioning.  相似文献   

16.
We used a gated optical multichannel analyzer to measure transient flash-induced absorption changes in bacteriorhodopsin (BR) and halorhodopsin (HR) and developed criteria for calculating the absorption spectra of the photocycle intermediates and the kinetics of their rise and decay. The results for BR agree with data reported by a large number of other authors. The results for HR in the presence of chloride are consistent with earlier data and reveal an additional intermediate, not previously seen, in the submicrosecond time scale. Although an M412-like intermediate is not in the HR photocycle, a one-by-one comparison of the rest of the intermediates observed for BR and HR indicates a striking similarity between the photocycles of the two bacterial rhodopsins. This was previously not apparent, perhaps because the experimental approaches to the spectroscopy of the two pigments were different and the data were thus more fragmented.  相似文献   

17.
The photocycle of salinarum halorhodopsin was investigated in the presence of azide. The azide binds to the halorhodopsin with 150 mM binding constant in the absence of chloride and with 250 mM binding constant in the presence of 1 M chloride. We demonstrate that the azide-binding site is different from that of chloride, and the influence of chloride on the binding constant is indirect. The analysis of the absorption kinetic signals indicates the existence of two parallel photocycles. One belongs to the 13-cis retinal containing protein and contains a single red shifted intermediate. The other photocycle, of the all-trans retinal containing halorhodopsin, resembles the cycle of bacteriorhodopsin and contains a long-living M intermediate. With time-resolved spectroscopy, the spectra of intermediates were determined. Intermediates L, N, and O were not detected. The multiexponential rise and decay of the M intermediate could be explained by the introduction of the "spectrally silent" intermediates M1, M2, and HR', HR, respectively. The electric signal measurements revealed the existence of a component equivalent with a proton motion toward the extracellular side of the membrane, which appears during the M1 to M2 transition. The differences between the azide-dependent photocycle of salinarum halorhodopsin and pharaonis halorhodopsin are discussed.  相似文献   

18.
The actinic light effect on the bacteriorhodopsin (BR) photocycle kinetics led to the assumption of a cooperative interaction between the photocycling BR molecules. In this paper we report the results of the actinic light effect and pH on the proton release and uptake kinetics. An electrical method is applied to detect proton release and uptake during the photocycle [E. Papp, G. Fricsovszky, J. Photochem. Photobiol. B: Biol. 5 (1990) 321]. The BR photocycle kinetics was also studied by absorption kinetics measurements at 410 nm and the data were analyzed by the local analysis of the M state kinetics [E. Papp, V.H. Ha, Biophys. Chem. 57 (1996) 155]. While at high pH and ionic strength, we found a similar behavior as reported earlier, at low ionic strength the light effect proved to be more complex. The main conclusions are the following: Though the number of BR excited to the photocycle (fraction cycling, fc) goes to saturation with increasing laser pulse energy, the absorbed energy by BR increases linearly with pulse energy. From the local analysis we conclude that the light effect changes the kinetics much earlier, already at the L intermediate state decay. The transient electric signal, caused by proton release and uptake, can be decomposed into two components similarly to the absorption kinetic data of the M intermediate state. The actinic light energy affects mainly the ratio of the two components and the proton movements inside BR while pH has an effect on the kinetics of the proton release and uptake groups at the membrane surface.  相似文献   

19.
Organisms sense and respond to environmental stimuli through membrane-embedded receptors and transducers. Sensory rhodopsin I (SRI) and sensory rhodopsin II (SRII) are the photoreceptors for the positive and negative phototaxis in microorganisms, respectively. They form signaling complexes in the membrane with their cognate transducer proteins, HtrI and HtrII, and these SRI-HtrI and SRII-HtrII complexes transmit a light signal through their cytoplasmic sensory signaling system, inducing opposite effects (i.e., the inactivation or activation of the kinase CheA). Here we found, by using Fourier transformed infrared spectroscopy, that a conserved residue, Asp102 in Salinibacter SRI (SrSRI), which is located close to the β-ionone ring of the retinal chromophore, is deprotonated upon formation of the active M-intermediate. Furthermore, the D102E mutant of SrSRI affects the structure and/or structural changes of Cys130. This mutant shows a large spectral shift and is comparably unstable, especially in the absence of Cl(-). These phenomena have not been observed in the wild-type, or the N105Q and N105D mutants of Natronomonas pharaonis SRII (NpSRII), indicating differences in the structure and structural changes between SrSRI and NpSRII around the β-ionone ring. These differences could also be supported by the measurements of the reactivity with the water-soluble reagent azide. On the basis of these results, we discuss the structure and structural changes around the retinal chromophore in SrSRI.  相似文献   

20.
两种状态细菌视紫红质光循环中间产物与pH的关系   总被引:5,自引:4,他引:1  
本文主要用微机控制的毫秒级闪光动力学光谱仪研究含三体细菌视紫红质(Bacteriorhodopsin,简称BR)的紫膜碎片和含单体BR的DMPC(dimyristoyl-Phosphatidyl-choline)脂质囊泡在不同pH条件下光循环中间产物M_(412)和O_(640)的变化,研究结果表明:BR单体与其三体状态相比,BR单体的光循环中间产物M_(412)的产量受介质pH变化的影响较大,其慢衰减成份的衰减比三体BR慢3—10倍.说明单体BR的结构状态较易受PH影响,单体BR光循环中间产物O_(640)随pH变化的趋势与三体BR的有很大区别,可能是由于不同状态的BR受pH的影响,但其具有不同的构型,导致光循环途径的变化.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号