首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When rats were placed on a low-protein (5%) diet for 24 h or less, liver mitochondrial acetylglutamate decreased rapidly, carbamyl phosphate synthetase (ammonia) and ornithine transcarbamylase decreased little, and carbamyl phosphate synthesis (measured as citrulline) by isolated mitochondria occurred at very low rates. The matrix acetylglutamate content of these mitochondria, whether coupled or uncoupled, was increased similarly by preincubating them with added acetylglutamate, but citrulline synthesis increased from less than 1 to 2.3 nmol min-1 mg-1 in the coupled state, and from less than 1 to 35 nmol min-1 mg-1 in the uncoupled state. However, when coupled mitochondria were incubated with the substrates required for the synthesis of acetylglutamate in the matrix, citrulline synthesis increased to 48 nmol min-1 mg-1; this rate was similar to that of mitochondria from control rats (fed a normal diet). When mitochondria from controls were incubated with up to 5mM acetylglutamate, citrulline synthesis by coupled mitochondria was increased by 10 to 40%, while synthesis by uncoupled mitochondria was 1.5 to 4 times higher than that observed with the coupled mitochondria; matrix acetylglutamate in both conditions rose to levels similar to those in the medium. The reason for the different behavior of carbamyl phosphate synthetase (ammonia) in coupled and uncoupled mitochondria was not apparent; neither oxidative phosphorylation nor ornithine transport were limiting in the coupled system. These observations are an example of the restrictions imposed upon enzymatic systems by the conditions existing in the mitochondrial matrix, and of the different behavior of carbamyl phosphate synthetase in situ and in solution. In addition, they show that conclusions about the characteristics of the enzyme in coupled mitochondria based on observations made in uncoupled mitochondria are not necessarily justified.  相似文献   

2.
N-Acetyl-L-glutamate synthetase (EC 2.3.1.1) catalyses the synthesis of N-acetyl-L-glutamate, an allosteric activator of carbamoyl-phosphate synthetase I in the liver of ureotelic animals, and the first enzyme is activated specifically by arginine. We have proposed that arginine can stimulate acetylglutamine synthetase in vivo and thereby increase the mitochondrial content of acetylglutamate. The effects of arginine on acetylglutamate synthesis in isolated mitochondria were investigated in detail in the present work. When rat liver mitochondria were isolated and incubated with [14C]glutamate and unlabelled acetate as substrates, acetyl[14C]glutamate synthesis in the mitochondria was more extensive in the presence than in the absence of L-arginine. There was no significant difference between the specific radioactivities of intramitochondrial [14C]glutamate in the presence and absence of arginine. When rat liver mitochondria were incubated with [14C]acetate and unlabelled glutamate as substrates, arginine also stimulated acetyl[14C]glutamate synthesis in the isolated mitochondria. L-Lysine or L-homoarginine, which does not activate acetylglutamate synthetase, had no effect on acetylglutamate synthesis, in the isolated mitochondria. The arginine concentration giving half-maximal synthesis of acetylglutamate in isolated mitochondria was about 50 microM, which is in the range of physiological concentrations of arginine in the liver. As we previously reported [Kawamoto, Ishida, Mori & Tatibana (1982) Eur. J. Biochem. 123, 637-641], the sensitivity of acetylglutamate synthetase to arginine activation undergoes marked changes after food ingestion. The extent of arginine activation of acetylglutamate synthesis in isolated mitochondria correlated well with the sensitivity of acetylglutamate synthetase extracted from the mitochondria to arginine activation. These data lend further support to the idea that arginine itself activates the mitochondrial synthesis of acetylglutamate.  相似文献   

3.
1. The relationship between urea synthesis, intracellular N-acetylglutamate and the capacity of rat-liver mitochondria to synthesize citrulline was investigated. 2. Treatment of rats with glucagon prior to killing results not only in an increased intramitochondrial ATP concentration and an increased capacity of the mitochondria to synthesize citrulline, but also in an increased concentration of intramitochondrial N-acetylglutamate. 3. Comparison of the rate of citrulline synthesis in mitochondria from glucagon-treated and from control rats, incubated under different conditions, shows that the increased N-acetylglutamate concentration after glucagon treatment is at least in part responsible for the observed increased capacity of the mitochondria to synthesize citrulline. 4. Ureogenic flux in isolated hepatocytes under different incubation conditions correlated with the intracellular concentration of N-acetylglutamate and with the capacity of the mitochondria to synthesize citrulline. 5. When isolated hepatocytes were incubated with NH3, ornithine, lactate and oleate, intracellular N-acetylglutamate increased about eightfold in the first 10 min; during this period the rate of urea synthesis increased considerably. 6. It is concluded that the concentration of intramitochondrial N-acetylglutamate plays an important role in the short-term control of flux through the urea cycle under different nutritional and hormonal conditions.  相似文献   

4.
Acute effects of glucagon on citrulline biosynthesis.   总被引:3,自引:3,他引:0       下载免费PDF全文
Mitochondria isolated from livers of rats fed on different diets showed altered capacity to synthesize citrulline. Glucagon, 15 min after injection, increases citrulline biosynthesis, except after the high-protein diet. A significant correlation between citrulline biosynthesis and N-acetylglutamate content with and without glucagon treatment was shown when rats were fed on a standard or a carbohydrate diet. Different diets modified carbamoyl phosphate synthetase I (EC 6.3.4.16) and N-acetylglutamate synthase (acetyl-CoA:L-glutamate N-acetyltransferase, EC 2.3.1.1) activities. Glucagon did not modify these activities.  相似文献   

5.
1. Citrulline synthesis was measured in mitochondria from rats fed on a standard diet, a high-protein diet, or on glucose. 2. With NH(4)Cl as the nitrogen source the rate of citrulline synthesis was higher in mitochondria from rats fed on a high-protein diet than in those from rats fed on a standard diet. When rats were fed solely on glucose the rate of synthesis of citrulline from NH(4)Cl was very low. 3. With glutamate as the nitrogen source the relative rates of citrulline synthesis were much lower than when NH(4)Cl was present, but similar adaptive changes occurred. 4. The activity of the mitochondrial glutamate-transporting system increased two to three times on feeding rats on a high-protein diet, but the K(m) for glutamate was unchanged. 5. Adaptive changes in certain intramitochondrial enzymes were also measured. 6. The results were interpreted to indicate that when an excess of substrate was present, citrulline synthesis from NH(4)Cl was rate-limited by the intramitochondrial concentration of N-acetyl-glutamate, but citrulline synthesis from glutamate was rate-limited primarily by the activity of the glutamate-transporting system.  相似文献   

6.
The rate at which isolated rat liver mitochondria synthesized citrulline with NH4C1 as nitrogen source was markedly dependent on the protein content of the diet. 2. Citrulline synthesis was not rate-limited by substrate concentration, substrate transport or ornithine transcarbamoylase activity under the conditions used. 3. The intramitochondrial content of an activator of carbamoyl phosphate synthase, assumed to be N-acetyl-glutamate, varied markedly with dietary protein content. The variation in the concentration of this activator was sufficient to account for the observed variation in the rates of citrulline synthesis if this synthesis were rate-limited by the activity of carbamoyl phosphate synthase. 4. The rates of urea formation from NH4Cl as nitrogen source in isolated liver cells showed variations in response to diet that closely paralleled the variations in the rates of citrulline synthesis observed in isolated mitochondria. 5. These results are consistent with the postulate that when NH4Cl plus ornithine are present in an excess, the rate of urea synthesis is regulated at the level of carbamoyl phosphate synthase activity.  相似文献   

7.
Rats were fed the following diets: standard (20% protein), high-protein (80%), protein-free, standard plus ammonium and protein-free plus ammonium for six weeks. The standard plus ammonium diet was prepared to contain ammonia equivalent to that supplied by the high-protein diet. Addition of ammonium acetate (20% by mass) to the 20% protein or protein-free diets results in 2.3- and 10-fold increases of urea excretion respectively, without increase of carbamoyl-phosphate synthase. Supplementation of the standard diet with ammonium increases the mitochondrial content of acetylglutamate from 830 to 1590 pmol/mg protein, and of the protein-free diet from 130 to 1040 pmol/mg. However, ingestion of ammonium did not increase the activity of acetylglutamate synthase. Therefore the efflux of acetylglutamate from mitochondria was determined. After 30 min at 37 degrees C liver mitochondria from rats on standard diet released 61% of the initial acetylglutamate while mitochondria from animals on standard plus ammonium diet released only 20%. These results indicate that ingestion of ammonium increases the content of acetylglutamate in rat liver by decreasing its efflux from mitochondria. This effect is similar to that produced in mice by a high protein diet [Morita et al. (1982) J. Biochem. (Tokyo) 91, 563-569]. However, while the high-protein diet increases carbamoylphosphate synthase content, the ammonium diet does not.  相似文献   

8.
Rats were fed diets containing 20, 50 and 80% protein for 14 months. The urea excreted by the rats fed diets containing 50 and 80% protein when compared to rats fed diets containing 20% protein increased ca. 2- and 3-fold, respectively, in ca. 2 days; this increase was maintained essentially unchanged through the experimental period. The serum levels of urea increased 2.5- and 4-fold, respectively, in the first days and were also maintained during the experiment. Glutamate dehydrogenase activity of liver remained unchanged. The five urea cycle enzymes increased with respect to the control values. Orotic acid excretion increased as well as orotidylate decarboxylase and orotate phosphoribosyltransferase, but aspartate transcarbamylase did not. The key amino acids involved in the urea and pyrimidine pathways in liver were also measured; aspartic and glutamic acids and citrulline were increased, and ornithine and arginine did not change with the higher protein intake. In general, no differences were observed between animals fed 50 and 80% protein in their diets. Protein synthesis did not increase with the increase of protein content of the diet. Stereological analysis of ultrathin sections showed that the high protein diet induced a significant increment in the volumetric density, numerical density and size of hepatocyte mitochondria. Moreover, the presence of giant mitochondria, a hundred times larger than normal, was also observed in some periportal hepatocytes of rats fed the 80% protein diet.  相似文献   

9.
The effect of ornithine on carbamoylphosphate formation of rat liver mitochondria treated with Triton X 100 was studied. The rate of carbamoylphosphate accumulation and citrulline formation depended on the ATP-, Pi-, N-acetylglutamate and protein concentration. At optimal conditions the rate of citrulline formation was at least 1.5-fold higher than the rate at which carbamoylphosphate accumulated (ornithine absent). A significant correlation between the amount of carbamoylphosphate formed and the citrulline/carbamoylphosphate ratio (ornithine effect) was found. In mitochondria the presence of a carbamoylphosphate degrading enzyme could be demonstrated. This enzyme may be one factor for the differences in the rate of carbamoylphosphate accumulation and the rate of citrulline synthesis.  相似文献   

10.
After the urea cycle was proposed, considerable efforts were put forth to identify critical intermediates. This was then followed by studies of dietary and nutritional control of urea cycle enzyme activity and allosteric effectors of urea cycle enzymes. Correlation of urea cycle enzyme activity with isolated cell experiments indicated conditions where enzyme activity would be rate limiting. At physiological levels of ammonia the activation of carbamoyl-phosphate synthetase (EC 6.3.4.16) by N-acetylglutamate (NAG) is important. Various levels of NAG corresponded well with changes in the rate of citrulline and urea synthesis. Arginine was found to be an allosteric activator of N-acetylglutamate synthetase (EC 2.3.1.1). Therefore, it was possible that the rate of carbamoyl phosphate synthesis was dependent on the level of urea cycle intermediates, particularly arginine. Evidence for arginine in the regulation of NAG synthesis is not as clear as for NAG on carbamoyl phosphate synthetase I. The concentration of hepatic arginine is not necessarily an indication of the mitochondrial concentration. Only mitochondrial arginine stimulates the N-acetylglutamate synthetase. Recent studies indicate that the mitochondrial concentration of arginine is higher than the cytosolic concentration and is well above the Ka for N-acetylglutamate synthetase. Therefore, it appears that changes in arginine concentration are not physiologically important in regulating levels of NAG. However, it is possible that responses to the effector may vary with time after eating, and it may be this responsiveness that controls the level of NAG and thereby urea synthesis.  相似文献   

11.
We have observed a significantly increased content of fats and decreased content of proteins in the liver of experimental rats fed a diet supplemented with 25% casein proteins in comparison with the application of de-fatted soy flour. Casein proteins have a higher content of methionine in relation to cystine than baked soy flour. But the soy diet in contrast to the casein diet has a high content of free aminoacids which are not present in casein at all: aspartic acid, asparagine, alpha-aminoadipic acid, methionine, norleucine, lysine, phenylalanine, beta-alanine, ethanolamine, histidine, proline, gamma-aminobutyric acid, taurine. Differences in free valine, alanine, arginine, glycine, ornithine and cysteic acid are also significant. The content of free aminoacids in the liver of experimental animals fed a soy diet is high in the content of cystine, cystathionine, ornithine, beta-aminoisobutyric acid, beta-alanine, gamma-aminobutyric acid, leucine. We have also found accumulation of methionine, glycine, alpha-aminobutyric acid, taurine and citrulline in free aminoacids from the liver of animals fed a casein diet. Citrulline and glycine in free aminoacids from the liver of animals fed a soy protein supplement were not recorded. Our investigations have shown that the application of a soy diet enriched with cystine acts protectively on methionine and that methionine is preferentially utilized for protein synthesis. The catabolic pathway of methionine prevails in animals on a casein diet.  相似文献   

12.
The relationship between intra- and extramitochondrial ATP utilization was investigated in liver mitochondria isolated from normally fed, starved and high-protein fed rats. ATP export was provoked by adding a hexokinase-glucose-trap and intramitochondrial ATP consumption by adding ammonia, bicarbonate and ornithine in order to stimulate citrulline synthesis. Both processes compete for ATP produced via oxidative phosphorylation; the rate of citrulline formation declines as the extramitochondrial [ATP]/[ADP] ratio decreases. It is concluded that ATP for adenine nucleotide translocation and that for carbamoyl phosphate synthesis are delivered from a common intramitochondrial pool of adenine nucleotides. In mitochondria from rats with a high-protein diet, citrulline synthesis greatly stimulates the rate of oxidative phosphorylation (about two thirds of state 3 respiration). Under these conditions the intramitochondrial [ATP]/[ADP] ratio is significantly reduced. The intramitochondrial [ATP]/[ADP] ratio is not in thermodynamic equilibrium with the extramitochondrial one.  相似文献   

13.
The main goal of the current study was to elucidate the role of mitochondrial arginine metabolism in the regulation of N-acetylglutamate and urea synthesis. We hypothesized that arginine catabolism via mitochondrially bound arginase augments ureagenesis by supplying ornithine for net synthesis of citrulline, glutamate, N-acetylglutamate, and aspartate. [U-(15)N(4)]arginine was used as precursor and isolated mitochondria or liver perfusion as a model system to monitor arginine catabolism and the incorporation of (15)N into various intermediate metabolites of the urea cycle. The results indicate that approximately 8% of total mitochondrial arginase activity is located in the matrix, and 90% is located in the outer membrane. Experiments with isolated mitochondria showed that approximately 60-70% of external [U-(15)N(4)]arginine catabolism was recovered as (15)N-labeled ornithine, glutamate, N-acetylglutamate, citrulline, and aspartate. The production of (15)N-labeled metabolites was time- and dose-dependent. During liver perfusion, urea containing one (U(m+1)) or two (U(m+2)) (15)N was generated from perfusate [U-(15)N(4)]arginine. The output of U(m+2) was between 3 and 8% of total urea, consistent with the percentage of activity of matrix arginase. U(m+1) was formed following mitochondrial production of [(15)N]glutamate from [alpha,delta-(15)N(2)]ornithine and transamination of [(15)N]glutamate to [(15)N]aspartate. The latter is transported to cytosol and incorporated into argininosuccinate. Approximately 70, 75, 7, and 5% of hepatic ornithine, citrulline, N-acetylglutamate, and aspartate, respectively, were derived from perfusate [U-(15)N(4)]arginine. The results substantiate the hypothesis that intramitochondrial arginase, presumably the arginase-II isozyme, may play an important role in the regulation of hepatic ureagenesis by furnishing ornithine for net synthesis of N-acetylglutamate, citrulline, and aspartate.  相似文献   

14.
Acetylglutamate is known to modulate the activity of carbamyl phosphate synthetase, and thus probably to participate in regulation of the urea cycle. Therefore factors that regulate the activity of acetylglutamate synthase are relevant to control of urea synthesis and of systemic pH. An increase in the concentration of arginine increases both Vmax and S0.5 for glutamate of acetylglutamate synthase from rat liver. An increase in pH causes S0.5 for glutamate to decrease and does not affect Vmax. As a consequence of these effects, a rapid rate of synthesis of acetylglutamate requires a concentration of arginine of about 25 microM or higher and either relatively high glutamate concentrations or relatively high pH.  相似文献   

15.
N-Acetylglutamate synthase, an early enzyme of the arginine pathway, provides acetylglutamate for ornithine synthesis in the so-called "acetylglutamate cycle." Because acetylglutamate is regenerated as ornithine is formed, the enzyme has only a catalytic or anaplerotic role in the pathway, maintaining "bound" acetyl groups during growth. We have detected this enzyme in crude extracts of Neurospora crassa and have localized it to the mitochondria along with other ornithine biosynthetic enzymes. The enzyme is bound to the mitochondrial membrane. The enzyme has a pH optimum of 9.0 and Km values for glutamate and CoASAc of 6.3 and 1.6 mM, respectively. It is feedback-inhibited by L-arginine (I0.5 = 0.16 mM), and its specific activity is augmented 2-3-fold by arginine starvation of the mycelium. Mutants of the newly recognized arg-14 locus lack activity for the enzyme. Because these mutants are complete auxotrophs, we conclude that N-acetylglutamate synthase is an indispensible enzyme of arginine biosynthesis in N. crassa. This work completes the assignment of enzymes of the arginine pathway of N. crassa to corresponding genetic loci. The membrane localization of the enzyme suggests a novel mechanism by which feedback inhibition might occur across a semipermeable membrane.  相似文献   

16.
The effect of glucagon and the protein content of the diet on the activity of N-acetylglutamate synthetase was studied. The activity of N-acetylglutamate synthetase depended on the protein content of the diet. Glucagon increased the activity of N-acetylglutamate synthetase and reduced the stimulatory effect of arginine. The enzyme of glucose-fed animals became arginine independent. It was concluded that glucagon induced some kind of covalent modification of the synthetase.  相似文献   

17.
Normal and streptozotocin (STZ)-diabetic rats were studied in order to examine the effects of altering the type of dietary protein on cholesterol homeostasis. Rats were fed a non-purified or a purified diet containing either casein or soybean protein. The results obtained on the specific aspects of lipid metabolism were remarkably similar in control rats fed the non-purified (Purina Lab Chow) diet or the purified diet with the soybean protein. However, most of the findings obtained with the above two groups were different from those obtained with rats fed the purified diet containing casein. In the latter group, plasma cholesterol was elevated following a 15-day feeding period as compared to the other two dietary groups. The excess plasma cholesterol in the casein-fed group was found in two lipoprotein fractions with densities of 1.023-1.045 g/ml and 1.045-1.086 g/ml, respectively. The latter lipoprotein fraction was also enriched with apolipoprotein E. The casein-fed animals also showed a lower fractional rate of plasma cholesterol esterification and an abnormal accumulation of cholesterol in the body despite inhibition of cholesterol synthesis in the liver and in the intestines. Twelve to 15 days after the induction of diabetes, plasma cholesterol increased to a similar extent in the rats on all three diets. However, the distribution of cholesterol among the lipoprotein fractions was markedly different. The percentage of cholesterol in fractions of d less than 1.086 g/ml was increased while that carried in the fraction of d 1.086-1.161 g/ml decreased in the rats fed the nonpurified diet and the casein diet. In contrast, there was no change in the distribution of lipoprotein cholesterol between the diabetic and the control rats fed the soybean protein diet. The hepatic synthesis of cholesterol was unaltered in diabetic rats fed the nonpurified diet and the purified diet with soybean protein, but was increased 2.4-fold in diabetic rats fed casein. Intestinal cholesterol synthesis was increased in all three dietary groups. The increase was highest in the rats fed casein and lowest in rats fed soybean protein. The rate of sterol synthesis in the kidneys was not significantly affected by the diet or diabetes. In all three dietary groups diabetes led to an abnormal accumulation of cholesterol in the body. This accumulation was highest in the casein-fed rats and lowest in those fed the soybean protein diet. The cholesterol content of the kidneys was markedly increased by dietary casein.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
A low citrullinogenesis (less than 60 per cent of the adult value) was observed throughout the suckling period when mitochondria isolated from newborn rat liver were incubated in vitro with L-glutamate or succinate as oxidizable substrates. The adult value was reached after weaning. From birth to weaning, intact mitochondria synthesized more citrulline when supplemented with L-glutamate than with succinate. The low citrullinogenesis could not be explained by low carbamoylphosphate synthetase-I and ornithine transcarbamoylase activities that reached adult values at birth. The decreased citrullinogenesis seen for the first three days of life seemed to be related to the low intramitochondrial concentration of N-acetylglutamate, an activator of the carbamoylphosphate synthetase-I. The concentration of this activator did not differ from that reported for adult rat liver mitochondria after the fourth day of life. The discrepancy between the normal value of N-acetylglutamate concentration and the low activity of the N-acetylglutamate synthetase (15 to 30 per cent of the adult activity) is discussed on the basis of acetyl-CoA or L-glutamate availability in mitochondria isolated from newborn or young rats.  相似文献   

19.
Streptozotocin induced diabetes in rats increased the activities of the three mitochondrial enzymes, carbamylphosphate synthetase, ornithine transcarbamylase and N-acetylglutamate synthetase, but not of the cytosolic N-acetylglutamate deacylase. Levels of both N-acetylglutamate and arginine, which are activators of carbamylphosphate synthetase and N-acetylglutamate synthetase respectively, increased in diabetes. These results serve to explain the increase both of mitochondrial citrulline and urea formation in hepatocytes and the increased urea excretion in diabetes.  相似文献   

20.
The purpose of this study was to find whether the addition of dietary lysine affected the rate of brain protein synthesis in aged rats fed on a gluten diet. Experiments were done on two groups of aged rats (30 wk) given the diets containing 5% gluten or 5% gluten + 0.3% lysine for 10 d. The fractional rates of protein synthesis in brain, liver, and kidney increased with an addition of dietary lysine. In brain, liver, and kidney, the RNA activity [g protein synthesized/(g RNA x d)] was significantly correlated with the fractional rate of protein synthesis. The RNA concentration (mg RNA/g protein) was not related to the fractional rate of protein synthesis in any organ. The results suggest that the addition of the limiting amino acid for the low quality protein elevates the rate of protein synthesis in the brain of aged rats, and that RNA activity is at least partly related to the fractional rate of brain protein synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号