首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以拟南芥野生型Col-4和蓝光受体突变体cry1,cry2和cry1cry2为材料在蓝光下进行缺K+处理,cry1cry2的下胚轴及根的伸长受抑制程度最大.经过对K+充足条件下的Col-4,cry1,cry2和cry1cry2的钾元素含量和持水性检测.以及采用定量PCR对K+转运栽体和离子通道相关基因如AKT1,AtKC1,AKUP1等表达水平的分析,发现cry1cry2的钾元素含量最高、持水性最低,且其K+转运载体和离子通道相关基因的表达量也最高.该结果说明蓝光下CRY1和CRY2的缺失对K+的吸收起促进作用.  相似文献   

2.
通过构建表达光信号系统关键基因CRY1、CRY2和COP1启动子与GUS融合基因的拟南芥转基因植株,并对转基因植株进行GUS组织化学染色的结果表明,CRY1、CRY2和COP1的表达模式不受光条件的调控,并且在各器官有广泛的表达。分别分析CRY1基因启动子在cop1突变体以及COP1基因启动子在cry1突变体遗传背景中表达模式的结果表明,CRY1和COP1在转录水平上不存在明显的相互调控关系。  相似文献   

3.
H Zhu  C B Green 《Current biology : CB》2001,11(24):1945-1949
Xenopus laevis cryptochromes (xCRYs) can suppress xCLOCK/xBMAL1-mediated activation of a period E box-containing promoter. This suppression is a crucial part of the vertebrate circadian oscillator. Similar to CRYs in other species, as well as to the closely related photolyases, xCRYs have a conserved flavin binding domain. We show here that an intact flavin binding domain is required for normal function. However, it appears that each xCRY may utilize the bound flavin differently. Mutation in any of the three conserved tryptophan residues in the putative electron transport chain inhibits xCRY2b function, while only the mutation in the last of the three tryptophans significantly affects xCRY1 function. Although knockout studies in mice have suggested that CRY1 and CRY2 are not totally redundant, this is the first time that molecular/biochemical differences between CRY1 and CRY2 have been demonstrated. Both CRYs seem to require an intact flavin binding domain, suggesting that electron transport is important in their ability to suppress CLOCK/BMAL1 activation. However, only xCRY2b appears to depend on electron transport through the conserved tryptophan pathway.  相似文献   

4.
植物具备一套复杂的由两种蓝光受体和多种信号转导下游组分组成的蓝光感应系统,通过感受光照强度、光的方向和光周期,调节自身对蓝光的应答.蓝光反应的有效波长是蓝光和近紫外光(320~400nm),故蓝光受体也叫蓝光/近紫外光受体.CRY2(Cryptochromes,CRY)是一个核蛋白,在转录水平受蓝光的调节,它的作用是增加拟南芥对蓝光的敏感性.植物蓝光调节的反应主要有向光性、抑制幼茎伸长、叶绿体迁移、刺激气孔张开和调节基因表达等.对植物蓝光反应突变体分子生物学研究进展进行了综述,对蓝光受体及信号转导下游组分在植物发育中的作用及蓝光诱发植物作出反应的分子机制进行了探讨.  相似文献   

5.
6.
Xenopus laevis cryptochromes (xCRYs) can suppress xCLOCK/xBMAL1-mediated activation of a period E box-containing promoter. This suppression is a crucial part of the vertebrate circadian oscillator. Similar to CRYs in other species, as well as to the closely related photolyases, xCRYs have a conserved flavin binding domain. We show here that an intact flavin binding domain is required for normal function. However, it appears that each xCRY may utilize the bound flavin differently. Mutation in any of the three conserved tryptophan residues in the putative electron transport chain inhibits xCRY2b function, while only the mutation in the last of the three tryptophans significantly affects xCRY1 function. Although knockout studies in mice have suggested that CRY1 and CRY2 are not totally redundant [1] and [2], this is the first time that molecular/biochemical differences between CRY1 and CRY2 have been demonstrated. Both CRYs seem to require an intact flavin binding domain, suggesting that electron transport is important in their ability to suppress CLOCK/BMAL1 activation. However, only xCRY2b appears to depend on electron transport through the conserved tryptophan pathway.  相似文献   

7.
Linkage disequilibrium mapping of Arabidopsis CRY2 flowering time alleles   总被引:8,自引:0,他引:8  
The selfing plant Arabidopsis thaliana has been proposed to be well suited for linkage disequilibrium (LD) mapping as a means of identifying genes underlying natural trait variation. Here we apply LD mapping to examine haplotype variation in the genomic region of the photoperiod receptor CRYPTOCHROME2 and associated flowering time variation. CRY2 DNA sequences reveal strong LD and the existence of two highly differentiated haplogroups (A and B) across the gene; in addition, a haplotype possessing a radical glutamine-to-serine replacement (AS) occurs within the more common haplogroup. Growth chamber and field experiments using an unstratified population of 95 ecotypes indicate that under short-day photoperiod, the AS and B haplogroups are both highly significantly associated with early flowering. Data from six genes flanking CRY2 indicate that these haplogroups are limited to an approximately 65-kb genomic region around CRY2. Whereas the B haplogroup cannot be delimited to <16 kb around CRY2, the AS haplogroup is characterized almost exclusively by the nucleotide polymorphisms directly associated with the serine replacement in CRY2; this finding strongly suggests that the serine substitution is directly responsible for the AS early flowering phenotype. This study demonstrates the utility of LD mapping for elucidating the genetic basis of natural, ecologically relevant variation in Arabidopsis.  相似文献   

8.

Background

Abnormalities in the circadian clockwork often characterize patients with major depressive and bipolar disorders. Circadian clock genes are targets of interest in these patients. CRY2 is a circadian gene that participates in regulation of the evening oscillator. This is of interest in mood disorders where a lack of switch from evening to morning oscillators has been postulated.

Principal Findings

We observed a marked diurnal variation in human CRY2 mRNA levels from peripheral blood mononuclear cells and a significant up-regulation (P = 0.020) following one-night total sleep deprivation, a known antidepressant. In depressed bipolar patients, levels of CRY2 mRNA were decreased (P = 0.029) and a complete lack of increase was observed following sleep deprivation. To investigate a possible genetic contribution, we undertook SNP genotyping of the CRY2 gene in two independent population-based samples from Sweden (118 cases and 1011 controls) and Finland (86 cases and 1096 controls). The CRY2 gene was significantly associated with winter depression in both samples (haplotype analysis in Swedish and Finnish samples: OR = 1.8, P = 0.0059 and OR = 1.8, P = 0.00044, respectively).

Conclusions

We propose that a CRY2 locus is associated with vulnerability for depression, and that mechanisms of action involve dysregulation of CRY2 expression.  相似文献   

9.
10.
People with mood disorders often have disruptions in their circadian rhythms. Recent molecular genetics has linked circadian clock genes to mood disorders. Our objective was to study two core circadian clock genes, CRY1 and CRY2 as well as TTC1 that interacts with CRY2, in relation to depressive and anxiety disorders. Of these three genes, 48 single-nucleotide polymorphisms (SNPs) whose selection was based on the linkage disequilibrium and potential functionality were genotyped in 5910 individuals from a nationwide population-based sample. The diagnoses of major depressive disorder, dysthymia and anxiety disorders were assessed with a structured interview (M-CIDI). In addition, the participants filled in self-report questionnaires on depressive and anxiety symptoms. Logistic and linear regression models were used to analyze the associations of the SNPs with the phenotypes. Four CRY2 genetic variants (rs10838524, rs7121611, rs7945565, rs1401419) associated significantly with dysthymia (false discovery rate q<0.05). This finding together with earlier CRY2 associations with winter depression and with bipolar type 1 disorder supports the view that CRY2 gene has a role in mood disorders.  相似文献   

11.
从高粱(Sorghum bicolor L.var.R111)幼苗中提取总RNA,利用RT-PCR和cDNA的3′末端的快速扩增方法(3′RACE),第一次克隆了高粱隐花色素2基因(CRY2)的cDNA序列。该序列包括了一个完整的开放阅读框,编码大小为690个氨基酸残基的蛋白质,与水稻、番茄和拟南芥CRY2蛋白质的同源性分别为87%、57%和45.5%。高粱CRY2基因组DNA含有3个内含子和4个外显子。RT-PCR检测结果表明,高粱CRY2基因在根、茎和叶中都有转录。Western blotting结果显示CRY2蛋白在根、茎和叶中表达,并在黑暗中积累,蓝光下降解。高粱CRY2可能在蓝光诱导的幼苗去黄化反应中起作用。  相似文献   

12.
高梁CRY2基因的克隆及其表达分析   总被引:1,自引:0,他引:1  
从高粱(Sorghum bicolor L. var.R1ll)幼苗中提取总RNA,利用RT-PCR和cDNA的3'末端的快速扩增方法(3'RACE),第一次克隆了高粱隐花色素2基因(CRY2)的cDNA序列.该序列包括了一个完整的开放阅读框,编码大小为690个氨基酸残基的蛋白质,与水稻、番茄和拟南芥CRY2蛋白质的同源性分别为8 7%、5 7%和45.5%.高粱CRY2基因组DNA含有3个内含子和4个外显子.RT-PCR检测结果表明,高粱CRY2基因在根、茎和叶中都有转录.Western blotting结果显示CRY2蛋白在根、茎和叶中表达,并在黑暗中积累,蓝光下降解.高粱CRY2可能在蓝光诱导的幼苗去黄化反应中起作用.  相似文献   

13.
BACKGROUND: The biological clock synchronizes the organism with the environment, responding to changes in light and temperature. Drosophila CRYPTOCHROME (CRY), a putative circadian photoreceptor, has previously been reported to interact with the clock protein TIMELESS (TIM) in a light-dependent manner. Although TIM dimerizes with PERIOD (PER), no association between CRY and PER has previously been revealed, and aspects of the light dependence of the TIM/CRY interaction are still unclear. RESULTS: Behavioral analysis of double mutants of per and cry suggested a genetic interaction between the two loci. To investigate whether this was reflected in a physical interaction, we employed a yeast-two-hybrid system that revealed a dimerization between PER and CRY. This was further supported by a coimmunoprecipitation assay in tissue culture cells. We also show that the light-dependent nuclear interactions of PER and TIM with CRY require the C terminus of CRY and may involve a trans-acting repressor. CONCLUSIONS: This study shows that, as in mammals, Drosophila CRY interacts with PER, and, as in plants, the C terminus of CRY is involved in mediating light responses. A model for the light dependence of CRY is discussed.  相似文献   

14.
15.
16.
Circadian rhythms govern vital functions. Their disruption provokes metabolic imbalance favouring obesity and type-2 diabetes. The aim of the study was to assess the role of clock genes in human prediabetes. To this end, genotype-phenotype associations of 121 common single nucleotide polymorphisms (SNPs) tagging ARNTL, ARNTL2, CLOCK, CRY1, CRY2, PER1, PER2, PER3, and TIMELESS were assessed in a study population of 1,715 non-diabetic individuals metabolically phenotyped by 5-point oral glucose tolerance tests. In subgroups, hyperinsulinaemic-euglycaemic clamps, intravenous glucose tolerance tests, and magnetic resonance imaging/spectroscopy were performed. None of the tested SNPs was associated with body fat content, insulin sensitivity, or insulin secretion. Four CRY2 SNPs were associated with fasting glycaemia, as reported earlier. Importantly, carriers of these SNPs’ minor alleles revealed elevated fasting glycaemia and, concomitantly, reduced liver fat content. In human liver tissue samples, CRY2 mRNA expression was directly associated with hepatic triglyceride content. Our data may point to CRY2 as a novel switch in hepatic fuel metabolism promoting triglyceride storage and, concomitantly, limiting glucose production. The anti-steatotic effects of the glucose-raising CRY2 alleles may explain why these alleles do not increase type-2 diabetes risk.  相似文献   

17.
Zuo ZC  Meng YY  Yu XH  Zhang ZL  Feng DS  Sun SF  Liu B  Lin CT 《Molecular plant》2012,5(3):726-733
Arabidopsis cryptochrome 2 (CRY2) is a blue-light receptor mediating blue-light inhibition of hypocotyl elongation and photoperiodic promotion of floral initiation. CRY2 is a constitutive nuclear protein that undergoes blue-light-dependent phosphorylation, ubiquitination, photobody formation, and degradation in the nucleus, but the relationship between these blue-light-dependent events remains unclear. It has been proposed that CRY2 phosphorylation triggers a conformational change responsible for the subsequent ubiquitination and photobody formation, leading to CRY2 function and/or degradation. We tested this hypothesis by a structure-function study, using mutant CRY2-GFP fusion proteins expressed in transgenic Arabidopsis. We show that changes of lysine residues of the NLS (Nuclear Localization Signal) sequence of CRY2 to arginine residues partially impair the nuclear importation of the CRY2K541R and CRY2K554/5R mutant proteins, resulting in reduced phosphorylation, physiological activities, and degradation in response to blue light. In contrast to the wild-type CRY2 protein that forms photobodies exclusively in the nucleus, the CRY2K541R and CRY2K554/5R mutant proteins form protein bodies in both the nucleus and cytosol in response to blue light. These results suggest that photoexcited CRY2 molecules can aggregate to form photobody-like structure without the nucleus-dependent protein modifications or the association with the nuclear CRY2-interacting proteins. Taken together, the observation that CRY2 forms photobodies markedly faster than CRY2 phosphorylation in response to blue light, we hypothesize that the photoexcited cryptochromes form oligomers, preceding other biochemical changes of CRY2, to facilitate photobody formation, signal amplification, and propagation, as well as desensitization by degradation.  相似文献   

18.
19.
The UV-A/blue light photoreceptor crytochrome2 (cry2) plays a fundamental role in the transition from the vegetative to the reproductive phase in the facultative long-day plant Arabidopsis thaliana. The cry2 protein level strongly decreases when etiolated seedlings are exposed to blue light; cry2 is first phosphorylated, polyubiquitinated, and then degraded by the 26S proteasome. COP1 is involved in cry2 degradation, but several cop1 mutants show only reduced but not abolished cry2 degradation. SUPPRESSOR OF PHYA-105 (SPA) proteins are known to work in concert with COP1, and recently direct physical interaction between cry2 and SPA1 was demonstrated. Thus, we hypothesized that SPA proteins could also play a role in cry2 degradation. To this end, we analyzed cry2 protein levels in spa mutants. In all spa mutants analyzed, cry2 degradation under continuous blue light was alleviated in a fluence rate-dependent manner. Consistent with a role of SPA proteins in phytochrome A (phyA) signaling, a phyA mutant had enhanced cry2 levels, particularly under low fluence rate blue light. Fluorescence resonance energy transfer-fluorescence lifetime imaging microscopy studies showed a robust physical interaction of cry2 with SPA1 in nuclei of living cells. Our results suggest that cry2 stability is controlled by SPA and phyA, thus providing more information on the molecular mechanisms of interaction between cryptochrome and phytochrome photoreceptors.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号