首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In 13 laboratory rats with bilateral auditory cortex ablation, the border frequency of amplitude-modulation still allowing differentiation between tonal and amplitude-modulated stimuli, did not change after bilateral section of the brachii of the posterior colliculi. Bilateral auditory cortex ablation and section of the brachii drastically disturbed this differentiation when the modulation frequencies were higher than 27-31 Hz. The data suggest that the completion of coding of amplitude-modulated stimuli does not take place at the level of the medial geniculate body, and that border frequencies defined after auditory cortex ablation are linked with the frontier posterior colliculi--thalamo-cortical system.  相似文献   

2.
Elaboration of differentiation between sound stimuli was carried out in 15 laboratory rats. After bilateral ablations of auditory inferior colliculi the border frequency of stimulus amplitude modulation was determined for all rats when they still could differentiate between tonal and amplitude-modulated stimuli. Decrease in frequency of modulation by 2 Hz and more from the border frequency caused a complete loss of ability to differentiate. In all rats bilateral inferior colliculi ablations completely disturbed differentiation between tonal and amplitude-modulated signals with modulation frequency below 183-191 Hz (the range of border frequencies). The surgery however did not affect differentiation between tonal and amplitude-modulated signals with the modulation frequencies above 183-191 Hz. The data suggest that the functions of completion of coding of amplitude-modulated stimuli in the auditory system is strictly linked with definite structures.  相似文献   

3.
Unit responses of the inferior colliculi of anesthetized rats to amplitude-modulated sounds during a change in the carrier intensity were investigated. The following unit response characteristics were assessed: the number of spikes in the response, the range of reproduction of the modulation frequency, the response duration, and the pattern of the spike response relative to the envelope of the amplitude-modulated stimulus. The following parameters of the stimulus were varied: carrier intensity (usually of optimal frequency or noise), frequency of modulation (from 2 to 100 Hz), and carrier frequency. With a decrease in the intensity of the carrier in the case of monotonic neurons, and also with an increase or decrease in the intensity of the carrier relative to its optimal level in nonmonotonic neurons, the following changes in the discharge were regularly observed: the number of spikes in the response and its duration were reduced down to the appearance of only one initial response, the range of reproduction of the rhythm of modulation was narrowed, and the response pattern was sharply modified.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR. I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 5, No. 4, pp. 355–366, July–August, 1973.  相似文献   

4.
 Responses of mechanosensory lateral line units to constant-amplitude hydrodynamic stimuli and to sinusoidally amplitude-modulated water movements were recorded from the goldfish (Carassius auratus) torus semicircularis. Responses were classified by the number of spikes evoked in the unit's dynamic range and by the degree of phase locking to the carrier- and amplitude-modulation frequency of the stimulus. Most midbrain units showed phasic responses to constant-amplitude hydrodynamic stimuli. For different units peri-stimulus time histograms varied widely. Based on iso-displacement curves, midbrain units prefered either low frequencies (≤33 Hz), mid frequencies (50–100 Hz), or high frequencies (≥200 Hz). The distribution of the coefficient of synchronization to constant-amplitude stimuli showed that most units were only weakly phase locked. Midbrain units of the goldfish responded to amplitude-modulated water motions in a phasic/tonic or tonic fashion. Units highly phase locked to the amplitude modulation frequency, provided that modulation depth was at least 36%. Units tuned to one particular amplitude modulation frequency were not found. Accepted: 10 July 1999  相似文献   

5.
The surface-feeding fish Aplocheilus lineatus uses its cephalic lateral line to detect water surface waves caused by prey insects. The ability of Aplocheilus to discriminate between surface waves with aid of the lateral line system was tested by go/no-go conditioning. Our results show that Aplocheilus can distinguish between single-frequency surface wave stimuli with equal velocity or equal acceleration amplitudes which differ only in frequency. Frequency difference limens were about 15%, i.e. fish distinguished a 20-Hz wave stimulus from a 23-Hz stimulus in 100% of the trials. Aplocheilus can also discriminate between pure sine-wave stimuli and sine waves which show abrupt frequency changes. In contrast, fish were unable to distinguish amplitude-modulated wave stimuli (carrier frequency 20, 40 and 60 Hz, modulation frequency 10 and 20 Hz) from pure sine waves of the same frequency, even if amplitude modulation depth was 80%. Accepted: 27 December 1996  相似文献   

6.
Unit responses in the rat inferior colliculi to amplitude-modulated sounds were investigated. Two parameters of these sounds were varied: the modulation and carrier frequencies. The first ranged from 1–5 to 100 Hz, while the range of the second was determined by the frequency-threshold curve of the neuron. Other parameters of the amplitude-modulated stimulus (depth of modulation, level of carrier intensity) were kept as constant as possible. Characteristics of the unit response are determined by the nature of the combination of the carrier and modulation frequencies used. If the carrier frequency was optimal, the range of reproduction of the modulation frequencies, the number of spikes in the response, the duration of the response, and the corresponding stimulus duration were maximal; the response appeared at an earlier phase of the modulation cycle. A change in carrier frequency from optimal toward both higher and lower frequencies induced a regular change in all characteristics of the response: narrowing of the range of reproduction of the modulation rhythm amounting in some cases to total cessation of response, a decrease in the number of spikes per response, and shortening of the response in some cases as far as the appearance of only the initial response, while the response itself occurred in later phases of the modulation cycle.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 4, No. 1, pp. 12–22, January–February, 1972.  相似文献   

7.
Unit responses of the inferior colliculi of anesthetized albino rats to frequency-modulated stimuli were studied. The number of spikes and the pattern and duration of the unit discharges in response to frequency modulation in different directions were shown to depend on the depth and rate of modulation. With a change in the rate of frequency modulation the number of spikes in the discharge of individual neurons could increase, decrease, or remain constant. Neurons of the inferior colliculi give their material discharge at different rates of frequency modulation. A change in the depth and rate of modulation did not change the sensitivity of most neurons to the direction of the frequency change in the stimulus within the frequency range corresponding to the center of the excitatory zone of the unit response.  相似文献   

8.
The role of the neocortex temporal areas in the closing function was studied in chronic experiments on cats in the norm and after section of the posterior colliculi brachia. The techniques of functional elimination of the temporal neocortex by cold and section of the posterior colliculi brachia were used. Functional elimination of the cortical temporal areas prevents formation of a stable conditioned reflex in the first twenty sessions with cooling. Conditioned reflexes elaborated after section of the posterior colliculi brachia are not manifested in the case of cooling of the temporal areas throughout the period of observation (18 sessions). At the same time the conditioned reflexes elaborated before the section, are restored quite rapidly (five to six sessions). Hence, the neocortex temporal areas are more important for setting up conditioned connections than for their preservation and the use of connections previously elaborated.  相似文献   

9.
Activity of medullar and midbrain auditory neurons at action of amplitude-modulated tone burst was recorded in immobilized common frogs Rana temporaria. Depth of modulation amounted to 10% or 80%, frequency of modulation varied from 5 to 150 Hz, and carrier intensity was in the range of 20–30 dB. Phasic neurons in medulla clearly reproduced the modulation frequency, but only at the 80% modulation depth. However, during presentation of signal with the 10% modulation depth, these neurons practically did not respond. Tonic neurons were able to reproduce the modulation frequency up to 10–150 Hz, but at the 10% modulation depth, the degree of reproduction of envelope was rather low, although for several first modulation periods it rose statistically significantly. In midbrain, the highest frequency of the reproduced modulation sharply fell. At greater modulation frequencies, the response of these neurons qualitatively reminds that of medullar neurons. At the low modulation frequencies, there is identified a group of midbrain neurons with a prominent increase of the signal modulation. This occurs in the frequency diapason up to 60 Hz; at an increase of the modulation frequency the time of achievement of maximal synchronization decreases. The optimal modulation frequency in many neurons of semicircular torus corresponds to parameters of the male nuptial call.  相似文献   

10.
This report describes the responses of single afferent fibers in the posterior lateral line nerve of the goldfish, Carassius auratus, to pure tone and to amplitude-modulated sinusoidal wave stimuli generated by a dipole source (stationary vibrating sphere). Responses were characterized in terms of output-input functions relating responses to vibration amplitude, peri-stimulus time histograms relating responses to stimulus duration, and the degree of phase-locking to both the carrier frequency and the modulation frequency of the amplitude-modulated stimulus. All posterior lateral line nerve fibers responded to a pure sine wave with sustained and strongly phase-locked discharges. When stimulated with amplitude-modulated sine waves, fibers responded with strong phase-locking to the carrier frequency and, in addition, discharge rates were modulated according to the amplitude modulation frequency. However, phase-locking to the amplitude modulation frequency was weaker than phase-locking to the carrier frequency. The data indicate that the discharges of primary lateral line afferents encode both the carrier frequency and the modulation frequency of an amplitude-modulated wave stimulus. Accepted: 2 June 1999  相似文献   

11.
Evoked potentials to acoustic stimuli were recorded in the temporal cortical area, the medial geniculate body and the posterior lateral thalamic nucleus in acute experiments on anaesthetized cats. Section of the brachia of the inferior colliculi in an acute experiment resulted in the disappearance of potentials in the examined structures. A distinct correlation has been revealed between the recovery of evoked potentials in the cortico-thalamic auditory structures (in four to six weeks) and the possible elaboration of conditioned reactions within this time period after lesion of the inferior colliculi brachia. The involvement of the temporal area in the general brain activity appears to be one of the major conditions for the formation of new conditioned connections. Possible ways of restoration of afferent input to the temporal cortical area after lesion of the inferior colliculi brachia are discussed.  相似文献   

12.
Unit responses of the inferior colliculi of albino rats to frequency-modulated stimuli were investigated. The number of spikes, firing pattern, and duration of the discharge were determined. Parameters of unit responses obtained with different directions of frequency modulation were compared with the results of testing the effect of constant-frequency tones on the neurons. The distinguishing features of the unit responses to stimuli with different directions of frequency modulation were compared with the characteristics of the frequency-threshold curve and the lateral inhibitory zones, taken as indices of the unit responses to constant-frequency tones. With a change in stimulus frequency upward or downward from the initial level the unit responses to both directions could be similar as regards the number of spikes per discharge and the firing pattern or could differ sharply depending on the direction or, finally, they could arise only if the stimulus frequency changed in one direction. In some cases selectivity for the direction of the change in stimulus frequency was due to the width and position of the lateral inhibitory zones. However, for one-third of the neurons tested analysis of the spatial characteristics of the excitatory and inhibitory zones alone was insufficient to explain the high selectivity in the formation of a response to a stimulus with frequency modulation in one direction only.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol.6, No.3, pp.237–245, May–June, 1974.  相似文献   

13.
Neuronal activity in g. proreus was studied during classical secretory conditioning and its differentiation in dogs. Three types of changes in neuronal reaction pattern were identified during differential conditioned stimulus compared to the pattern observed during positive conditioned stimulus. It has been shown that signal significance of the conditioned stimulus may be coded by specific distribution of interspike intervals in response to different conditioned stimuli. In situation of successive inhibition or disinhibition of the differentiation some neurones displayed simultaneous appearance of interspike intervals specific for responses to current and previously presented conditioned stimuli.  相似文献   

14.
Averaged electroencephalogram (EEG) frequency spectra were studied in eight unanesthetized and unmyorelaxed adult male rats with chronically implanted carbon electrodes in symmetrical somesthetic areas when a weak (0.1–0.2 mW/cm) microwave (MW, 945 MHz) field, amplitude-modulated at extremely low frequency (ELF) (4 Hz), was applied. Intermittent (1 min “On,” 1 min “Off”) field exposure (10-min duration) was used. Hemispheric asymmetry in frequency spectra (averaged data for 10 or 1 min) of an ongoing EEG was characterized by a power decrease in the 1.5–3 Hz range on the left hemisphere and by a power decrease in the 10–14 and 20–30 Hz ranges on the right hemisphere. No differences between control and exposure experiments were shown under these routines of data averaging. Significant elevations of EEG asymmetry in 10–14 Hz range were observed during the first 20 s after four from five onsets of the MW field, when averaged spectra were obtained for every 10 s. Under neither control nor pre- and postexposure conditions was this effect observed. These results are discussed with respect to interaction of MW fields with the EEG generators. Bioelectromagnetics 18:293–298, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

15.
The functional development of the auditory system across metamorphosis was examined by recording neural activity from the torus semicircularis of larval and postmetamorphic bullfrog froglets in response to amplitude-modulated sound. Multiunit activity in the torus semicircularis during early larval stages showed significant phase-locking to the envelopes of amplitude-modulated noise bursts, up to modulation rates as high as 250 Hz. Beginning at metamorphic climax and continuing into the froglet period, phase locking was restricted to the more limited frequency range characteristic of adult frogs. The onset of operation of the tympanic pathway does not reinstate the highly synchronous neural activity characteristic of the operation of the fenestral pathway. Modulation transfer functions based on spike count did not show tuning for modulation rate in early stage tadpoles, but a greater variety of shapes of these functions emerged as development proceeded. Most of the different kinds of modulation transfer functions seen in adult frogs were also observed in froglets, but band-pass functions were not as sharply peaked. These data suggest that different neural codes for processing of the periodicity of complex signals operate in early stage tadpoles than in postmetamorphic froglets. Accepted: 7 October 1998  相似文献   

16.
We report the development of a new method for frequency domain analysis of steady-state somatosensory evoked potentials (SEPs) to amplitude-modulated electrical stimulation, which can be recorded in significantly less time than traditional SEPs. Resampling techniques were used to compare the steady-state SEP to traditional SEP recordings, which are based on signal averaging in the time domain of cortical responses to repetitive transient stimulation and take 1–2 min or more to obtain a satisfactory signal/noise ratio. Median nerves of 3 subjects were stimulated continuously with electrical alternating current at several modulation frequencies from 7 to 41 Hz. Amplitude modulation was used to concentrate the power in higher frequencies, away from the modulation frequency, to reduce the amount of stimulus artifact recorded. Data were tested for signal detectability in the frequency domain using the Tcirc2 statistic. A reliable steady-state response can be recorded from scalp electrodes overlying somatosensory cortex in only a few seconds. In contrast, no signal was statistically discriminable from noise in the transient SEP from as much as 20 s of data. This dramatic time savings accompanying steady-state somatosensory stimulation may prove useful for monitoring in the operating room or intensive care unit.  相似文献   

17.
The relative roles of motor unit firing rate modulation and recruitment were evaluated when individuals with cervical spinal cord injury (SCI) and able-bodied controls performed a brief (6 s), 50% maximal voluntary contraction (50% MVC; target contraction) of triceps brachii every 10 s until it required maximal effort to achieve the target force. Mean (+/-SD) endurance times for SCI and control subjects were 34+/-26 and 15+/-5 min, respectively, at which point significant reductions in maximal triceps force had occurred. Twitch occlusion analysis in controls indicated that force declines resulted largely from peripheral contractile failure. In SCI subjects, triceps surface EMG and motor unit potential amplitude declined in parallel suggesting failure at axon branch points and/or alterations in muscle membrane properties. The force of low threshold units, measured by spike-triggered averaging, declined in SCI but not control subjects, suggesting that higher threshold units fatigued in controls. Central fatigue was also obvious after SCI. Mean (+/-SD) MVC motor unit firing rates declined significantly with fatigue for control (24.6+/-7.1 to 17.3+/-5.1Hz), but not SCI subjects (25.9+/-12.7 to 20.1+/-9.7Hz). Unit firing rates were unchanged during target contractions for each subject group, but with the MVC rate decreases, units of SCI and control subjects were activated intensely at endurance time (88% and 99% MVC rates, respectively). New unit recruitment also maintained the target contractions although it was limited after SCI because many descending inputs to triceps motoneurons were disrupted. This resulted in sparse EMG, even during MVCs, but allowed the same unit to be recorded throughout. These EMG data showed that both unit recruitment and rate modulation were important for maintaining force during repeated submaximal intermittent contractions of triceps brachii muscles performed by SCI subjects. Similar results were found for control subjects. Muscles weakened by SCI may therefore provide a useful model in which to directly study motor unit rate modulation and recruitment during weak or strong voluntary contractions.  相似文献   

18.
Paulraj R  Behari J 《Mutation research》2004,545(1-2):127-130
The present work describes the effect of amplitude modulated radio frequency (rf) radiation (112 MHz amplitude-modulated at 16 Hz) on calcium-dependent protein kinase C (PKC) activity on developing rat brain. Thirty-five days old Wistar rats were used for this study. The rats were exposed 2 h per day for 35 days at a power density of 1.0 mW/cm2 (SAR = 1.48 W/kg). After exposure, rats were sacrificed and PKC was determined in whole brain, hippocampus and whole brain minus hippocampus separately. A significant decrease in the enzyme level was observed in the exposed group as compared to the sham exposed group. These results indicate that this type of radiation could affect membrane bound enzymes associated with cell signaling, proliferation and differentiation. This may also suggest an affect on the behavior of chronically exposed rats.  相似文献   

19.
The main aim of the present study was to find out whether the dynamic characteristics of responses of limb extensor muscles to labyrinth stimulation were modified by the proprioceptive input elicited by appropriate displacements of the corresponding limb extremity. In cats decerebrated at precollicular or intercollicular level, the multiunit EMG activity of the medial head of the triceps brachii was recorded during roll tilt of the animal at the frequency of 0.15 Hz, +/- 10 degrees leading to selective stimulation of labyrinth receptors. This stimulation was then tested several times at regular intervals of 2 to 6 min for several hours while maintaining the ipsilateral forelimb in the horizontal extended position, i.e. with the plantar surface of the foot lying on the tilting table, or during passive flexion of the forepaw in plantar or dorsal direction. In all the experiments in which the forelimb was in the control position, the multiunit EMG responses of the triceps brachii were characterized by an increased activity during side-down tilt of the animal and a decreased activity during side up tilt. These responses were related to animal position and not to the velocity of animal displacement, thus being attributed to stimulation of macular, utricular receptors. Static displacement of limb extremities following plantar flexion of the forepaw greatly decreased the amplitude of the EMG modulation and thus the gain of the first harmonic component of the multiunit EMG responses of the ipsilateral triceps brachii to animal tilt. This reduced gain was due not only to a reduced number of motor units recruited during labyrinth stimulation, but also to a reduced modulation of firing rate of the active motor units, as shown by recording the activity of individual motor units. On the other hand, displacement of the same extremity in the opposite direction, i.e. following dorsiflexion of the forepaw, enhanced the amplitude of the EMG modulation and thus the gain of the multiunit EMG responses of the ipsilateral triceps brachii to animal tilt. This finding was mainly due to an increased recruitment of motor units during side-down tilt, although an increased modulation of the firing rate of individual motor units could not be excluded. In both instances, no changes in the phase angle to the responses were observed. The changes in response gain described above depended on the amount of passive displacement of the forepaw and persisted unmodified throughout the new maintained position.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
Investigations have been carried out concerning the effects of microwave (MW) exposure on the aminoacyl-transfer ribonucleic acid (tRNA) synthetase of the progeny of females that were exposed during their entire period of gestation (19 days). The changes caused by continuous-wave (CW) and amplitude-modulated (AM) MW radiation have been compared. CFLP mice were exposed to MW radiation for 100 min each day in an anechoic room. The MW frequency was 2.45 GHz, and the amplitude modulation had a 50 Hz rectangular waveform (on/off ratio, 50/50%). The average power density exposure was 3 mW/cm2, and the whole body specific absorption rate (SAR) was 4.23 ± 0.63 W/kg. The weight and mortality of the progeny were followed until postnatal day 24. Aminoacyl-tRNA synthetase enzymes and tRNA from the brains and livers of the offspring (461 exposed, 487 control) were isolated. The aminoacyl-tRNA synthetase activities were determined. The postnatal increase of body weight and organ weight was not influenced by the prenatal MW radiation. The activity of enzyme isolated from the brain showed a significant decrease after CW MW exposure, but the changes were not significant after 50 Hz AM MW exposure. The activity of the enzyme isolated from liver increased under CW and 50 Hz modulated MW. © 1996 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号