首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The phenotype of an organism is the manifestation of its expressed genome. The gcr1 mutant of yeast grows at near wild-type rates on nonfermentable carbon sources but exhibits a severe growth defect when grown in the presence of glucose, even when nonfermentable carbon sources are available. Using DNA microarrays, the genomic expression patterns of wild-type and gcr1 mutant yeast growing on various media, with and without glucose, were compared. A total of 53 open reading frames (ORFs) were identified as GCR1 dependent based on the criterion that their expression was reduced twofold or greater in mutant versus wild-type cultures grown in permissive medium consisting of YP supplemented with glycerol and lactate. The GCR1-dependent genes, so defined, fell into three classes: (i) glycolytic enzyme genes, (ii) ORFs carried by Ty elements, and (iii) genes not previously known to be GCR1 dependent. In wild-type cultures, GCR1-dependent genes accounted for 27% of the total hybridization signal, whereas in mutant cultures, they accounted for 6% of the total. Glucose addition to the growth medium resulted in a reprogramming of gene expression in both wild-type and mutant yeasts. In both strains, glycolytic enzyme gene expression was induced by the addition of glucose, although the expression of these genes was still impaired in the mutant compared to the wild type. By contrast, glucose resulted in a strong induction of Ty-borne genes in the mutant background but did not greatly affect their already high expression in the wild-type background. Both strains responded to glucose by repressing the expression of genes involved in respiration and the metabolism of alternative carbon sources. Thus, the severe growth inhibition observed in gcr1 mutants in the presence of glucose is the result of normal signal transduction pathways and glucose repression mechanisms operating without sufficient glycolytic enzyme gene expression to support growth via glycolysis alone.  相似文献   

2.
3.
4.
5.
Screening of a mutagenized strain carrying a multicopy ENO1-'lacZ fusion plasmid revealed a new mutation affecting most glycolytic enzyme activities in a pattern resembling that caused by gcr1: levels in the range of 10% of wild-type levels on glycerol plus lactate but somewhat higher on glucose. The recessive single nuclear gene mutation, named gcr2-1, was unlinked to gcr1, and GCR1 in multiple copies did not restore enzyme levels. GCR2 was obtained by complementation from a YCp50 genomic library; the complemented strain had normal enzyme levels, as did a strain with GCR2 in multiple copies. GCR2 in multiple copies did not suppress gcr1. A chromosomal gcr2 null mutant was constructed; its pattern of enzyme activities resembled that of the gcr2-1 mutant and, like the gcr2-1 mutant, its growth defect on glucose was only partial (in contrast to the glucose negativity of the gcr1 mutant). Northern (RNA) analysis showed that gcr2 and gcr1 affect ENO1 mRNA levels.  相似文献   

6.
7.
The intracellular concentrations of the polypeptides encoded by the two enolase (ENO1 and ENO2) and three glyceraldehyde-3-phosphate dehydrogenase (TDH1, TDH2, and TDH3) genes were coordinately reduced more than 20-fold in a Saccharomyces cerevisiae strain carrying the gcr1-1 mutation. The steady-state concentration of glyceraldehyde-3-phosphate dehydrogenase mRNA was shown to be approximately 50-fold reduced in the mutant strain. Overexpression of enolase and glyceraldehyde-3-phosphate dehydrogenase in strains carrying multiple copies of either ENO1 or TDH3 was reduced more than 50-fold in strains carrying the gcr1-1 mutation. These results demonstrated that the GCR1 gene encodes a trans-acting factor which is required for efficient and coordinate expression of these glycolytic gene families. The GCR1 gene and the gcr1-1 mutant allele were cloned and sequenced. GCR1 encodes a predicted 844-amino-acid polypeptide; the gcr1-1 allele contains a 1-base-pair insertion mutation at codon 304. A null mutant carrying a deletion of 90% of the GCR1 coding sequence and a URA3 gene insertion was constructed by gene replacement. The phenotype of a strain carrying this null mutation was identical to that of the gcr1-1 mutant strain.  相似文献   

8.
9.
10.
GCR1 gene function is required for high-level glycolytic gene expression in Saccharomyces cerevisiae. Recently, we suggested that the CTTCC sequence motif found in front of many genes encoding glycolytic enzymes lay at the core of the GCR1-binding site. Here we mapped the DNA-binding domain of GCR1 to the carboxy-terminal 154 amino acids of the polypeptide. DNase I protection studies showed that a hybrid MBP-GCR1 fusion protein protected a region of the upstream activating sequence of TPI (UASTPI), which harbored the CTTCC sequence motif, and suggested that the fusion protein might also interact with a region of the UAS that contained the related sequence CATCC. A series of in vivo G methylation protection experiments of the native TPI promoter were carried out with wild-type and gcr1 deletion mutant strains. The G doublets that correspond to the C doublets in each site were protected in the wild-type strain but not in the gcr1 mutant strain. These data demonstrate that the UAS of TPI contains two GCR1-binding sites which are occupied in vivo. Furthermore, adjacent RAP1/GRF1/TUF- and REB1/GRF2/QBP/Y-binding sites in UASTPI were occupied in the backgrounds of both strains. In addition, DNA band-shift assays were used to show that the MBP-GCR1 fusion protein was able to form nucleoprotein complexes with oligonucleotides that contained CTTCC sequence elements found in front of other glycolytic genes, namely, PGK, ENO1, PYK, and ADH1, all of which are dependent on GCR1 gene function for full expression. However, we were unable to detect specific interactions with CTTCC sequence elements found in front of the translational component genes TEF1, TEF2, and CRY1. Taken together, these experiments have allowed us to propose a consensus GCR1-binding site which is 5'-(T/A)N(T/C)N(G/A)NC(T/A)TCC(T/A)N(T/A)(T/A)(T/G)-3'.  相似文献   

11.
12.
13.
Abscisic acid (ABA) plays regulatory roles in a host of physiological processes throughout plant growth and development. Seed germination, early seedling development, stomatal guard cell functions, and acclimation to adverse environmental conditions are key processes regulated by ABA. Recent evidence suggests that signaling processes in both seeds and guard cells involve heterotrimeric G proteins. To assess new roles for the Arabidopsis (Arabidopsis thaliana) Galpha subunit (GPA1), the Gbeta subunit (AGB1), and the candidate G-protein-coupled receptor (GCR1) in ABA signaling during germination and early seedling development, we utilized knockout mutants lacking one or more of these components. Our data show that GPA1, AGB1, and GCR1 each negatively regulates ABA signaling in seed germination and early seedling development. Plants lacking AGB1 have greater ABA hypersensitivity than plants lacking GPA1, suggesting that AGB1 is the predominant regulator of ABA signaling and that GPA1 affects the efficacy of AGB1 execution. GCR1 acts upstream of GPA1 and AGB1 for ABA signaling pathways during germination and early seedling development: gcr1 gpa1 double mutants exhibit a gpa1 phenotype and agb1 gcr1 and agb1 gcr1 gpa1 mutants exhibit an agb1 phenotype. Contrary to the scenario in guard cells, where GCR1 and GPA1 have opposite effects on ABA signaling during stomatal opening, GCR1 acts in concert with GPA1 and AGB1 in ABA signaling during germination and early seedling development. Thus, cell- and tissue-specific functional interaction in response to a given signal such as ABA may determine the distinct pathways regulated by the individual members of the G-protein complex.  相似文献   

14.
Peroxisome biogenesis and synthesis of peroxisomal enzymes in the methylotrophic yeast Hansenula polymorpha are under the strict control of glucose repression. We identified an H. polymorpha glucose catabolite repression gene (HpGCR1) that encodes a hexose transporter homologue. Deficiency in GCR1 leads to a pleiotropic phenotype that includes the constitutive presence of peroxisomes and peroxisomal enzymes in glucose-grown cells. Glucose transport and repression defects in a UV-induced gcr1-2 mutant were found to result from a missense point mutation that substitutes a serine residue (Ser(85)) with a phenylalanine in the second predicted transmembrane segment of the Gcr1 protein. In addition to glucose, mannose and trehalose fail to repress the peroxisomal enzyme, alcohol oxidase in gcr1-2 cells. A mutant deleted for the GCR1 gene was additionally deficient in fructose repression. Ethanol, sucrose, and maltose continue to repress peroxisomes and peroxisomal enzymes normally and therefore, appear to have GCR1-independent repression mechanisms in H. polymorpha. Among proteins of the hexose transporter family of baker's yeast, Saccharomyces cerevisiae, the amino acid sequence of the H. polymorpha Gcr1 protein shares the highest similarity with a core region of Snf3p, a putative high affinity glucose sensor. Certain features of the phenotype exhibited by gcr1 mutants suggest a regulatory role for Gcr1p in a repression pathway, along with involvement in hexose transport.  相似文献   

15.
16.
N-酰基高丝氨酸内酯(AHLs)是革兰氏阴性细菌群体感应的信号分子。培养基中添加1μmol·L-13OC6-HSL和10μmol·L-13OC8-HSL可显著促进野生型拟南芥主根生长,但拟南芥G蛋白偶联受体GCR1和GCR2基因缺失突变体gcr1-1和gcr2-2对AHLs处理不敏感;实时荧光定量PCR分析显示,这2种AHLs的处理可以使拟南芥GCR1和GCR2基因表达量上调2~4倍。结果表明,G蛋白偶联受体GCR1和GCR2可能参与植物感应细菌信号进而做出根生长响应的信号转导。  相似文献   

17.
18.
Pandey S  Assmann SM 《The Plant cell》2004,16(6):1616-1632
Heterotrimeric G proteins composed of alpha, beta, and gamma subunits link ligand perception by G protein-coupled receptors (GPCRs) with downstream effectors, providing a ubiquitous signaling mechanism in eukaryotes. The Arabidopsis thaliana genome encodes single prototypical Galpha (GPA1) and Gbeta (AGB1) subunits, and two probable Ggamma subunits (AGG1 and AGG2). One Arabidopsis gene, GCR1, encodes a protein with significant sequence similarity to nonplant GPCRs and a predicted 7-transmembrane domain structure characteristic of GPCRs. However, whether GCR1 actually interacts with GPA1 was unknown. We demonstrate by in vitro pull-down assays, by yeast split-ubiquitin assays, and by coimmunoprecipitation from plant tissue that GCR1 and GPA1 are indeed physically coupled. GCR1-GPA1 interaction depends on intracellular domains of GCR1. gcr1 T-DNA insertional mutants exhibit hypersensitivity to abscisic acid (ABA) in assays of root growth, gene regulation, and stomatal response. gcr1 guard cells are also hypersensitive to the lipid metabolite, sphingosine-1-phosphate (S1P), which is a transducer of the ABA signal upstream of GPA1. Because gpa1 mutants exhibit insensitivity in aspects of guard cell ABA and S1P responses, whereas gcr1 mutants exhibit hypersensitivity, GCR1 may act as a negative regulator of GPA1-mediated ABA responses in guard cells.  相似文献   

19.
Haploid Saccharomyces cerevisiae cells growing on media lacking glucose but containing high concentrations of carbon sources such as fructose, galactose, raffinose, and ethanol exhibit enhanced agar invasion. These carbon sources also promote diploid filamentous growth in response to nitrogen starvation. The enhanced invasive and filamentous growth phenotypes are suppressed by the addition of glucose to the media and require the Snf1 kinase. Mutations in the PGI1 and GND1 genes encoding carbon source utilization enzymes confer enhanced invasive growth that is unaffected by glucose but requires active Snf1. Carbon source does not modulate FLO11 flocculin expression, but enhanced polarized bud site selection is necessary for invasion on certain carbon sources. Interestingly, deletion of SNF1 blocks invasion without affecting bud site selection. Snf1 is also required for formation of spokes and hubs in multicellular mats. To examine glucose repression of invasive growth more broadly, we performed genome-wide microarray expression analysis in wild-type cells growing on glucose and galactose, and snf1 Delta cells on galactose. SNF1 probably mediates glucose repression of multiple genes potentially involved in invasive and filamentous growth. FLO11-independent cell-cell attachment, cell wall integrity, and/or polarized growth are affected by carbon source metabolism. In addition, derepression of cell cycle genes and signalling via the cAMP-PKA pathway appears to depend upon SNF1 activity during growth on galactose.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号