首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The distribution patterns of macrobenthic invertebrate assemblages at different spatial scales and in relation to natural and anthropogenic disturbance gradients were investigated in the Pialassa Baiona, a eutrophic and polluted brackish coastal lagoon located along the Italian coast of the northern Adriatic Sea. This coastal lagoon shows a complex physiography with several shallow water ponds and channels separated by discontinuous artificial embankments. Environmental variables and macrobenthic invertebrate assemblages showed higher heterogeneity at small spatial scale (i.e. within channels and ponds). Distinction between channels and ponds is only weakly supported by the distribution patterns of macrobenthic assemblages. Depth was the major factor in structuring benthic communities within ponds, while species distributions along the channels were strongly correlated with the anthropogenic disturbance gradient. Anthropogenic disturbance mainly affected species richness, which was inversely correlated with the organic carbon contents in the sediments and the water surface temperature, which is affected by the input of cooling water from two thermal power plants. Some opportunistic species, like the polychaetes Streblospio shrubsolii and Capitella capitata, were more abundant in the southern polluted areas. In particular, the abundance of S. shrubsolii significantly increased with organic carbon contents in the sediments and water surface temperature, while C. capitata was more abundant in the warmed sites and close to sewages. Conversely, the abundance of the amphipod Corophium insidiosum was inversely related to organic carbon contents.  相似文献   

2.
The relative contributions of natural and anthropogenic fluctuations are different in shaping habitat health status and natural benthic communities in tropical coastal water. Understanding responses of coastal benthic communities to these fluctuations are still equivocal and thus available data are inadequate. Here, multiple analytical approaches were used to address the significant risk factors and their impacts on coastal benthic habitat health through space and time. A total abundance of 1436 ± 612 individuals of 33 benthic species were counted and identified from 22 sampling stations across eight sampling periods over the two years of study. Bioassay results showed that the benthic community is moderately exposed to anthropogenic pollutants in Klang Strait coastal water. The results showed that there were no significant temporal changes of habitat health status and macrobenthic community structure; however, spatial changes were significant and synchronized with anthropogenic and natural fluctuations. This study demonstrates that Cd and Hg levels and sediment characteristics played the primary role in shaping the habitat health and macrobenthic assemblages, whereas the influence of other factors were insignificant.  相似文献   

3.
4.
Bottom trawling has widespread impacts on benthic communities and habitats. It is argued that the impact of chronic bottom trawling on benthic infauna depends on the natural disturbance levels to which benthic communities are adapted. We analysed biomass, production and size structure of two communities from a muddy and a sandy habitat, in relation to quantified gradients of trawling disturbance on real fishing grounds. We used an allometric relationship between body mass and individual production to biomass ratio to estimate community production. Chronic trawling had a negative impact on the biomass and production of benthic communities in the muddy habitat, while no impact was identified on benthic communities from the sandy habitat. These differences are the result of differences in size structure within the two communities that occur in response to increasing trawling disturbance.  相似文献   

5.
Grassland ecosystems evolved with natural disturbance events on multiple spatial scales in which focal, fine-scale soil disturbance by animals often was imbedded within large-scale grazing disturbance. The resulting plant communities adapted to both broad-scale and fine-scale disturbance that resulted in species-rich plant communities. These natural disturbance regimes have been largely replaced by anthropogenic disturbance. While we generally understand grassland response to modern grazing practices, we know much less about plant community response to soil disturbance imbedded within non-focal grazing. Therefore, we used a tracked vehicle to focally disturb soil in a North American mesic mixed prairie that was either undisturbed prairie or prairie with a recent history of disturbance from either grazing or haying. Successional trajectory and recovery time following focal soil disturbance was similar between grazed and hayed plant communities. Species composition did not differ (P < 0.05) between grazed or hayed prairie and the respective undisturbed prairie. Plant species richness and bare ground increased (P < 0.05) following focal soil disturbance in both grazed and hayed communities, but focal soil disturbance combined with either grazing or haying did not change either plant species richness or bare ground more than (P > 0.05) focal soil disturbance alone. Also, the effect of focal soil disturbance was shortlived with recovery in two growing seasons. Our results suggest that anthropogenic focal soil disturbance is a reasonable mechanism to restore soil disturbance to the grassland ecosystem.  相似文献   

6.
A method for quantitative appraisal of disturbances of macrobenthic communities of soft substrata caused by anthropogenic pollution is proposed. This method is based on the establishment of the dependence of various parameters characterizing the abundance and structure of communities (biomass, population density, number of species, Shannon-Weaver and Pielou indices, etc.) on the level of total contamination of bottom sediments. Using the percentage of deviation of abundance parameters and ecological indices from the norm (the initial horizontal segment of model curves), as well as ERL q and ERM q values, which limit the area of progressive degradation of bottom communities (an almost linear drop in abundance and structure characters), is suggested as a numerical characteristic of such deformations. Mapping of aqueous areas on the basis of these characteristics enabled us to obtain a synoptic view of the extent and spatial scale of anthropogenic impacts. An example of the application of this method for assessment of the state of benthic communities in the Peter the Great Bay (Sea of Japan) is shown for the end of the 1980s. The method is verified on the basis of comparison with the results obtained by standard methods of appraisal of the ecological status of macrozoobenthic communities.  相似文献   

7.
Characterizing community responses to environmental disturbances is difficult because of the complexity of heterogeneous ecosystems. A geographical self-organizing map (Geo-SOM) was applied to present the spatial distribution patterns of benthic communities in a river. The benthic macroinvertebrate communities were collected in the mainstream of the Nakdong River in South Korea. Geo-SOM is a machine learning technique that extracts spatial patterns of given data across spatial weight k values (0–5), which control the vicinity of the map, to extract geographical information effectively. In the results, clusters were formed mainly according to the topography on a large scale and anthropogenic impacts on a small-scale showing consistency in spatial patterning for benthic communities in the gradient across different degrees of spatial weight. Geo-SOM provided both comprehensive and detailed views for presenting species-space relationships. Corresponding to the decrease in k value (more weight in geographical information), we accumulated data variations to present a comprehensive view of spatial species distributions. Overall, correlations between species were more associated with latitude rather than longitude. The feasibility of spatial clustering was also demonstrated with the effective differentiation of community indices. Community indices were effectively differentiated into clusters in the Geo-SOM. Finally, Geo-SOM is a useful tool for extracting the spatial distribution patterns of communities in a comprehensible manner for the monitoring and management of communities in aquatic ecosystems.  相似文献   

8.
Patterns of fish community composition in a south-central Chile river were investigated along the altitudinal-spatial and environmental gradient and as a function of anthropogenic factors. The spatial pattern of fish communities in different biocoenotic zones of the Chillan River is influenced by both natural factors such a hydrologic features, habitat, and feeding types, and also by water quality variables which can reduce the diversity and abundance of sensitive species. A principal component analysis incorporating both water quality parameters and biomarker responses of representative fish species was used to evaluate the status of fish communities along the spatial gradient of the stream. The abundance and diversity of the fish community changed from a low in the upper reaches where the low pollution-tolerant species such as salmonid dominated, to a reduced diversity in the lower reaches of the river where tolerant browser species such as cypriniformes dominated. Even though the spatial pattern of fish community structure is similar to that found for the Chilean Rivers, the structure of these communities is highly influenced by human disturbance, particularly along the lower reaches of the river. Handling editor: C. Sturmbauer  相似文献   

9.
Zonation of intertidal macrobenthos in the estuaries of Schelde and Ems   总被引:5,自引:0,他引:5  
Based on data, collected in 1980–1990, the intertidal benthic macrofauna of the Schelde and Ems estuaries was compared. The spatial occurrence of the benthic macrofauna along the salinity gradient, including the freshwater tidal area was emphasized. Both estuaries appeared to have a very similar species composition, especially at genus level. The higher number of species observed in the Schelde estuary was probably due to a greater habitat diversity. In both estuaries species diversity decreased with distance upstream. The total density did not vary along the estuarine gradient, whereas biomass is highest in the polyhaline zone.In both estuaries distinct intertidal benthic communities were observed along the salinity gradient: a marine community in the polyhaline zone, a brackish community in the mesohaline zone, and a third community in the oligohaline and freshwater tidal zones of the estuary. These three communities were very similar between both estuaries. Their main characteristics were discussed together with the occurrence and distribution of the dominant species.For the Schelde estuary and to a lesser extent also for the Ems estuary, there was evidence that anthropogenic stress had a negative effect on the intertidal macrobenthic communities of the oligohaline/freshwater tidal zone. Only Oligochaeta were dominating, whereas the very euryhaline and/or true limnetic species were missing. In the mesohaline zone, the Schelde estuary was dominated by large numbers of short-living, opportunistic species, whereas in the Ems estuary relatively more stable macrobenthic communities were observed. A comparison with some other European estuaries showed in general similar trends as those observed for the Schelde and Ems estuaries.  相似文献   

10.
Increasing environmental impacts of exotic organisms have refocused attention on the ability of diverse communities to resist biological invaders. Although resource availability, often related to natural and anthropogenic disturbances, appears central to the invasibility of biological communities, understanding the links between resources, diversity and invasibility is often confounded by the covariance among key variables. To test the hypothesis that community invasibility remains contingent on the type and intensity of disturbance and their impacts on plant community diversity and resource availability, we designed an experiment testing the invasibility of northern fescue prairies by smooth brome (Bromus inermis Leyss.), a Eurasian perennial grass, threatening the structure and function of prairie remnants throughout the Great Plains. Using soil disturbances and herbicide, we imposed treatments manipulating the diversity and resource availability of native prairies. Our observations demonstrate that the vulnerability of native prairies to exotic plant invasions remains contingent on resources. While the establishment of smooth brome seedlings increased with increasing disturbance, its impact depended on the availability of soil nitrogen. As a result, soil burial treatments, simulating disturbance by northern pocket gophers, provided poor recruitment areas for smooth brome, and their low levels of soil moisture and nitrogen, combined with the rapid recovery of the prairie community, compromised seedling establishment. Emphasizing the covariance of diversity and key environmental variables following disturbance, our findings illustrate the importance of disturbance type and intensity on community invasibility. Such a consideration is critical in the conservation and restoration of native prairie remnants throughout the Great Plains.  相似文献   

11.
The compliance of macroalgal and macroinvertebrate assemblages to anthropogenic disturbance gradients (e.g., nutrient enrichment) was investigated at intertidal rocky shores. Macroalgae and macroinvertebrates presented parallel behavior, both showing shifts in the communities’ structural variation along the gradients, in which an higher number of opportunistic species (and higher abundances) were found in more stressful sites (close to the disturbance source), in contrast to less disturbed sites (far from the disturbance source), which showed higher presence of more sensitive species (and higher abundance of several of them).The macroinvertebrate abundance and taxonomic composition, which are parameters required by the Water Framework Directive (WFD) to be included in tools for the ecological quality status assessment, responded to the disturbance gradient. Results suggest that the macroinvertebrate biological element might be considered an indicator of disturbance in intertidal rocky shores as good as the macroalgae, and therefore the development of a specific methodology based solely on benthic macroinvertebrates of rocky shores, presently a gap in the ecological quality status assessment for the WFD, seems feasible.  相似文献   

12.
《Global Change Biology》2018,24(5):1904-1918
Anthropogenic activities have led to the biotic homogenization of many ecological communities, yet in coastal systems this phenomenon remains understudied. In particular, activities that locally affect marine habitat‐forming foundation species may perturb habitat and promote species with generalist, opportunistic traits, in turn affecting spatial patterns of biodiversity. Here, we quantified fish diversity in seagrass communities across 89 sites spanning 6° latitude along the Pacific coast of Canada, to test the hypothesis that anthropogenic disturbances homogenize (i.e., lower beta‐diversity) assemblages within coastal ecosystems. We test for patterns of biotic homogenization at sites within different anthropogenic disturbance categories (low, medium, and high) at two spatial scales (within and across regions) using both abundance‐ and incidence‐based beta‐diversity metrics. Our models provide clear evidence that fish communities in high anthropogenic disturbance seagrass areas are homogenized relative to those in low disturbance areas. These results were consistent across within‐region comparisons using abundance‐ and incidence‐based measures of beta‐diversity, and in across‐region comparisons using incidence‐based measures. Physical and biotic characteristics of seagrass meadows also influenced fish beta‐diversity. Biotic habitat characteristics including seagrass biomass and shoot density were more differentiated among high disturbance sites, potentially indicative of a perturbed environment. Indicator species and trait analyses revealed fishes associated with low disturbance sites had characteristics including stenotopy, lower swimming ability, and egg guarding behavior. Our study is the first to show biotic homogenization of fishes across seagrass meadows within areas of relatively high human impact. These results support the importance of targeting conservation efforts in low anthropogenic disturbance areas across land‐ and seascapes, as well as managing anthropogenic impacts in high activity areas.  相似文献   

13.
1. Organisms can impact ecosystems via multiple pathways, often with positive and negative impacts on inhabitants. Understanding the context dependency of these types of impacts remains challenging. For example, organisms may perform different functions at different densities. 2. Anadromous salmon accumulate > 99% of their lifetime growth in marine ecosystems, and then return to spawn, often at high densities, in relatively confined freshwaters. While previous research has focused on how salmon nutrients can fertilize benthic communities, we examined how an ecosystem engineer, sockeye salmon Oncorhynchus nerka, influences seasonal dynamics of stream benthic communities through their nest-digging activities in south-western Alaska, USA. Benthic invertebrate and algal abundance were quantified every 7-14 days during the open water seasons of 10 streams in riffle and run habitats across multiple years, leading to 25 different stream-year combinations that spanned a large gradient of salmon density. 3. In streams with few or no salmon, benthic algal and insect biomass were fairly constant throughout the season. However, in streams with more than 0.1 salmon m(-2), algal and insect biomass decreased by an average of 75-85% during salmon spawning. Algal biomass recovered quickly following salmon disturbance, occasionally reaching pre-salmon biomass. In contrast, in streams with more than 0.1 salmon m(-2), aquatic insect populations did not recover to pre-salmon levels within the same season. We observed no positive impacts of salmon on algae or insects via fertilization from carcass nutrients. 4. Salmon, when their populations exceed thresholds in spawning density, are an important component of stream disturbance regimes and influence seasonal dynamics of benthic communities. Human activities that drive salmon densities below threshold densities, as has likely happened in many streams, will lead to altered seasonal dynamics of stream communities. Human activities that alter animal populations that are sources of biogenic disturbance can result in shifts in community dynamics.  相似文献   

14.
Both habitat heterogeneity and disturbance can profoundly influence ecological systems at many levels of biological and ecological organization. However, the joint influences of heterogeneity and disturbance on temporal variability in communities have received little attention despite the intense homogenizing influence of human activity. I performed a field manipulation of substrate heterogeneity in a small New England stream, and measured changes in benthic macroinvertebrate communities for 100 days—a period that included both a severe drought and a flood. Generally, community variability decreased with increasing substrate heterogeneity. However, within sampling intervals, this relationship tended to fluctuate through time, apparently tracking changes in hydrology. At the beginning of the experiment, community temporal variability clearly decreased along a gradient of increasing substrate heterogeneity—a result consistent with an observational study performed the previous year. During the subsequent weeks, droughts and flooding created exceptionally high variability in both hydrology and benthic macroinvertebrate community structure resulting in the disappearance of this relationship. However, during the last weeks of the experiment when hydrologic conditions were relatively more stable, the negatively sloped relationship between community temporal variability and habitat heterogeneity reemerged and mimicked relationships observed both early in the experiment and in the previous year’s study. High habitat heterogeneity may promote temporal stability through several mechanisms including stabilization of resources and increased refugia from minor disturbances or predation. However, the results of this experiment suggest that severe disturbance events can create large-scale environmental variability that effectively swamps the influence of habitat heterogeneity, illustrating that a thorough understanding of community temporal variability in natural systems will necessarily consider sources of environmental variability at multiple spatial and temporal scales. Handling editor: L. M. Bini  相似文献   

15.
《Ecological Indicators》2008,8(4):417-424
We tested whether macrobenthic community condition varies significantly with water depth in a variety of regions of Chesapeake Bay, USA. Benthic community condition was characterized using the Benthic Index of Biotic Integrity (B-IBI) previously developed for the Bay. We applied two water depth thresholds intended to emphasize the ecological importance and/or anthropogenic impacts upon shallow-water regions. The first threshold of 2 m emphasizes restoring and supporting submerged aquatic vegetation while the second threshold of 4 m emphasizes the zone of maximum anthropogenic impact upon natural ecosystem functions. An a priori expectation is that benthic community condition may worsen with increasing depth, specifically in regions (1) where water column stratification at depth results in prolonged low dissolved oxygen levels or (2) where net deposition at depth results in higher levels of hydrophobic, sediment-bound contaminants. Samples collected from a major tributary of Chesapeake Bay, the York River estuary, spanned the entire salinity range from tidal freshwater to polyhaline. We also tested the shallow-water depth thresholds using data from the Virginia Mainstem of Chesapeake Bay and the Southern Branch of the Elizabeth River. These two polyhaline regions are characterized as having the best and worst benthic community condition in Chesapeake Bay. At the scale of the entire tidal York River system, there were no significant differences in benthic community condition with water depth. However, two salinity regions, low mesohaline and polyhaline, had significant depth effects with the shallowest water depth zone significantly different from the other two depth regions. For the low mesohaline region benthic community condition was worse at the shallowest depth and for the polyhaline region the shallowest depth was better comparing the three depth regions. No depth-related differences in the B-IBI were found for the two additional Chesapeake Bay strata, the Virginia Mainstem characterized with the lowest levels of benthic community degradation and for the Southern branch of the Elizabeth River, characterized by the highest levels of benthic community degradation. We conclude that the ecological state of Chesapeake Bay subtidal benthic communities is adequately characterized by randomly sampling all depths without further stratification into shallow and deeper regions.  相似文献   

16.
Anticipating future changes of an ecosystem's dynamics requires knowledge of how its key communities respond to current environmental regimes. The Great Barrier Reef (GBR) is under threat, with rapid changes of its reef‐building hard coral (HC) community structure already evident across broad spatial scales. While several underlying relationships between HC and multiple disturbances have been documented, responses of other benthic communities to disturbances are not well understood. Here we used statistical modelling to explore the effects of broad‐scale climate‐related disturbances on benthic communities to predict their structure under scenarios of increasing disturbance frequency. We parameterized a multivariate model using the composition of benthic communities estimated by 145,000 observations from the northern GBR between 2012 and 2017. During this time, surveyed reefs were variously impacted by two tropical cyclones and two heat stress events that resulted in extensive HC mortality. This unprecedented sequence of disturbances was used to estimate the effects of discrete versus interacting disturbances on the compositional structure of HC, soft corals (SC) and algae. Discrete disturbances increased the prevalence of algae relative to HC while the interaction between cyclones and heat stress was the main driver of the increase in SC relative to algae and HC. Predictions from disturbance scenarios included relative increases in algae versus SC that varied by the frequency and types of disturbance interactions. However, high uncertainty of compositional changes in the presence of several disturbances shows that responses of algae and SC to the decline in HC needs further research. Better understanding of the effects of multiple disturbances on benthic communities as a whole is essential for predicting the future status of coral reefs and managing them in the light of new environmental regimes. The approach we develop here opens new opportunities for reaching this goal.  相似文献   

17.
浅水湖泊污染负荷能力较低,对环境变化敏感,过度开发会导致生态功能明显退化甚至发生稳态转变.本研究通过提取云南18个浅水湖泊的表层沉积物枝角类信息,识别枝角类群落的空间分布特征并甄别其群落构建的环境驱动因子.结果表明:表层沉积物枝角类群落的地理分布存在显著的空间差异,滇西北的枝角类群落以底栖物种占绝对优势,而随着营养水平的增加,滇东南湖泊枝角类优势物种由底栖型向浮游型转变.统计分析表明,海拔和水体总磷水平是驱动群落分布空间差异的关键环境因子,分别独立解释了枝角类群落变化的22.0%和7.7%,反映了海拔梯度及其指示的气候环境过程是控制枝角类群落空间分布的重要因子.同时枝角类群落随营养水平的变化出现差异性的结构特征,可能指示了流域开发、污染物输入、水生植被变化等人类活动扰动的综合影响.同时,海拔和总磷水平表现出显著的相互作用并解释了枝角类群落变化的26.3%,指示了云南地区的人类活动强度随着海拔梯度呈现显著的空间差异,并通过营养盐输入等过程调控了枝角类群落的结构特征.  相似文献   

18.
Aim To identify the most important environmental drivers of benthic macroinvertebrate assemblages in boreal springs at different spatial scales, and to assess how well benthic assemblages correspond to terrestrially derived ecoregions. Location Finland. Methods Benthic invertebrates were sampled from 153 springs across four boreal ecoregions of Finland, and these data were used to analyse patterns in assemblage variation in relation to environmental factors. Species data were classified using hierarchical divisive clustering (twinspan ) and ordinated using non‐metric multidimensional scaling. The prediction success of the species and environmental data into a priori (ecoregions) and a posteriori (twinspan ) groups was compared using discriminant function analysis. Indicator species analysis was used to identify indicator taxa for both a priori and a posteriori assemblage types. Results The main patterns in assemblage clusters were related to large‐scale geographical variation in temperature. A secondary gradient in species data reflected variation in local habitat structure, particularly abundance of minerogenic spring brooks. Water chemistry variables were only weakly related to assemblage variation. Several indicator species representing southern faunistic elements in boreal springs were identified. Discriminant function analysis showed poorer success in classifying sites into ecoregions based on environmental than on species data. Similarly, when classifying springs into the twinspan groups, classification based on species data vastly outperformed that based on environmental data. Main conclusions A latitudinal zonation pattern of spring assemblages driven by regional thermal conditions is documented, closely paralleling corresponding latitudinal patterns in both terrestrial and freshwater assemblages in Fennoscandia. The importance of local‐scale environmental variables increased with decreasing spatial extent. Ecoregions provide an initial stratification scheme for the bioassessment of benthic macroinvertebrates of North European springs. Our results imply that climate warming, landscape disturbance and degradation of spring habitat pose serious threats to spring biodiversity in northern Europe, especially to its already threatened southern faunistic elements.  相似文献   

19.
Disturbance is one of the mechanisms which counteract competitive exclusion of populations in resource-limited communities, thereby facilitating coexistence and maintaining community species diversity. The intermediate disturbance hypothesis predicts maximum diversity at intermediate disturbance intensities and frequencies. This paper reports results of an experimental test of this hypothesis using a coastal benthic community of rhizopods (Protozoa: Rhizopoda), and experimental sediment resuspension as a simulated natural disturbance. We carried out two experiments of 5 d duration which focussed on the effects of resuspension intensity and frequency, respectively, on the abundance, species richness and on the Shannon-Weaver diversity index of rhizopod communities in surface sediments of natural sediment cores from the coastal southern Baltic. Care was taken to adjust the experimental treatments to the natural disturbance regime in this area.
Twenty-four and 28 rhizopod species were present during the intensity and frequency experiment, respectively. Small bacterivorous rhizopods of the Vannellidae, Cochliopodidae, Paramoebidae and Rhizopoda incertae sedis dominated the communities during both experiments. Rhizopod abundance, species richness and diversity increased towards the end of the intensity experiment, but they did not show effects of disturbance intensity. Similarly, no effects of disturbance frequency were found during the frequency experiment. Our results indicate that coexistence and community diversity maintenance in benthic rhizopod communities, and probably in benthic heterotrophic protistan communities in general, may rely on different mechanisms than intermediate disturbance, such as trophic niche separation and high rates of dispersal and colonisation.  相似文献   

20.
Coastal marine systems are currently subject to a variety of anthropogenic and climate-change-induced pressures. An important challenge is to predict how marine sediment communities and benthic biogeochemical cycling will be affected by these ongoing changes. To this end, it is of paramount importance to first better understand the natural variability in coastal benthic biogeochemical cycling and how this is influenced by local environmental conditions and faunal biodiversity. Here, we studied sedimentary biogeochemical cycling at ten coastal stations in the Southern North Sea on a monthly basis from February to October 2011. We explored the spatio-temporal variability in oxygen consumption, dissolved inorganic nitrogen and alkalinity fluxes, and estimated rates of nitrification and denitrification from a mass budget. In a next step, we statistically modeled their relation with environmental variables and structural and functional macrobenthic community characteristics. Our results show that the cohesive, muddy sediments were poor in functional macrobenthic diversity and displayed intermediate oxygen consumption rates, but the highest ammonium effluxes. These muddy sites also showed an elevated alkalinity release from the sediment, which can be explained by the elevated rate of anaerobic processes taking place. Fine sandy sediments were rich in functional macrobenthic diversity and had the maximum oxygen consumption and estimated denitrification rates. Permeable sediments were also poor in macrobenthic functional diversity and showed the lowest oxygen consumption rates and only small fluxes of ammonium and alkalinity. Macrobenthic functional biodiversity as estimated from bioturbation potential appeared a better variable than macrobenthic density in explaining oxygen consumption, ammonium and alkalinity fluxes, and estimated denitrification. However, this importance of functional biodiversity was manifested particularly in fine sandy sediments, to a lesser account in permeable sediments, but not in muddy sediments. The strong relationship between macrobenthic functional biodiversity and biogeochemical cycling in fine sandy sediments implies that a future loss of macrobenthic functional diversity will have important repercussions for benthic ecosystem functioning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号