首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is well established that mannosylphosphoryldolichol participates in the synthesis of N-linked glycoproteins by donating mannosyl residues to oligosaccharide-lipid intermediates. It has been suggested that mannosylphosphorylretinol also is involved in glycoprotein biosynthesis. We conclude that one synthase catalyzes the synthesis of both mannosylphosphoryldolichol and mannosylphosphorylretinol in rat liver tissue and Chinese hamster ovary cells, based on the following results. 1) The enzyme in rat liver microsomes that synthesizes mannosylphosphoryldolichol and mannosylphosphorylretinol is inactivated at the same rate at 55 degrees C. 2) In membranes of both rat liver and Chinese hamster ovary cells, exogenous dolichyl phosphate and retinyl phosphate compete with each other for mannosyl-lipid synthesis. However, in both systems adding exogenous retinyl phosphate has no effect on the synthesis of mannosylphosphoryldolichol from endogenous dolichyl phosphate in the membranes. 3) Membranes prepared from a mutant of Chinese hamster ovary cells which is devoid of mannosylphosphoryldolichol synthase lack the ability to synthesize mannosylphosphorylretinol.  相似文献   

2.
A comparison has been made of the enzymes catalyzing the transfer of mannose, glucose and N-acetylglucosamine from, respectively, GDPmannose, UDP-glucose and UDP-N-acetylglucosamine to endogenous dolichol phosphate (Dol-P) in liver Golgi membranes. Evidence is presented with suggests that all three reactions utilize the same pool of Dol-P. The transfer of mannose from GDP-Man to Dol-P is not inhibited by 0.1 mM UDP or UMP; 0.1 mM GDP did block the accumulation of mannose in Dol-P-Man. The net transfer of glucose and N-acetylglucosamine to Dol-P is prevented by 0.1 mM UDP but not 0.1 mM GDP. UDPglucose inhibits the reverse of the glucose transfer reaction but not the reverse of the N-acetylglucosamine or mannose trasfer reaction. On the basis of this, and other data, it is concluded that the three sugar transfer reactions utilize separate enzymes.  相似文献   

3.
A membrane fraction from Saccharomyces cerevisiae as well as a mannosyltransferase purified therefrom was shown to catalyze the transfer of mannose from GDPmannose to retinyl phosphate. The product formed has chromatographic and chemical properties characteristic for retinylphosphate mannose. The enzyme requires divalent cations. Mg2+ is more effective than Mn2+ with an optimum concentration around 25 mM. Amphomycin at a concentration of 0.1 mg/ml inhibits the reaction to 50%. Glycosyl transfer was specific for mannose residues from GDPmannose and did not occur with dolichylphosphate mannose nor with UDP galactose; UDPglucose is a poor donor. Formation of retinylphosphate mannose is inhibited by dolichyl phosphate. This observation as well as similarities between retinylphosphate mannose and dolichylphosphate mannose synthesis in respect to ion requirement, inhibition by amphomycin are suggestive that both reactions are catalyzed by one and the same enzyme. In experiments studying the glycosyl donor specificity in the assembly of lipid-linked oligosaccharide intermediates involved in N-glycosylation of proteins, it could be demonstrated that retinylphosphate mannose can replace dolichylphosphate mannose in the final steps of mannosylation.  相似文献   

4.
A comparison has been made of the enzymes catalyzing the transfer of manose, glucose and N-acetylglucosamine from, respectively, GDPmannose, UDP-glucose and UDP-N-acetylglucosamine to endogenous dolichol phosphate (Dol-P) in liver Golgi membranes. Evidence is presented which suggests that all three reactions utilize the same pool of Dol-P. The transfer of mannose from GDP-Man to Dol-P is not inhibited by 0.1 mM UDP or UMP; 0.1 mM GDP did block the accumulation of mannose in Dol-P-Man. The net transfer of glucose and N-acetylglucosamine to Dol-P is prevented by 0.1 mM UDP but not 0.1 mM GDP. UDPglucose inhibits the reverse of the glucose transfer reaction but not reverse of the N-acetylglucosamine or mannose transfer reaction. On the basis of this, and other data, it is concluded that the three sugar transfer reactions utilize separate enzymes.  相似文献   

5.
Dolichyl mannosyl phosphate and GDPmannose were active substrates for the transfer of mannose to methyl-α-d-mannose, p-nitrophenyl-α-d-mannose, and free mannose with rat liver microsomal membranes. The products formed during dolichyl mannosyl phosphate incubation with methyl-α-d-mannose or with mannose were α-linked. The dissaccharides formed by incubation of dolichyl mannosyl phosphate or GDPmannose with mannose were identified by paper chromatography and electrophoresis as mannose-α-1,2-mannose and mannose-α-1,3-mannose. Synthesis of each product was dependent on the assay conditions used and was most markedly affected by the presence of detergent. Transfer of mannose from either substrate to form mannose-α-1,3-mannose was severely inhibited by Triton X-100.  相似文献   

6.
Dolichyl mannosyl phosphate and GDPmannose were active substrates for the transfer of mannose to methyl-alpha-D-mannose, p-nitrophenyl-alpha-D-mannose, and free mannose with rat liver microsomal membranes. The products formed during dolichyl mannosyl phosphate incubation with methyl-alpha-D-mannose or with mannose were alpha-linked. The disaccharides formed by incubation of dolichyl mannosyl phosphate or GDPmannose with mannose were identified by paper chromatography and electrophoresis as mannose-alpha-1,2-mannose and mannose-alpha-1,3-mannose. synthesis of each product was dependent on the assay conditions used and was most markedly affected by the presence of detergent. Transfer of mannose from either substrate to form mannose-alpha-1,3-mannose was severely inhibited by Triton X-100.  相似文献   

7.
Increased incorporation of mannose into endogenous glycoprotein fractions has been found in whole cell lysates and crude membrane preparations of cultured skin fibroblasts from patients with cystic fibrosis (1.3–2.3-times normal) when GDP[14C]mannose served as the mannosyl donor. In contrast, the incorporation of mannose from GDPmannose into lipid fractions containing dolichol phosphate and dolichol pyrophosphate oligosaccharides as well as the incorporation of mannose from dolichol phospho[3H]mannose into both glycoproteins and dolichol derivatives were not significantly different among cell preparations from patients with cystic fibrosis and normal controls. Mannosyltransferase activity toward exogenous glycoproteins as well as the activities of soluble and membranous α-mannosidase and β-mannosidase appeared to be normal and could not account for the observed differences. The altered incorporation of mannose into endogenous glycoprotein may reflect changes in glycosylation processes other than mannosylation.  相似文献   

8.
The reaction of GDP[14C]-mannose with dolichol phosphate (Dol-P) in hepatic microsomes is characterized by an initial brief period of relatively rapid Dol-P-[14C]-mannose synthesis. The time course of this 1--3 min period of rapid synthesis follows approximate first order kinetics. However, the rate of reaction does not decrease to zero as predicted by the kinetics of the initial period of synthesis, but continues instead at a slow, steadily decreasing, rate. Examination of the time course of Dol-P-mannose synthesis for different concentrations of GDP[14C]-mannose revealed that the extrapolated final level of Dol-P-mannose synthesized is increased when the concentration of GDPmannose is raised. These data, plus those derived from studies of the reverse reaction, suggest that the non-linear time course for the synthesis of Dol-P-mannose is due in part to the reaction approaching equilibrium between the forward and reverse reactions. The effects of Mn++ on the time course of the forward and reverse reaction are complex and suggest that the Mn++ complexes of both GDPmannose and GDP are poorer substrates for the enzyme than the free nucleotides. Perturbations of the lipid environment of the microsomal membrane by treatment with phospholipase A, detergent, sonication, or alkaline pH lead to a decrease in the final level of Dol-P-mannose synthesized, but do not affect the time required for half maximal labeling. When the reverse reaction was investigated in phospholipase A-treated microsomes, the final extent of the reaction was also reduced. These data suggest that perturbation of the membrane lipid environment decreases in some undefined way the availability of Dol-P and Dol-P-mannose to enzyme.  相似文献   

9.
A particulate enzyme fraction isolated from yeast (Hansenula holstii) catalyzes the transfer of mannose from GDPmannose to endogenous lipid acceptors. Kinetic studies are presented which suggest that one of the mannolipids is a precursor to cell wall mannan. The solubility and chromatographic properties, the stability to mild alkali, and the release of mannose by mild acid hydrolysis are characteristic of polyisoprenyl phosphoryl mannose. Addition of dolichol phosphate to the enzyme system stimulates the synthesis of a mannolipid with properties similar to that synthesized from endogenous lipid. That the exogenous dolichol phosphate was acting as a mannosyl acceptor was demonstrated by showing that dolichol [32P]phosphate was converted to dolichol [32P]phosphate mannose.  相似文献   

10.
When pig liver microsomal preparations were incubated with GDP-[14C]mannose, 10–40% of the 14C was transferred to mannolipid and 1–3% to mannoprotein. The transfer to mannolipid was readily reversible and GDP was one of the products of the reaction. It was possible to reverse the reaction by adding excess of GDP and to show the incorporation of [14C]GDP into GDP-mannose. When excess of unlabelled GDP-mannose was added to a partially completed incubation there was a rapid transfer back of [14C]mannose from the mannolipid to GDP-mannose. The other product of the reaction, the mannolipid, had the properties of a prenol phosphate mannose. This was illustrated by its lability to dilute acid but stability to dilute alkali, and by its chromatographic properties. Dolichol phosphate stimulated the incorporation of [14C]mannose into both mannolipid and into protein, although the former effect was larger and more consistent than the latter. The incorporation of exogenous [3H]dolichol phosphate into the mannolipid, and its release, accompanied by mannose, on treatment of the mannolipid with dilute acid, confirmed that exogenous dolichol phosphate can act as an acceptor of mannose in this system. It was shown that other exogenous polyprenol phosphates (but not farnesol phosphate or cetyl phosphate) can substitute for dolichol phosphate in this respect but that they are much less efficient than dolichol phosphate in stimulating the transfer of mannose to protein. Since pig liver contained substances with the chromatographic properties of both dolichol phosphate and dolichol phosphate mannose, which caused an increase in transfer of [14C]mannose from GDP-[14C]mannose to mannolipid, it was concluded that endogenous dolichol phosphate acts as an acceptor of mannose in the microsomal preparation. The results indicate that the mannolipid is an intermediate in the transfer of mannose from GDP-mannose to protein. Some 4% of the mannose of a sample of mannolipid added to an incubation was transferred to protein. A scheme is proposed to explain the variations with time in the production of radioactive mannolipid, mannoprotein, mannose 1-phosphate and mannose from GDP-[14C]mannose that takes account of the above observations. ATP, ADP, UTP, GDP, ADP-glucose and UDP-glucose markedly inhibited the transfer of mannose to the mannolipid.  相似文献   

11.
White matter membrane preparations from pig brain catalyze the transfer of [14C]mannose from exogenous [14C]mannosylphosphoryldolichol into an endogenous oligosaccharide lipid. Under the same incubation conditions label is also incorporated into endogenous membrane glycoproteins. The enzymatic labeling of both classes of endogenous acceptors is stimulated by the addition of Ca2+. Several enzymatic properties of the mannosyltransferase activity responsible for the transfer of mannose from mannosylphosphoryldolichol into the oligosaccharide lipid intermediate have been examined. The [Man-14C] oligosaccharide lipid synthesized by this in vitro system has the solubility, hydrolytic and chromatographic characteristics of a pyrophosphate-linked oligosaccharide derivative of dolichol. The free [Man-14C]oligosaccharide liberated from the carrier lipid by mild acid treatment is estimated to contain 8 glycose units. All of the [14C]mannosyl units in the [Man-14C]oligosaccharide derived from exogenous [14C]mannosylphosphoryldolichol are released as free [14C]mannose by an α-mannosi-dase. No [14C]mannose is released during incubation with a β-mannosidase. The presence of an N,N′-diacetylchitobiose unit at the reducing end of the lipid-bound [Man-14C]oligosaccharide is indicated by its susceptibility to digestion by endo-β-N-acetylglucosaminidase H. Pronase digestion of the enzymatically labeled [Man-14C]glycoprotein yields a single [Man-14C]gly-copeptide fraction on Bio-Gel P-6 that appears to be slightly larger than the free [Man-14C]oligosac-charide released from the carrier lipid by mild acid hydrolysis. The [Man-14C]glycopeptide is cleaved by endo-β-N-acetylglucosaminidase H, and the neutral [Man-14C]oligosaccharide product appears to be identical to the product formed when the lipid-bound [Man-14C]oligosaccharide is degraded by the endoglycosidase. The glycopeptide linkage in the [Man-14C]glycoprotein is stable to mild alkali treatment. These results are consistent with the dolichol-linked [Man-14C]oligosaccharide, mannosy-lated via exogenous [14C]mannosylphosphoryldoiichol, being subsequently transferred en bloc from dolichyl pyrophosphate to asparagine residues in endogenous membrane polypeptide acceptors. SDS-polyacrylamide gel electrophoresis of the [Man-14C]glycoprotein, labeled when white matter membranes are incubated with [14C]mannosylphosphoryldolichol. revealed a major labeled polypeptide with an apparent mol wt of 24,000. A minor labeled membrane glycoprotein is also seen, having an apparent mol wt of 105,000.  相似文献   

12.
The initial rate of mannosylphosphoryldolichol formation by pig brain white matter is 2.9 to 3.3-fold higher in membranes from actively myelinating animals as compared to similar preparations from adults. Exogenous dolichyl monophosphate stimulated mannolipid synthesis in both preparations indicating that the level of the acceptor lipid was rate-limiting. The relative enhancement, however, was higher in membranes from adult animals reducing the ratio of initial rates for young/adult. Exogenous dolichyl monophosphate also stimulated the labeling of a mannosylated oligosaccharide lipid and mannoproteins, including a polypeptide (apparent molecular weight of 100,000) not labeled by gray matter membranes.  相似文献   

13.
Yeast membranes incorporate radioactivity from GDP[14C]mannose into various glycolipids. These can be separated by thin layer chromatography into at least seven components.The major component has been identified previously as dolichyl monophosphate mannose. Only one additional component is not sensitive to mild alkaline saponification, but is hydrolyzed instead under mild acidic conditios. This latter glycolipid has all the characteristics of a polyprenyl diphosphate oligosaccharide with a sugar moiety of more than 12 hexose units. It runs like dolichyl diphosphate derivatives on a DEAE column and evidence is presented that the lipid moiety is a polyprenol.When radioactive Dol-PP-di-N-acetylchitobiose is incubated with yeast membranes in the presence of non-radioactive GDPmannose a small amount of a larger lipid oligosaccharide is formed besides the previously-described Dol-PP-(GlcNAc2 mannose. This oligosaccharide has all the properties of the glycolipid described above. Its formation is greatly increased when Triton is omitted from the incubation. Radioactivity of the polyprenyl diphosphate [14C]oligosaccharide is transferred to ethanol-insoluble material, most likely endogenous membrane glycoproteins.  相似文献   

14.
A particulate fraction from porcine aorta catalyzed the incorporation of N-acetylglucosamine (GlcNAc) from UDP-[3H]GlcNAc into both GlcNAc-pyrophosphorylpolyprenol and GlcNAc-GlcNAc-pyrophosphorylpolyprenol. This transfer utilized endogenous lipid and required a divalent cation. Mn2+ was the best metal ion and was optimum at 2.3 mM. This same particulate fraction was previously shown to transfer mannose from GDP-[14C]mannose to endogenous lipid to form mannosylphosphorylpolyprenol (Chambers, J., and Elbein, A.D. (1975) J. Biol. Chem. 250, 6904-6915). Both the GlcNAc activities and the mannose activity were solubilized by treatment of the particulate fraction with the detergent Nonidet P-40. The enzymes were partially purified by chromatography on DEAE-cellulose and on Sephadex G-200. These soluble enzymes required the addition of acceptor lipid for activity. An acidic lipid fraction, isolated from pig liver and having the properties of dolichyl phosphate, was active with either the GlcNAc or the mannose transferase. Chemically synthesized dolichyl phosphate was also active with either of these enzymes. The products formed from either GlcNAc or mannose by the soluble transferases were similar to those formed by the particulate enzyme. Thus the major product formed from UDP-[3H]GlcNAc was GlcNAc-pyrophosphoryldolichol with small amounts of the disaccharide-lipid while the product formed from GDP-[14C]mannose was mannosylphosphoryldolichol.  相似文献   

15.
Oviduct membranes from chicks treated with diethylstilbestrol have a fully induced level of an enzyme that transfers mannose from GDP-Man to form mannosylphosphoryldolichol (Lucas, J.J. and Levin, E. (1977) J. Biol. Chem.252, 4330--4336). Withdrawal of diethylstilbestrol for 5 days causes a decrease in oviduct weight, lysozyme, and 60% of the mannosyltransferase activity. Chicks withdrawn from treatment for 10 days followed by secondary stimulation with diethylstilbestrol exhibit a more rapid increase in the mannosyltransferase activity than chicks that have not been previously treated with diethylstilbestrol. Further experiments indicate that the decrease in mannosylphosphoryldolichol synthesis after hormonal withdrawal may be the result of decreased levels of endogenous dolichyphosphate in the membrane preparations.  相似文献   

16.
The transfer of mannose from GDP-mannonse to exogenous glycopeptides and simple glycosides has been shown to be carried out by calf thyroid particles (Adamany, A. M., and Spiro, R. G. (1975) J. Biol. Chem. 250, 2830-2841). The present investigation indicates that this mannosylation process is accomplished through two sequential enzymatic reactions. The first involves the transfer of mannose from the sugar nucleotide to an endogenous acceptor to form a compound which has the properties of dolichyl mannosyl phosphate, while in the properties of dolichyl mannosyl phosphate, while in the second reaction this mannolipid serves as the glycosyl donor to exogenous acceptors. The particle-bound enzyme which catalyzed the first reaction utilized GDP-mannose (Km = 0.29 microM) as the most effective mannosyl donor, required a divalent cation, preferably manganese or calcium, and acted optimally at pH 6.3. Mannolipid synthesis was reversed by addition of GDP and a ready exchange of the mannose moiety was observed between [14C]mannolipid and unlabeled GDP-mannose. Exogenously supplied dolichyl phosphate, and to a lesser extent ficaprenyl phosphate, served as acceptors for the transfer reaction. The 14C-labeled endogenous lipid had the same chromatographic behavior as synthetic dolichyl mannosyl phosphate and enzymatically mannosylated dolichyl phosphate. The mannose component in the endogenous lipid was not susceptible to reduction with sodium borohydride and was released by mild acid hydrolysis. Alkaline treatment of the mannolipid released a phosphorylated mannose with properties consistent with that of mannose 2-phosphate. The formation of this compound which can arise from a cyclic 1,2-phosphate indicated, on the basis of steric considerations, that the mannose is present in beta linkage to the phosphate of the lipid. An intermediate role of the mannolipid in the glycosylation of exogenous acceptors was suggested by the observation that addition of dolichyl phosphate to thyroid particles resulted in a marked enhancement of mannose transfer from GDP-mannose to methyl-alpha-D-mannopyranoside acceptor while the presence of the glycoside caused a decrease in the mannolipid level. The glycosyl donor function of the polyisoprenyl mannosyl phosphate in the second reaction of the mannosylation sequence could be directly demonstrated by the transfer of [14C]mannose from purified endogenous mannolipid to either methyl-alpha-D-mannoside or dinitrophenyl unit A glycopeptides by thyroid enzyme in the presence of Triton X-100. The mannosylation of the glycoside was not inhibited by EDTA whereas the transfer of mannose to glycopeptide was cation-dependent. While dolichyl [14C]mannosyl phosphate, prepared from exogenous dolichyl phosphate, served as a donor of mannose to exogenous acceptor, this function could not be fulfilled by ficaprenyl [14C]mannosyl phosphate. The two-step reaction sequence carried out by thyroid enzymes which leads to the formation of an alpha-D-manno-pyranosyl-D-mannose linkage in exogenous acceptors by transfer of mannose from GDP-mannose through a beta-linked intermediate appears to involve a double inversion of anomeric configuration of this sugar.  相似文献   

17.
D D Carson  J P Tang  G Hu 《Biochemistry》1987,26(6):1598-1606
The steroid hormone 17 beta-estradiol dramatically induces uterine N-linked glycoprotein assembly [Dutt, A., Tang, J.-P., Welply, J. K., & Carson, D. D. (1986) Endocrinology (Baltimore) 118, 661-673]. To determine the role that dolichyl phosphate availability plays in this induction, we studied the effects of estrogen priming on the content of dolichyl phosphate and the distribution of dolichyl phosphate among various glycolipids in uteri. Dolichol-linked saccharides were metabolically labeled to equilibrium with either [3H]glucosamine or [3H]mannose and extracted from primary explants of uterine tissue. The amount of dolichol-linked saccharide was calculated from the specific radioactivity determined for the corresponding sugar nucleotides extracted from the tissues. The major dolichol-linked saccharides identified were mannosylphosphoryldolichol (MPD), oligosaccharylpyrophosphoryldolichol (OSL), and N,N'-diacetylchitobiosylpyrophosphoryldolichol (CBL). Estrogen increased the levels of MPD and OSL 4-fold; however, CBL levels did not change. After 3 days of treatment, the levels of these glycolipids were very similar to those in uteri from pregnant mice. Remarkably, MPD constituted 90-95% of dolichol-linked saccharides detected under all conditions. The tissue contents of total dolichyl phosphate and alkali-labile dolichyl phosphate, presumably MPD, were estimated by liquid chromatography. The levels of alkali-labile dolichyl phosphate determined in this way were in good agreement with the values estimated for MPD by metabolic labeling; moreover, alkali-labile dolichyl phosphate constituted 50-98% of the total dolichyl phosphate pool. The variations in MPD content depended upon the steroid hormone influence, most notably that of estrogen.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
A particulate enzyme from bovine aorta catalyzes the incorporation of mannose from GDP-D-[14C]mannose into three products as follows: 1. Most of the radioactivity which is incorporated in short term incubations is into a product that is soluble in CHCl3/CH3OH (2/1, v/v). This product was purified by chromatography on DEAE-cellulose and Sephadex LH-20. The purified glycolipid was stable to alkaline saponification but released [14C]mannose when subjected to mild acid hydrolysis (1/2 = 7 min at 100 degrees in 0.01 N HCl). The purified glycolipid had the same mobility on silica gel plates in an acidic, basic, or neutral solvent system as did glycolipid had the same mobility on silica gel plates in an acidic, basic, or neutral solvent system as did authentic dolichyl mannopyranosyl phosphate. The synthesis of the 14C-mannolipid was reversed by the addition of GDP and Mg2+. 2. [14C]mannose is also incorporated, although at a slower rate into products which are soluble in CHCl3/CH3OH/H2O (1/1/0.3, v/v). When the 1/10.3 soluble material was chromatographed on Avicel plates, it gave rise to three distinct radioactive bands which appear to be lipid-linked oligosaccharides. Mild acid hydrolysis of the 1/10.3 soluble material released water-soluble, neutral 14C-oligosaccharides which eluted from Sephadex G-50 in two or three peaks between the standards cytochrome c and GDP-mannose...  相似文献   

19.
The formation in vivo of lipid-linked oligosaccharides is inhibited by deoxlucose in wild-type BHK cells but not in a cell-line (dGR) selected for resistance towards deoxyglucose. On the other hand, the formation in vitro of lipid-linked oligosaccharides by membranes from dGR (and wild-type) cells is inhibited by GDPddeoxyglucose, the main metabolite responsible for inhibition of protein glycosylation by deoxyglucose. Our results suggest increased pools of GDP mannose and decreased amounts of GDPdeoxyglucose in the mutant cell line. The enlarged ratio of GDPmannose to GDPdeoxyglucos in the dGR cells treated with deoxyglucose is shown to moderate the inhibition of formation of lipid-linked oligosaccharides, and this explains the capacity of the dGR-cells grow in the presence of deoxyglucose.  相似文献   

20.
1. A microsomal enzyme preparation from the yeast Saccharomyces cerevisiae catalyzes the transfer of mannosyl units from GDPmannose to mannose and a number of mannose-containing oligosaccharides and glycosides whereby different glycosidic bonds are formed. 2. Of the compounds tested besides mannose, only those containing an alpha-linked mannosyl unit at the nonreducing position of their molecule were effective as acceptors. Monodeoxyanalogues of mannose as well as alpha-mannose phosphates did not serve as acceptors in the above reaction. 3. The structure of the product formed with mannose as acceptor was determined to be O-alpha-D-mannosyl-(1 leads to 2)-mannose; with alphaMan (1 leads to 6)mannose as the acceptor, the product was alphaMan(1 leads to 6)mannose and with alphaMan-(1 leads to 2)mannose the product was tentatively characterized as a mixture of alphaMan-(1 leads to 3)alphaMan(1 leads to 2)mannose and alphaMan(1 leads to 2)alphaMan(1 leads to 2)mannose. 4. The enzymes catalyzing the formation of different types of glycosidic bonds differed in their acceptor specificity, pH-activity curves and rates of heat denaturation. 5. Radioactive disaccharides were unable to enter the mannan protein molecule in the cell-free system while free radioactive mannose did incorporate into polysaccharide to a minor extent under the same conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号