首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
Myrigalone A (MyA) is a rare flavonoid in fruit leachates of Myrica gale, a deciduous shrub adapted to flood-prone habitats. As a putative allelochemical it inhibits seed germination and seedling growth. Using Lepidium sativum as a model target species, experiments were conducted to investigate how environmental cues modulate MyA's interference with key processes of seed germination. Time course analyses of L. sativum testa and endosperm rupture under different light conditions and water potentials were combined with quantifying testa permeability, endosperm weakening, tissue-specific gibberellin (GA) and abscisic acid (ABA) contents, as well as embryo growth and apoplastic superoxide production important for cell expansion growth. Lepidium sativum testa permeability and early water uptake by imbibition is enhanced by MyA. During late germination, MyA inhibits endosperm weakening and embryo growth, both processes required for endosperm rupture. Inhibition of embryo cell expansion by MyA depends on environmental cues, which is evident from the light-modulated severity of the MyA-mediated inhibition of apoplastic superoxide accumulation. Several important key weakening and growth processes during early and late germination are targets for MyA. These effects are modulated by light conditions and ambient water potential. It is speculated that MyA is a soil seed bank-destroying allelochemical that secures the persistence of M. gale in its flood-prone environment.  相似文献   

4.
The role of abscisic acid (ABA) in the weakening of the endosperm cap prior to radicle protrusion in tomato (Lycopersicon esculentum Mill. cv. Moneymaker) seeds was studied. The endosperm cap weakened substantially in both water and ABA during the first 38 h of imbibition. After 38 h the force required for endosperm cap puncturing was arrested at 0.35 N in ABA, whereas in water a further decrease occurred until the radicle protruded. During the first 2 d of imbibition endo-beta-mannanase activity was correlated with the decrease in required puncture force and with the appearance of ice-crystal-induced porosity in the cell walls as observed by scanning electron microscopy. Prolonged incubation in ABA resulted in the loss of endo-beta-mannanase activity and the loss of ice-crystal-induced porosity, but not in a reversion of the required puncture force. ABA also had a distinct but minor effect on the growth potential of the embryo. However, endosperm cap resistance played the limiting role in the completion of germination. It was concluded that (a) endosperm cap weakening is a biphasic process and (b) inhibition of germination by ABA is through the second step in the endosperm cap weakening process.  相似文献   

5.
6.
Myrica gale L. (sweet gale) fruit leachate contains myrigalone A (MyA), a rare C-methylated dihydrochalcone and putative allelochemical, which is known to be a phytotoxin impeding seedling growth. We found that MyA inhibited Lepidium sativum L. seed germination in a dose-dependent manner. MyA did not affect testa rupture, but inhibited endosperm rupture and the transition to subsequent seedling growth. MyA inhibited micropylar endosperm cap (CAP) weakening and the increase in the growth potential of the radical/hypocotyl region (RAD) of the embryo, both being key processes required for endosperm rupture. We compared the contents of abscisic acid (ABA) and gibberellins in the tissues and found that the major bioactive forms of gibberellin in L. sativum seed tissues were GA(4) and GA(6), while GA(8) and GA(13) were abundant inactive metabolites. MyA did not appreciably affect the ABA contents, but severely interfered with gibberellin metabolism and signaling by inhibiting important steps catalyzed by GA3 oxidase, as well as by interfering with the GID1-type gibberellin signaling pathway. The hormonally and developmentally regulated formation of apoplastic superoxide radicals is important for embryo growth. Specific zones within the RAD were associated with accumulation of apoplastic superoxide radicals and endoreduplication indicative of embryo cell extension. MyA negatively affected both of these processes and acted as a scavenger of apoplastic reactive oxygen species. We propose that MyA is an allelochemical with a novel mode of action on seed germination.  相似文献   

7.
Genipa americana (Rubiaceae) is important for restoration of riparian forest in the Brazilian Cerrado. The objective was to characterize the mechanism and control of germination of G. americana to support uniform seedling production. Morphology and morphometrics of seeds, embryo and endosperm were assessed by light and scanning electron microscopy during germination. Imbibition and germination curves were generated and over the same time interval endosperm digestion and resistance were measured by puncture force analysis and activity assay of endo-β-mannanase (EBM) in water and in abscisic acid (ABA). The gene encoding for EBM was partially cloned and its expression monitored by quantitative real-time-polymerase chain reaction. Embryos displayed growth prior to radicle protrusion. A two-phase increase in EBM activity coincided with the two stages of weakening of the micropylar endosperm. The second stage also coincided with growth of the embryo prior to radicle protrusion. Enzyme activity was initiated in the micropylar endosperm but spread to the lateral endosperm. ABA completely inhibited germination by inhibiting embryo growth, the second stage of weakening and expression of the EBM gene, but EBM activity was not significantly inhibited. This suggests that a specific isoform of the enzyme is involved in endosperm weakening. EBM may cause a general 'softening' of micropylar endosperm cell walls, allowing the embryo to puncture the endosperm as the driving force of the decrease in puncture force.  相似文献   

8.
The mechanism and regulation of coffee seed germination were studied in Coffea arabica L. cv. Rubi. The coffee embryo grew inside the endosperm prior to radicle protrusion and abscisic acid (ABA) inhibited the increase in its pressure potential. There were two steps of endosperm cap weakening. An increase in cellulase activity coincided with the first step and an increase in endo--mannanase (EBM) activity with the second step. ABA inhibited the second step of endosperm cap weakening, presumably by inhibiting the activities of at least two EBM isoforms and/or, indirectly, by inhibiting the pressure force of the radicle. The increase in the activities of EBM and cellulase coincided with the decrease in the force required to puncture the endosperm and with the appearance of porosity in the cell walls as observed by low-temperature scanning electronic microscopy. Tissue printing showed that EBM activity was spatially regulated in the endosperm. Activity was initiated in the endosperm cap whereas later during germination it could also be detected in the remainder of the endosperm. Tissue printing revealed that ABA inhibited most of the EBM activity in the endosperm cap, but not in the remainder of the endosperm. ABA did not inhibit cellulase activity. There was a transient rise in ABA content in the embryo during imbibition, which was likely to be responsible for slow germination, suggesting that endogenous ABA also may control embryo growth potential and the second step of endosperm cap weakening during coffee seed germination.  相似文献   

9.
A current hypothesis is that endo--mannanase activity in the endosperm cap of tomato (Lycopersicon esculentum Mill. cv. Moneymaker) seeds is induced by gibberellin (GA) and weakens the endosperm cap thus permitting radicle protrusion. We have tested this hypothesis. In isolated parts, the expression of endo--mannanase in the endosperm after germination is induced by GAs, but the expression of endo--mannanase in the endosperm cap prior to radicle protrusion is not induced by GAs. Also, abscisic acid (ABA) is incapable of inhibiting endo--mannanase activity in the endosperm cap, even though it strongly inhibits germination. However, ABA does inhibit enzyme activity in the endosperm and embryo after germination. There are several isoforms in the endosperm cap and embryo prior to radicle protrusion that are tissue-specific. Tissue prints showed that enzyme activity in the embryo spreads from the radicle tip to the cotyledons with time after the start of imbibition. The isoform and developmental patterns of enzyme activity on tissueprints are unaffected when seeds are incubated in ABA, even though germination is inhibited. We conclude that the presence of endo--mannanase activity in the endosperm cap is not in itself sufficient to permit tomato seeds to complete germination.Abbreviations ABA cis/trans-abscisic acid - GA(s) gibberellin(s) - IEF isoelectric focussing - pI(s) isoelectric point(s) We thank Dr. Bruce Downie for the seemingly endless but inspiring discussions.  相似文献   

10.
11.
S. P. C. Groot  C. M. Karssen 《Planta》1987,171(4):525-531
The germination of seeds of tomato [Lycopersicon esculentum (L.) Mill.] cv. Moneymaker has been compared with that of seeds of the gibberellin-deficient dwarf-mutant line ga-1, induced in the same genetic background. Germination of tomato seeds was absolutely dependent on the presence of either endogenous or exogenous gibberellins (GAs). Gibberellin A4+7 was 1000-fold more active than commercial gibberellic acid in inducing germination of the ga-1 seeds. Red light, a preincubation at 2°C, and ethylene did not stimulate germination of ga-1 seeds in the absence of GA4+7; however, fusicoccin did stimulate germination independently. Removal of the endosperm and testa layers opposite the radicle tip caused germination of ga-1 seeds in water. The seedlings and plants that develop from the detipped ga-1 seeds exhibited the extreme dwarfy phenotype that is normal to this genotype. Measurements of the mechanical resistance of the surrounding layers showed that the major action of GAs was directed to the weakening of the endosperm cells around the radicle tip. In wild-type seeds this weakening occurred in water before radicle protrusion. In ga-1 seeds a similar event was dependent on GA4+7, while fusicoccin also had some activity. Simultaneous incubation of de-embryonated endosperms and isolated axes showed that wild-type embryos contain and endosperm-weakening factor that is absent in ga-1 axes and is probably a GA. Thus, an endogenous GA facilitates germination in tomato seeds by weakening the mechanical restraint of the endosperm cells to permit radicle protrusion.Abbreviations GA(s) gibberellin(s) - GA3 gibberellic acid  相似文献   

12.
Arabidopsis thaliana is used as a model system to study triacylglycerol (TAG) accumulation and seed germination in oilseeds. Here, we consider the partitioning of these lipid reserves between embryo and endosperm tissues in the mature seed. The Arabidopsis endosperm accumulates significant quantities of storage lipid, and this is effectively catabolized upon germination. This lipid differs in composition from that in the embryo and has a specific function during germination. Removing the endosperm from the wild-type seeds resulted in a reduction in hypocotyl elongation in the dark, demonstrating a role for endospermic TAG reserves in fueling skotomorphogenesis. Seedlings of two allelic gluconeogenically compromised phosphoenolpyruvate carboxykinase1 (pck1) mutants show a reduction in hypocotyl length in the dark compared with the wild type, but this is not further reduced by removing the endosperm. The short hypocotyl phenotypes were completely reversed by the provision of an exogenous supply of sucrose. The PCK1 gene is expressed in both embryo and endosperm, and the induction of PCK1:beta-glucuronidase at radicle emergence occurs in a robust, wave-like manner around the embryo suggestive of the action of a diffusing signal. Strikingly, the induction of PCK1 promoter reporter constructs and measurements of lipid breakdown demonstrate that whereas lipid mobilization in the embryo is inhibited by abscisic acid (ABA), no effect is seen in the endosperm. This insensitivity of endosperm tissues is not specific to lipid breakdown because hydrolysis of the seed coat cell walls also proceeded in the presence of concentrations of ABA that effectively inhibit radicle emergence. Both processes still required gibberellins, however. These results suggest a model whereby the breakdown of seed carbon reserves is regulated in a tissue-specific manner and shed new light on phytohormonal regulation of the germination process.  相似文献   

13.
14.
Endo-beta-mannanase (EC 3.2.1.78) is involved in hydrolysis of the mannan-rich cell walls of the tomato (Lycopersicon esculentum Mill.) endosperm during germination and post-germinative seedling growth. Different electrophoretic isoforms of endo-beta-mannanase are expressed sequentially in different parts of the endosperm, initially in the micropylar endosperm cap covering the radicle tip and subsequently in the remaining lateral endosperm surrounding the rest of the embryo. We have isolated a cDNA from imbibed tomato seeds (LeMAN2) that shares 77% deduced amino acid sequence similarity with a post-germinative tomato mannanase (LeMAN1). When expressed in Escherichia coli, the protein encoded by LeMAN2 cDNA was recognized by anti-mannanase antibody and exhibited endo-beta-mannanase activity, confirming the identity of the gene. LeMAN2 was expressed exclusively in the endosperm cap tissue of tomato seeds prior to radicle emergence, whereas LeMAN1 was expressed only in the lateral endosperm after radicle emergence. LeMAN2 mRNA accumulation and mannanase activity were induced by gibberellin in gibberellin-deficient gib-1 mutant seeds but were not inhibited by abscisic acid in wild-type seeds. Distinct mannanases are involved in germination and post-germinative growth, with LeMAN2 being associated with endosperm cap weakening prior to radicle emergence, whereas LeMAN1 mobilizes galactomannan reserves in the lateral endosperm.  相似文献   

15.
16.
Chen F  Bradford KJ 《Plant physiology》2000,124(3):1265-1274
Expansins are extracellular proteins that facilitate cell wall extension, possibly by disrupting hydrogen bonding between hemicellulosic wall components and cellulose microfibrils. In addition, some expansins are expressed in non-growing tissues such as ripening fruits, where they may contribute to cell wall disassembly associated with tissue softening. We have identified at least three expansin genes that are expressed in tomato (Lycopersicon esculentum Mill.) seeds during germination. Among these, LeEXP4 mRNA is specifically localized to the micropylar endosperm cap region, suggesting that the protein might contribute to tissue weakening that is required for radicle emergence. In gibberellin (GA)-deficient (gib-1) mutant seeds, which germinate only in the presence of exogenous GA, GA induces the expression of LeEXP4 within 12 hours of imbibition. When gib-1 seeds were imbibed in GA solution combined with 100 microM abscisic acid, the expression of LeEXP4 was not reduced, although radicle emergence was inhibited. In wild-type seeds, LeEXP4 mRNA accumulation was blocked by far-red light and decreased by low water potential but was not affected by abscisic acid. The presence of LeEXP4 mRNA during seed germination parallels endosperm cap weakening determined by puncture force analysis. We hypothesize that LeEXP4 is involved in the regulation of seed germination by contributing to cell wall disassembly associated with endosperm cap weakening.  相似文献   

17.
BACKGROUND AND AIMS: Seeds of carob, Chinese senna, date and fenugreek are hard due to thickened endosperm cell walls containing mannan polymers. How the radicle is able penetrate these thickened walls to complete seed germination is not clearly understood. The objective of this study was to determine if radicle emergence is related to the production of endo-beta-mannanase to weaken the mannan-rich cell walls of the surrounding endosperm region, and/or if the endosperm structure itself is such that it is weaker in the region through which the radicle must penetrate. METHODS: Activity of endo-beta-mannanase in the endosperm and embryo was measured using a gel assay during and following germination, and the structure of the endosperm in juxtaposition to the radicle, and surrounding the cotyledons was determined using fixation, sectioning and light microscopy. KEY RESULTS: The activity of endo-beta-mannanase, the major enzyme responsible for galactomannan cell wall weakening increased in activity only after emergence of the radicle from the seed. Thickened cell walls were present in the lateral endosperm in the hard-seeded species studied, but there was little to no thickening in the micropylar endosperm except in date seeds. In this species, a ring of thin cells was visible in the micropylar endosperm and surrounding an operculum which was pushed open by the expanding radicle to complete germination. CONCLUSIONS: The micropylar endosperm presents a lower physical constraint to the completion of germination than the lateral endosperm, and hence its structure is predisposed to permit radicle protrusion.  相似文献   

18.
19.
Wu CT  Bradford KJ 《Plant physiology》2003,133(1):263-273
Class I chitinase (Chi9) and beta-1,3-glucanase (GluB) genes are expressed in the micropylar endosperm cap of tomato (Lycopersicon esculentum) seeds just before radicle emergence through this tissue to complete germination. In gibberellin (GA)-deficient mutant (gib-1) seeds, expression of Chi9 and GluB mRNA and protein is dependent upon GA. However, as expression occurs relatively late in the germination process, we investigated whether the genes are induced indirectly in response to tissue wounding associated with endosperm cap weakening and radicle protrusion. Wounding and methyl jasmonate (MeJA) induced Chi9 expression, whereas ethylene, abscisic acid, sodium salicylate, fusicoccin, or beta-aminobutyric acid were without effect. Chi9 expression occurred only in the micropylar tissues when seeds were exposed to MeJA or were wounded at the chalazal end of the seed. Expression of Chi9, but not GluB, mRNA was reduced in germinating seeds of the jasmonate-deficient defenseless1 tomato mutant and could be restored by MeJA treatment. Chi9 expression during germination may be associated with "wounding" from cell wall hydrolysis and weakening in the endosperm cap leading to radicle protrusion, and jasmonate is involved in the signaling pathway for this response. Among these treatments and chemicals (other than GA), only MeJA and wounding induced a low level of GluB expression in gib-1 seeds. However, MeJA, wounding, and particularly ethylene induced both genes in leaves, whereas GA induced only Chi9 in leaves. Although normally expressed simultaneously during tomato seed germination, Chi9 and GluB genes are regulated distinctly and tissue specifically by hormones and wounding.  相似文献   

20.
Loosening of cell walls is an important developmental process in key stages of the plant life cycle, including seed germination, elongation growth, and fruit ripening. Here, we report direct in vivo evidence for hydroxyl radical (·OH)-mediated cell wall loosening during plant seed germination and seedling growth. We used electron paramagnetic resonance spectroscopy to show that ·OH is generated in the cell wall during radicle elongation and weakening of the endosperm of cress (Lepidium sativum; Brassicaceae) seeds. Endosperm weakening precedes radicle emergence, as demonstrated by direct biomechanical measurements. By 3H fingerprinting, we showed that wall polysaccharides are oxidized in vivo by the developmentally regulated action of apoplastic ·OH in radicles and endosperm caps: the production and action of ·OH increased during endosperm weakening and radicle elongation and were inhibited by the germination-inhibiting hormone abscisic acid. Both effects were reversed by gibberellin. Distinct and tissue-specific target sites of ·OH attack on polysaccharides were evident. In vivo ·OH attack on cell wall polysaccharides were evident not only in germinating seeds but also in elongating maize (Zea mays; Poaceae) seedling coleoptiles. We conclude that plant cell wall loosening by ·OH is a controlled action of this type of reactive oxygen species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号