首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Radiotelemetry was used to assess the distribution and diving behaviour of Rock Shags Phalacrocorax magellanicus and Red-legged Cormorants Phalacrocorax gaimardi breeding in sympatry, and Rock Shags breeding in isolation. When breeding in sympatry there was little overlap in the foraging locations of the two species, with the highest densities of each species separated by 10 km. Red-legged Cormorants fed significantly closer to the breeding colony than did Rock Shags and undertook shorter foraging trips, making almost twice as many foraging trips per day as Rock Shags. Rock Shags breeding in isolation had a shorter foraging range than the birds breeding in sympatry with Red-legged Cormorants and foraging trip duration was significantly shorter. However, the number of feeding trips per day was similar between areas of sympatry and allopatry. Differences in the foraging ecology of Rock Shags in areas of sympatry and allopatry may be due to interspecific competition, which forces niche differentiation. The distance between foraging sites, the speed of movement of the prey, a species tendency to move into prey-depleted areas and the length of the breeding season (during which the birds are constrained to be in the same area) may play critical roles in determining the extent to which differential area use by competitors is a strategy that benefits both parties.  相似文献   

2.
We present data on diving pattern and performance (dive depth, duration, frequency and organization during the foraging trip) in gentoo penguins Pygoscelis papua , obtained using time-depth recorders ( n = 9 birds, 99 foraging trips). These data are used to estimate various parameters of foraging activity, e.g. foraging range, prey capture rates, and are compared in relation to breeding chronology. Foraging trip duration was 6 h and 10 h, and trip frequency 1.0/day and 0.96/day, during the brooding and creche periods, respectively. Birds spent on average 52%of each foraging trip diving. Dive depth and duration were highly bimodal: shallow dives (< 21 m) averaged 4 m and 0.23 min, and deep dives (> 30 m) 80 m and 2.5 min, respectively. Birds spent on average 71%and 25%of total diving time in deep and shallow dives, respectively. For deep dives, dive duration exceeded the subsequent surface interval, but shallow dives were followed by surface intervals 2–3 times dive duration. We suggest that most shallow dives are searching/exploratory dives and most deep dives are feeding dives. Deep dives showed clear diel patterns averaging 40 m at dawn and dusk and 80–90 m at midday. Estimated foraging ranges were 2.3 km and 4.1 km during the brood and creche period, respectively. Foraging trip duration increased by 4 h between the brood and creche periods but total time spent in deep dives (i.e. time spent feeding) was the same (3 h). Of 99 foraging trips, 56%consisted of only one dive bout and 44%of 2–4 bouts delimited by extended surface intervals > 10 min. We suggest that this pattern of diving activity reflects variation in spatial distribution of prey rather than the effect of physiological constraints on diving ability.  相似文献   

3.
The Cape cormorant Phalacrocorax capensis is unusual among cormorants in using aerial searching to locate patchily distributed pelagic schooling fish. It feeds up to 80 km offshore, often roosts at sea during the day and retains more air in its plumage and is more buoyant than most other cormorants. Despite these adaptations to its pelagic lifestyle, little is known of its foraging ecology. We measured the activity budget and diving ecology of breeding Cape cormorants. All foraging took place during the day, with 3.6 ± 1.3 foraging trips per day, each lasting 85 ± 60 min and comprising 61 ± 53 dives. Dives lasted 21.2 ± 13.9 s (maximum 70 s), attaining an average depth of 10.2 ± 6.7 m (maximum 34 m), but variability in dive depth both within and between foraging trips was considerable. The within-bout variation in dive depth was greater when making shallow dives, suggesting that pelagic prey were targeted mainly when diving to <10 m. Diving ecology and total foraging time were similar to other cormorants, but the time spent flying (122 ± 51 min day−1, 14% of daylight) was greater and more variable than other species. Searching flights lasted up to 1 h, and birds made numerous short flights during foraging bouts, presumably following fast-moving schools of pelagic prey. Compared with the other main seabird predators of pelagic fish in the Benguela region, Cape gannets Morus capensis and African penguins Spheniscus demersus , Cape cormorants made shorter, more frequent foraging trips. Their foraging range while feeding small chicks was 7 ± 6 km (maximum 40 km), similar to penguins (10–20 km), but less than gannets (50–200 km). Successful breeding by large colonies depends on the reliable occurrence of pelagic fish schools within this foraging range.  相似文献   

4.
A total of 8772 dive durations were recorded during 117 diving bouts in five Cormorants Phalacrocorax carbo and five Shags Phalacrocorax aristotelis breeding at the Chausey Islands, France. Diet of the birds was assessed by analysis of 526 pellets containing 13,016 otoliths. Radio-tracking data indicated that Cormorants fed exclusively on pelagic fish during social fishing (5% of the trips) and executed 11% pelagic and 60% benthic dives during the remaining 95% of the trips. In Shags, 44% of all trips were pelagic, and the remaining 56% included 9% pelagic and 67% benthic dives. The proportions of benthic to pelagic dives varied widely between dive sequences of single birds and between individuals and sexes in both species. The prey spectrum of the Cormorants contained both pelagic (29%) and benthic fish (67%) and confirmed considerable flexibility in foraging. In Shags, birds may adjust their diving patterns to accommodate the behaviour of their main prey, sandeels Ammodytidae (87% of all prey). We propose that the wetability of plumage may explain this flexibility.  相似文献   

5.
J. P. Croxall    D. R. Briggs    A. Kato    Y. Naito    Y. Watanuki    T. D. Williams 《Journal of Zoology》1993,230(1):31-47
The pattern and characteristics of diving in two female macaroni penguins Eudyptes chrysolophus was studied, during the brooding period, using continuous-recording time-depth recorders, for a total of I8 days (15 consecutive days) during which the depth, duration and timing of 4876 dives were recorded. Diving in the first 11 days was exclusively diurnal, averaging 244 dives on trips lasting 12 hours. Near the end of the brooding period trips were longer and included diving at night. About half of all trips (except those involving continuous night-time diving) was spent in diving and dive rate averaged 14–25 dives per hour (42 per hour at night). The duration of day time dives varied between trips, and averaged 1.4–1.7 min, with a subsequent surface interval of 0.5–0.9 min. Dive duration was significantly directly related to depth, the latter accounting for 53% of the variation. The average depths of daytime dives were 20–35 m (maximum depth 11 5 m). Dives at night were shorter (average duration 0.9 min) and much shallower (maximum 11 m); depth accounted for only 6% of the variation in duration. Estimates of potential prey capture rates (3–5 krill per dive; one krill every 17–20 s) are made. Daily weight changes in chicks were directly related to number of dives, but not to foraging trip duration nor time spent diving. Of the other species at the same site which live by diving to catch krill, gentoo penguins forage exclusively diurnally, making longer. deeper dives; Antarctic fur seals, which dive to similar depths as macaroni penguins, do so mainly at night.  相似文献   

6.
We used radio-tracking techniques to determine the foraging range and feeding locations used by individual Shags Phalacrocorax aristotelis during chick rearing on the Isle of May, Scotland. The mean (±s.d.) foraging range was 7.o±1.9 km (maximum 17 km) and there were no significant sex or year differences. All feeding sites were within 7 km of land. Most (> 90%) were either within 2 km of the colony or in two discrete areas 5–13 km to the north and west. Use of the areas varied between years with both males and females making more use of the north area in 1987 than either 1988 or 1989. Birds used > 11% of the area of sea within the maximum recorded feeding range. This restricted distribution appeared to be related to water-depth and bottom sediment type. Shags fed most frequently in water 21–40 m deep, with a bottom of either gravel and sand, or rock with thin patchy sediment cover.  相似文献   

7.
Japanese cormorants, Phalacrocorax capillatus, are sexually dimorphic seabirds with males that are heavier and that dive deeper than females. Sex differences in prey composition and foraging behavior of those rearing chicks at Teuri Island, Hokkaido, were examined by collecting food-loads from parents in 1992–1998 and by radio-tracking ten birds each in 1997 and 1998 when prey availability was different. Males fed more on benthic and epibenthic fishes (82% mass) than did females (34%) while females fed more on epipelagic and coastal fishes (53%) than did males (18%). Males made longer dives (53 s) at feeding sites closer to the island (7 km) than females (39 s, 13 km) in 1997. In 1998 when the availability of epipelagic fish seemed to be higher, there were no sex differences in dive duration and distance to the feeding sites (35 s and 9 km for males, 36 s and 10 km for females). This sex difference in foraging behavior with a poor availability of epipelagic fish suggests that high diving ability possibly enables males to feed on demersal fish. Birds specializing in coastal shallow waters around the island made long dives; hence they were probably foraging in bottom layers. Those foraging in deeper shelf waters made short dives and they were thought to forage in surface layers. Electronic Publication  相似文献   

8.
NICOLÁS SUÁREZ  & PABLO YORIO 《Ibis》2005,147(3):544-551
The Dolphin Gull Larus scoresbii is a little-known, rare species endemic to southern South America. Knowledge of its feeding ecology is essential for development of management and conservation strategies. To obtain information on their use of food resources and on the frequency and duration of their foraging trips, we followed seven individuals by radiotelemetry during the breeding season of 2002 at the Punta Tombo Reserve, Argentina. In 99% of mapped locations ( n  = 4069) the Gulls were within 2.4 km of their colony. Dolphin Gulls foraged mostly at the colonies of three other species, feeding on Magellanic Penguin Spheniscus magellanicus and Imperial Cormorant Phalacrocorax atriceps regurgitates and on Southern Sea Lion Otaria flavescens faeces. The sea lion colony was the most frequently visited foraging area, accounting for 64% of the total ( n  = 260 trips). A similar trend was observed during both the incubation (60%, n  = 38 trips) and the chick (64%, n  = 40 trips) stages. The mean number of trips per day was 3.8 (range = 3–5), with a mean duration of 123 min (sd = ±27). Trip duration differed between foraging areas, being significantly longer at the sea lion than at the penguin and cormorant colonies. The small foraging range given by its particular feeding strategy suggests that Dolphin Gulls, in contrast to most other seabirds that range over large expanses of ocean in search of food, may be effectively conserved within protected areas during the breeding season.  相似文献   

9.
Flight and diving activity of rhinoceros auklets Cerorhinca monocerata breeding on Teuri Island, Japan, were monitored during the summers 1999 and 2000 using miniaturized time-depth and acceleration recorders. Birds made 14.5 dive bouts per day of on average 15.4 min duration, which consisted of on average 16.2 dives of 12.1 m depth and 42.7 s duration. Birds made 13.8±7.3 flight bouts per day, which lasted on average 11.5±4.5 min. Daily total flight duration was 2.7±1.7 h (range 54 s–5.1 h) and the mean potential foraging range was estimated to be 87 km (maximum 164 km). Most birds stayed at the colony or rested on the water surface during the night. Rhinoceros auklets dived more actively in early morning and in late afternoon than during mid-day. Compared to results from studies of time allocation in other alcids species, rhinoceros auklets spent longer time flying (3.3 hd−1) and resting on water (13.1 hd−1), and less time diving (3.1 hd−1) and staying at the colony (4.4 hd−1). These foraging patterns are probably related to the nest attendance pattern of rhinoceros auklets, i.e. leaving the colony early in the morning, staying at sea all the day and returning to the colony in the evening to provision their chicks.  相似文献   

10.
By using time-depth recorders to measure diving activity and the doubly-labelled water method to determine energy expenditure, the relationship between foraging behaviour and energy expenditure was investigated in nine Antarctic fur seal females rearing pups. At-sea metabolic rate (MR) (mean of 6.34 ± 0.4 W. kg-1; 4.6 times predicted BMR) was positively correlated to foraging trip duration (mean of 4.21 ± 0.54 days; r2= 0.5, P < 0.04). There were no relationships between MR and the total number of dives, the total time spent diving or the total vertical distance travelled during the foraging trip. There was, however, a close negative sigmoidal relationship (r2= 0.93) between at-sea MR and the proportion of time at sea spent diving. This measure of diving behaviour may provide a useful, inexpensive means of estimating foraging energy expenditure in this species and possibly in other otariids. The rate of diving (m.h-1) was also negatively related to at-sea MR (r2= 0.69, P < 0.005). Body mass gain during a foraging trip had a positive relationship to the time spent at sea (r2= 0.58, P < 0.02) and the total amount of energy expended while at sea (r2= 0.72, P < 0.004) such that, while females undertaking long trips have higher metabolic rates, the energetic efficiency with which females gain mass is independent of the time spent at sea. Therefore, within the range of conditions observed, there is no apparent energetic advantage for females in undertaking foraging trips of any particular duration.  相似文献   

11.
The foraging behaviour of Guillemots Uria aalge at sea was compared between 2 years of radically different food abundance. Radio telemetry was used to determine foraging locations and diving patterns. In the poor compared with the good food year, foraging trips were much longer, the birds foraged more than six times further from their breeding sites, they spent over five times as much time diving when at sea and their estimated energy expenditure was twice as great. Time spent foraging in the poor food year was at the expense of time spent sitting at the colony. The duration of a foraging trip was a poor indicator of distance travelled but a good indicator of the amount of time spent diving. Mean dive durations, surface pause durations and interbout periods did not differ between years, but individuals made more than four times as many dives per diving bout in the poor food year. Surface pause lengths did not vary with water depth in either year. In the poor food year, birds made shorter surface pauses for a dive of a given duration than in the good food year, possibly accepting a lactic acid debt in order to maximize searching time, The duration of the interbout period was positively related to the number of dives in the previous bout, and dives tended to get shorter in long diving sequences, suggesting possible exhaustion effects. These data demonstrate that breeding Guillemots have the capacity to adjust their foraging behaviour and time budgets in response to changes in food abundance, but this flexibility was not sufficient to compensate fully for the very low food abundance experienced by birds in this study.  相似文献   

12.
Sexual differences in food provisioning rates of monomorphic seabirds are well known but poorly understood. Here, we address three hypotheses that attempt to explain female-biased food provisioning in common guillemots Uria aalge : (1) males spend more time in nest defence, (2) females have greater foraging efficiency, and (3) males allocate a greater proportion of foraging effort to self-maintenance. We found that males spent no more time with chicks than females but made longer trips and travelled further from the colony. There was extensive overlap between sexes in core foraging areas, indicating that females were not excluding males from feeding opportunities close to the colony. However, as a result of their longer trips, the total foraging areas of males were much greater than those of females. There was no difference between sexes in overall dive rate per hour at sea, in behaviour during individual dives or in a number of other measures of foraging efficiency including the frequency, depth and duration of dives and the dive: pause ratio during the final dive bout of each trip, which was presumably used by both sexes to obtain prey for the chick. These data strongly suggest that sexes did not differ in their ability to locate and capture prey. Yet males made almost twice as many dives per trip as females, suggesting that males made more dives than females for their own benefit. These results support the hypothesis that female-biased food provisioning arose from a difference between sexes in the allocation of foraging effort between parents and offspring, in anticipation of a prolonged period of male-only post-fledging care of the chick, and not from differences in foraging efficiency or time spent in nest defence.  相似文献   

13.
This study investigated how female Antarctic fur seals adapt their foraging behavior, over time scales of days, to spatial unpredictability in the distribution of their food. Lactating Antarctic fur seals are central-place foragers that feed on highly patchy but spatially and temporally dynamic food. We measured the foraging distribution of 28 fur seals to test whether variation in foraging trip durations was reflected in variation in the location of foraging and the diving behavior of seals at sea. Based on the maximum distance travelled from the breeding beach, three categories of foraging trips were denned: those to the continental shelf area ( n = 12, median = 71 km), to oceanic water ( n = 11, median =164 km), and to farther offshore oceanic waters ( n = 5, median = 260 km). Trip duration and mean surface speed were positively correlated with the maximum distance travelled from the breeding beach. Seals on longer trips spent proportionally less of their time submerged, but there was no significant difference in the total number of dives or the total time spent foraging by seals in relation to trip duration. Evidence from this study and previous work investigating energy gain suggests that an animal on a longer foraging trip could potentially have a higher mean energy return per dive than a similar animal on a shorter foraging trip. Evidence presented suggests that the type of foraging trip (near or far) is not predetermined by the animal but may be a simple response to the stochastic distribution of the resources available.  相似文献   

14.
Weights of food loads brought back to the colony by 26 Shags Phalacrocorax aristotelis rearing chicks were determined using the water-offloading procedure. Loads consisted almost entirely of lesser sandeels Ammodytes marinus. Load size was extremely variable, ranging from 8 to 208 g with a mean load weight of 106 g. Data on foraging behaviour collected concurrently demonstrated that Shags brought back heavier loads when they were feeding farther away from the colony and when brood biomass was larger. These two variables together explained 70.3% of the variation in load size. We postulate that adults had already digested their own food requirements by the time they arrived back at the nest, and the contents of the loads were therefore primarily for the young. On 67% of trips, Shags caught, on average, more than one fish per dive. This estimate ignores the food requirements of the adult, and therefore true prey-capture rates must have been higher.  相似文献   

15.
SUMMER DIVING BEHAVIOR OF MALE WALRUSES IN BRISTOL BAY, ALASKA   总被引:1,自引:0,他引:1  
Pacific walruses ( Odobenus rosmarus divergens ) make trips from ice or land haul-out sites to forage for benthic prey. We describe dive and trip characteristics from time-depth-recorder data collected over a one-month period during summer from four male Pacific walruses in Bristol Bay, Alaska. Dives were classified into four types. Shallow (4 m), short (2.7 min), square-shaped dives accounted for 11% of trip time, and many were probably associated with traveling. Shallow (2 m) and very short (0.5 min) dives composed only 1% of trip time. Deep (41 m), long (7.2 min), square-shaped dives accounted for 46% of trip time and were undoubtedly associated with benthic foraging. V-shaped dives ranged widely in depth, were of moderate duration (4.7 min), and composed 3% of trip time. These dives may have been associated with navigation or exploration of the seafloor for potential prey habitat. Surface intervals between dives were similar among dive types, and generally lasted 1–2 min. Total foraging time was strongly correlated with trip duration and there was no apparent diel pattern of diving in any dive type among animals. We found no correlation between dive duration and postdive surface interval within dive types, suggesting that diving occurred within aerobic dive limits. Trip duration varied considerably within and among walruses (0.3–9.4 d), and there was evidence that some of the very short trips were unrelated to foraging. Overall, walruses were in the water for 76.6% of the time, of which 60.3% was spent diving.  相似文献   

16.
We present data on the diving behaviour and the energetics of breeding little penguins in Tasmania, Australia. Using an 18 m long still water canal in conjunction with respirometry, we determined the energy requirements while diving. Using electronic devices measuring dive depth or swimming speed, we investigated the foraging behaviour at sea. Cost of Transport was calculated to be minimal at the speed the birds prefer at sea (1.8 m/s) and averaged 11.1 J/kg/m (power requirements at that speed: 20.0 W/kg). Metabolic rate of little penguins resting in water was found to be 8.5 W/kg. The externally-attached devices had no significant influence on the energy expenditure.
Foraging trips can be divided into four distinct phases with different diving behaviours. A mean of 500 dives was executed per foraging trip lasting about 18 hours with 60% of this time being spent swimming. The total distance travelled averaged 73 km per day, although foraging range was about 12km. Mean swimming speed of little penguins at sea was 1.8 m/s, maximum swimming speed was 3.3 m/s. More than 50% of all dives had maxima not exceeding 2 m. Maximum depth reached was 27 m. Mean dive duration was 21 s. There were inter-sex differences in diving behaviour as well as changes in foraging behaviour over the breeding period. Aerobic dive limits (ADL) in the wild were estimated between 42 and 50 s. From the swim canal experiments we derived an ADL of 44 s. Total oxygen stores were calculated to be 45 ml O2/kg. Only 2% of all dives exceeded the ADL. FMRs at sea were calculated to be between 1280 and 1500 kJ/kg/d according to chick size. The yearly food requirements of a breeding little penguin amount to 114 kg.  相似文献   

17.
Diving behaviour and diet of the blue-eyed shag at South Georgia   总被引:1,自引:1,他引:0  
Summary This paper describes a concurrent investigation of individual variation in diet, diving patterns and performance of blue-eyed shags Phalacrocorax atriceps breeding at South Georgia. Within one day individual shags exhibited one of three foraging strategies: short diving (4 birds, all dives 120 s) and mixed diving (15 birds, predominantly long but with a few short dives). The mean number of dives per day was significantly higher in shags that only made short dives (mean=172.0, SE=43.2) than birds with a mixed diving strategy (mean=40.5, SE=4.7) and birds that made only long dives (mean=30.8, SE=1.8). Diet was assessed using hard remains recovered from pellets regurgitated by the shags. Small nototheniid fish (c. 10 kJ per item) were by far the commonest prey but most pellets contained additional items. The frequency of pellets with additional items of higher energy value than nototheniid fish (10.c. 900 kJ per item), lower energy value (>1–10 kJ per item) and both higher and lower energy items was strikingly similar to the frequency of shags making long, short and both long and short dives respectively. Predicted aerobic dive limits suggested that during long dives, blue-eyed shags were probably sustained by anaerobic metabolism. Models of prey capture rates demonstrated that for both long and short diving, many items must be caught per dive when birds are feeding on prey at the lower end of the energy range. Predicted capture rates for the commonest recorded prey (small fish) differ markedly between the two diving strategies.  相似文献   

18.
Our aim was to describe the free-ranging diving pattern and to determine the location of foraging of pregnant female southern elephant seals, Mirounga leonina , from Peninsula Valdes, Argentina. This colony is unusual in two respects: it is removed from deep water by a broad shallow shelf (345–630 km wide), and colony numbers have been increasing in recent years in contrast to numbers from other southern hemisphere colonies that are stable or in decline. Microprocessor controlled, geolocation-time-depth recorders were deployed on four females, recording a total of 15,836 dives (270 dive days) during the period February to April, 1992. Departing seals crossed the continental shelf quickly (54–5–62–1 h) and did not show signs of foraging until reaching deep water, due east of the colony in the South Atlantic Ocean. Diving was virtually continuous (93% of the time underwater) with overall mean (±S.D.) rates of 2.5±0.2 dives/h, mean dive durations of 22.8 ± 7.1 min (maximum dive duration = 79 min) with 1.6±0.6min surface intervals between dives, and dive depths of 431±193m (maximum dive depth = 1,072 m). The diving pattern of females from Patagonia is similar to that of seals from colonies where numbers are decreasing (Macquarie stock) or are stable (South Georgia Island). Our subjects did not, however, feed in or south of the Antarctic Polar Front, or in cold waters along the Antarctic coast, where seals from declining or stable colonies forage.  相似文献   

19.
The purpose of this study was to characterize for the first time seabird diving behavior during bimodal foraging. Little auks Alle alle, small zooplanktivorous Alcids of the High Arctic, have recently been shown to make foraging trips of short and long duration. Because short (ST) and long trips (LT) are thought to occur in different locations and serve different purposes (chick‐ and self‐feeding, respectively) we hypothesized that foraging differences would be apparent, both in terms of water temperature and diving characteristics. Using Time Depth Recorders (TDRs), we tested this hypothesis at three colonies along the Greenland Sea with contrasting oceanographic conditions. We found that diving behavior generally differed between ST and LT. However, the magnitude of the disparity in diving characteristics depended on local foraging conditions. At the study site where conditions were favorable, diving behavior differed only to a small degree between LT and ST. Together with a lack of difference in diving depth and ocean temperature, this indicates that these birds did not increase their foraging effort during ST nor did they travel long distances to seek out more profitable prey. In contrast, where local foraging conditions were poor, birds increased their diving effort substantially to collect a chick meal during ST as indicated by longer, more U‐shaped dives with slower ascent rates and shorter resting times (post‐dive intervals and extended surface pauses). In addition, large differences in diving depth and ocean temperature indicate that birds forage on different prey species and utilize different foraging areas during LT, which may be up to 200 km away from the colony. Continued warming and deteriorating near‐colony foraging conditions may have energetic consequences for little auks breeding in the eastern Greenland Sea.  相似文献   

20.
Individual consistency in foraging behaviour can generate behavioural variability within populations and may, ultimately, lead to species diversification. However, individual‐based long‐term behavioural studies are particularly scarce in seabird species. Between 2008 and 2011, breeding Imperial Shags Phalacrocorax atriceps at the Punta León colony, Argentina, were tracked with GPS devices to evaluate behavioural consistency during their foraging trips. Within a breeding season, individuals were highly consistent in the maximum distances they reached from the shore and the colony, as well as in the time invested in flight and diving across consecutive days during early chick rearing. In addition, each individual had its specific foraging area distinct from the foraging area of other individuals. Comparing between early and late chick rearing in the same season, individuals were consistent, to a lesser degree, in the maximum distance they reached from the colony and the shore, increasing in consistency later on in the season. Within the season, females were more consistent than males in the maximum distance they moved from the colony and the shore, the sexes segregated in their foraging areas and individual females were segregated from one another. Twenty‐eight individuals tracked in different breeding seasons were marginally consistent in their trip durations and maximum distance reached from shore across seasons. Among seasons, foraging locations differed between sexes and among individual females. Individuals from this colony exhibited consistency over time in several aspects of foraging behaviour, which may be due to a combination of individual characteristics such as learning abilities, breeding experience or health, as well as targeted prey type and stability of the environment at this location.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号