首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Current data were collected at 3 stations in the Great Barrier Reef Lagoon of Australia between Lizard Island and Carter Reef, an outer ribbon reef, (approximately 14°S) over a 2 year period. During the southeast Trade wind season (March–September), net circulation at all stations was to the northwest, parallel to the coast and reefs, with little cross-shelf movement. This motion was periodic at about 20 days and highly coherent with the wind. During the non-Trade wind season (October–February) the net circulation depended on the variable wind regime and exhibited frequent current reversals and cross-shelf motion. Tidal currents were superimposed on the net circulation and were mainly cross-shelf but with a tidal excursion of only about 5 km on a flood tide. Tidal currents close to Carter Reef were not cross-shelf but remained parallel to the reef, suggesting that the major tidal flux is through the reef passages. Net circulation close to Carter Reef was not coherent with net circulation at the stations in more open waters, during both Trade and non-Trade seasons. Current speeds were typically 10–30 cm s-1. Passive plankters entering the water from Carter Reef are therefore likely to remain close to the outer ribbon reefs and be moved parallel to them. Based on the above, we predict that in the Trade wind season, passive plankters would be advected further from their point of origin than during the non-Trade wind season, but there would be more cross-shelf advection during the latter.  相似文献   

2.
Since the correlation between carbon dioxide (CO2) levels and global temperatures was established in the ice core records, quantifying the components of the global carbon cycle has become a priority with a view to constraining models of the climate system. The marine carbonate budget is still not adequately constrained and the quantitative significance of the calcareous green alga Halimeda still remains particularly poorly understood. Previously, it has been suggested that Halimeda bioherms on the shelf of the Great Barrier Reef may contain a volume of carbonate equal to or greater than that contained within the shelf edge coral reefs. This study uses published datasets to test this hypothesis in the Northern Great Barrier Reef (NGBR) province. It is estimated that Halimeda bioherms on the outer shelf of the NGBR contain at least as much (and up to four times more) CaCO3 sediment as the adjacent ribbon reef facies. Globally, if these findings are even only partially applicable, the contribution of shallow water carbonate sediments to the global carbon budget based on coral reefs alone is currently substantially underestimated.  相似文献   

3.
A 3 month long record of pressure from a nearsurface-resident instrument deployed at 18° S at the Queensland shelf break, offshore from the Great Barrier Reef, has been analysed. No discrete wind-sea and swell spectra can be identified, nor is there evidence for frequency-dependent wave dispersion. The wave spectral width and significant wave height are strongly related to local meteorological events, and the response appears to be both fetch limited and wind duration dependent. A near-gale sea state on the Beaufort scale is experienced during strong trade winds. It is suggested that waves make an important contribution to the physical oceanography, the geomorphology and the ecology of coral reefs near the shelf break of the Great Barrier Reef.  相似文献   

4.
Time-series are presented of wind, sea levels, currents and temperature in the central region of the Great Barrier Reef continental shelf over the period 1980 to 1982 (inclusive). Except for occasional periods of calm weather or during the passage of tropical cyclones, the wind was alternately southwestward or northwestward, with periods of several days to several weeks. The fluctuations of the low-frequency sea level, longshore current and wind components, but not temperature, were highly coherent over distances >400 km longshore and over the shelf width. The temperature and the atmospheric pressure controlled much of the seasonal changes in the sea level. A simple model for wind-driven circulation using a non-linear bottom friction law is able to account for most of the variance of the currents with perios <20 days. An additional poleward base flow was present at all sites, probably driven by the circulation in the Coral Sea. There were also large interannual variations, possibly associated with the El Niño Southern Oscillation phenomena. These observations imply that the advection and dispersion over the Great Barrier Reef of fish eggs and larvae, coral planulae etc., and hence reef recruitment, experience considerable variability at time scales of days of years.  相似文献   

5.

Aim

Coral reef communities occurring in deeper waters have received little research effort compared to their shallow-water counterparts, and even such basic information as their location and extent are currently unknown throughout most of the world. Using the Great Barrier Reef as a case study, habitat suitability modelling is used to predict the distribution of deep-water coral reef communities on the Great Barrier Reef, Australia. We test the effectiveness of a range of geophysical and environmental variables for predicting the location of deep-water coral reef communities on the Great Barrier Reef.

Location

Great Barrier Reef, Australia.

Methods

Maximum entropy modelling is used to identify the spatial extent of two broad communities of habitat-forming megabenthos phototrophs and heterotrophs. Models were generated using combinations of geophysical substrate properties derived from multibeam bathymetry and environmental data derived from Bio-ORACLE, combined with georeferenced occurrence records of mesophotic coral communities from autonomous underwater vehicle, remotely operated vehicle and SCUBA surveys. Model results are used to estimate the total amount of mesophotic coral reef habitat on the GBR.

Results

Our models predict extensive but previously undocumented coral communities occurring both along the continental shelf-edge of the Great Barrier Reef and also on submerged reefs inside the lagoon. Habitat suitability for phototrophs is highest on submerged reefs along the outer-shelf and the deeper flanks of emergent reefs inside the GBR lagoon, while suitability for heterotrophs is highest in the deep waters along the shelf-edge. Models using only geophysical variables consistently outperformed models incorporating environmental data for both phototrophs and heterotrophs.

Main Conclusion

Extensive submerged coral reef communities that are currently undocumented are likely to occur throughout the Great Barrier Reef. High-quality bathymetry data can be used to identify these reefs, which may play an important role in resilience of the GBR ecosystem to climate change.  相似文献   

6.
Synopsis Fish traps were used to quantify the distribution and abundance of the Lutjanidae and Lethrinidae on reefs across the central Great Barrier Reef. The assemblages of fishes on inshore reefs were distinctive from those on midshelf and outershelf reefs. There were significantly fewer individuals of the Lutjanidae and Lethrinidae inshore and all species examined displayed significant cross-shelf changes in abundance. These significant cross shelf changes in abundance were due to an absence or low abundance of individuals of a species at one or more cross shelf locations, with many species present in only one location on the continental shelf. The genera Aprion, Lutjanus, Macolor, Symphorichthys, Symphorus, Gnathodentex, Gymnocranius, Lethrinus and Monotaxis were all characteristic of the shallow shelf waters less than 100 m. In contrast, species of the genera Paracaesio, Pristipomoides and Wattsia were characteristic of the intermediate depths (100–200 m) and the deeper outer reef slope waters in excess of 200 m were characterised by species of the genus Etelis.  相似文献   

7.
Full recovery of coral reefs from tropical cyclone (TC) damage can take decades, making cyclones a major driver of habitat condition where they occur regularly. Since 1985, 44 TCs generated gale force winds (≥17 metres/second) within the Great Barrier Reef Marine Park (GBRMP). Of the hurricane strength TCs (≥H1—Saffir Simpson scale; ≥ category 3 Australian scale), TC Yasi (February, 2011) was the largest. In the weeks after TC Yasi crossed the GBRMP, participating researchers, managers and rangers assessed the extent and severity of reef damage via 841 Reef Health and Impact Surveys at 70 reefs. Records were scaled into five damage levels representing increasingly widespread colony-level damage (1, 2, 3) and reef structural damage (4, 5). Average damage severity was significantly affected by direction (north vs south of the cyclone track), reef shelf position (mid-shelf vs outer-shelf) and habitat type. More outer-shelf reefs suffered structural damage than mid-shelf reefs within 150 km of the track. Structural damage spanned a greater latitudinal range for mid-shelf reefs than outer-shelf reefs (400 vs 300 km). Structural damage was patchily distributed at all distances, but more so as distance from the track increased. Damage extended much further from the track than during other recent intense cyclones that had smaller circulation sizes. Just over 15% (3,834 km2) of the total reef area of the GBRMP is estimated to have sustained some level of coral damage, with ~4% (949 km2) sustaining a degree of structural damage. TC Yasi likely caused the greatest loss of coral cover on the GBR in a 24-hour period since 1985. Severely impacted reefs have started to recover; coral cover increased an average of 4% between 2011 and 2013 at re-surveyed reefs. The in situ assessment of impacts described here is the largest in scale ever conducted on the Great Barrier Reef following a reef health disturbance.  相似文献   

8.
Currents, sea levels and weather were measured for a 60 d period at a number of sites in and near Britomart reef, Great Barrier Reef. The tidal currents were primarily semi-diurnal in character. The lowfrequency currents were due to a simple balance, in the longshore direction, between the wind stress and the bottom frictional stress, and, in the cross-shelf direction, between the bottom frictional stress and the pressure gradient generated by the passage of wind-driven continental shelf waves. The bottom friction coefficient, for the nonlinear drag law, is estimated to be of the order of 0.02. By contrast, the currents over the surrounding continental shelf are primarily controlled by continental shelf wave dynamics and are not dominated by friction. It thus appears that the water bodies in, respectively, the reef matrix and the Lagoon of the Great Barrier Reef are relatively uncoupled. Tidal and low-frequency currents contributed roughly equally to the flushing of Britomart reef lagoon with an estimated flushing time of the order of 4 d.  相似文献   

9.
Synopsis Plankton hauls captured 682 milkfish larvae (2.1–12.3 mm) in the Great Barrier Reef Lagoon and Coral Sea during 1979–1986. Larvae were present from November to March, and absent in April, July and October. We analyzed concentration, abundance and size-frequency data and concluded that spawning took place in the Coral Sea or at the outer edge of the continental shelf, apparently following an adult spawning migration of at least 50 km. Larvae then moved inshore to at least our most inshore routine sampling site near midshelf. Some larvae may have remained for a period in the lee of reefs along the shelf edge. Larvae apparently occupied the upper few metres of the water column, thereby becoming susceptible to shoreward movement in the wind-driven surface layer. Movement from spawning sites to midshelf probably required active maintenance of vertical position by larvae which enabled passive movement with favourable currents, and perhaps horizontal swimming. By the time larvae reach midshelf, continued inshore movement by horizontal swimming alone is possible.  相似文献   

10.
Summary Changes in the structure of fish communities along a transect from the Australian mainland to the Coral Sea, in the Central region of the Great Barrier Reef, were examined. Visual censuses of fish were made on the outer reef slopes (0 to 13 m deep) of two inshore reefs, approximately 10 km offshore, three reefs on the mid-shelf, 50 km offshore, three reefs on the outer shelf, 100 km offshore, and three reefs in the Coral Sea approximately 200 km offshore. The Pomacentridae, Chaetodontidae, Acanthuridae and Scaridae were examined in detail—the Labridac, Siganidae and the lutjanid genus Caesio in less detail. Major changes in the composition of fish communities occurred along the transect (Fig. 3). There were differences in the composition of assemblages among replicate censuses within individual reefs and also differences between reefs at the same location on the transect but these differences were small compared to those among locations. The nature of the distribution of species across the transect differed between families (Figs. 4–6). Pomacentrid and chaetodontid species were significantly more restricted in distribution than acanthurids, scarids or labrids.  相似文献   

11.
Coral reef sponge populations were surveyed at two spatial scales: different depths and different reef locations across the continental shelf of the central Great Barrier Reef. The surveys were conducted on the forereef slopes of 12 reefs from land-influenced, inner-shelf reefs to those in the oligotrophic waters of the Coral Sea. Few sponges occur in shallow waters and the largest populations are found between 10 and 30 m depth. Sponges are apparently excluded from shallow waters because of excessive turbulence and possibly by high levels of damaging light. Sponge biomass is highest on the innershelf reefs and decreases away from the coast, whereas abundance is generally higher on middle-shelf reefs. There are considerable overlaps in the species composition on middle-, outer-shelf and Coral Sea reefs, but those on inner-shelf reefs are significantly different. The nature and size of sponge populations reflect environmental conditions across the continental shelf. The larger inner-shelf populations probably reflect higher levels of organic and inorganic nutrients and reduced amounts of physical turbulence, whereas sponges on reefs further from shore may be able to resist greater turbulence but appear more sensitive to the effects of fine sediments. These latter populations are smaller, reflecting the reduced availability of organic matter, however, many of these sponges rely on cyanobacterial symbionts to augment nutrition in these clearer, more oligotrophic waters.Contribution no. 487 from the Australian Institute of Marine Science  相似文献   

12.
Reef-scale, eddy-resolving numerical models are applied to discriminate between local trapping of neutrally buoyant passive material coming from a natal reef versus trapping of this material on reefs downstream. A hydrodynamic model is coupled with a Lagrangian (nongridded) dispersal simulation to map the movement of material such as passive larvae within and between natural reefs. To simplify the interpretation, a number of schematic reef shapes, sizes and spacings were devised to represent the most common cases typifying Australia's Great Barrier Reef. Prior investigations have shown that coral reefs on the Great Barrier Reef may retain material for times equivalent to the pelagic dispersal period of many species. This paper explores whether larvae are more likely to settle on the natal reef, settle downstream or fail to settle at all. The modelling neglects active larval behaviour and treats the vertically well-mixed case of notionally weightless particles only. The crown-of-thorns starfish larvae with a pelagic dispersal period of at least 10 days are one example of this case. Larvae are most likely to be found near the natal reef rather than its downstream neighbour, mostly because the currents take the vertically well-mixed material around, rather than onto, the downstream reef. Of all the simulations, the highest numbers were found on natal reefs (e.g. 8% after 10 days) while downstream numbers mostly varied between 0 and 1% after 10 days. Particle numbers equalised only when spacing between the two reefs was less than the reef length (6 km), or when the downstream reef was in the direct path of the larval stream.  相似文献   

13.
The ecology of cubozoans is poorly understood and there are few quantitative studies on their distribution patterns. Sampling was designed to test first for variation in abundance with distance across the continental shelf in waters of the Great Barrier Reef, Australia. Second, we tested for the possible influence of islands versus submerged reefs on the abundances of cubozoan jellyfishes. Jellyfishes were collected after attraction to tethered night lights. Additional sampling focused on turbid near-shore waters. Carybdeid jellyfishes were found at mainland, inner, and mid-shelf reefs during summers between 2007 and 2010. No cubozoan medusae were found at outer reef sites. Copula sivickisi and Carukia barnesi were more abundant near reefs with islands than at fully submerged reefs. There was no evidence of lunar periodicity in abundance for these cubozoan taxa. Chironex fleckeri medusae were only found close to shore near the mainland, but they were rarely observed when riverine runoff was high. All taxa were characterized by high spatial and temporal variation and there was some evidence for small populations at spatial scales of less than one kilometer. “Blooms” and related intensity of predation and risk to humans are most likely at small spatial scales.  相似文献   

14.
The prevalence and host range of black band disease (BBD) was determined from surveys of 19 reefs within the Great Barrier Reef Marine Park, Australia. Prevalence of BBD was compared among reefs distributed across large-scale cross-shelf and long-shelf gradients of terrestrial or anthropogenic influence. We found that BBD was widespread throughout the Great Barrier Reef (GBR) and was present on 73.7% of the 19 reefs surveyed in 3 latitudinal sectors and 3 cross-shelf positions in the summer of 2004. Although BBD occurred on all mid-shelf reefs and all but one outer-shelf reefs, overall prevalence was low, infecting on average 0.09% of sessile cnidarians and 0.1% of scleractinian corals surveyed. BBD affected approximately 7% of scleractinian taxa (25 of approximately 350 GBR hard coral species) and 1 soft coral family, although most cases of BBD were recorded on branching Acropora species. Prevalence of BBD did not correlate with distance from terrestrial influences, being highest on mid-shelf reefs and lowest on inshore reefs (absent from 66%, n = 6, of these reefs). BBD prevalence was consistently higher in all shelf positions in the northern (Cooktown/Lizard Island) sector, which is adjacent to relatively pristine catchments compared to the central (Townsville) sector, which is adjacent to a more developed catchment. BBD cases were clustered within reefs and transects, which was consistent with local dispersal of pathogens via currents, although the spread of BBD was not dependent on the density or cover of any of the coral taxa examined. In combination, these results suggest that BBD is part of the natural ecology of coral assemblages of the GBR, and its prevalence is relatively unaffected by terrestrial influences on the scales characteristic of cross-shelf gradients.  相似文献   

15.
Species richness, cover and community structure of reef-building corals were assessed at 599 sites on 135 reefs along the Great Barrier Reef (GBR) between 1994 and 2001, with focus on the nearshore area. Communities were described hierarchically, with smaller regional communities forming part of higher level communities at increasing spatial scales. Site richness increased from the coast to the mid-continental shelf, declining on the outer shelf. Richness also increased with depth to 5 m, stabilizing thereafter. An anomaly was present in a 400 km section adjacent to the northern, ‘wet tropics’ coast, where site richness was 67 and 41% lower than the adjacent far northern and central GBR, respectively; this was probably due to the disturbance regime, with an apparent anthropogenic component. Site richness also declined in the Southern GBR, probably due to naturally marginal conditions. All indicator species had highest values in five small Far Northern and Central GBR communities. In the eight depauperate communities no indicator species had high values, indicating that these communities represent degraded, yet potentially transitional forms of the more diverse communities of the Far Northern and Central GBR. The study shows that on the GBR, disturbance results in the local removal of corals rather than a shift to suites of other coral species.  相似文献   

16.
The sediments and calcareous organisms on the outer reefal shelf of the Central Region of the Great Barrier Reef were collected and observed by SCUBA diving and research vessel techniques (including underwater television) to understand the production and processes of deposition of the sediment. The carbonate grains are mainly sand and gravel size and solely of skeletal origin. Over the whole area the major CaCO3 producers, in order of decreasing importance are: benthic foraminiferans (chiefly Operculina, Amphistegina, Marginopora, Alveolinella and Cycloclypeus), the calcareous green alga Halimeda, molluscs and corals. Coral abundance is high only close to reefs and submerged rocky substrates. Benthic foraminiferal sands dominate the inter-reef areas i.e. the bulk of the shelf, and Halimeda gravels form an outer shelf band between 60 and 100 m depths. Seven distinct facies are recognised after quantitative analyses of the sediments. These are: A. Shelf edge slope (>120 m depth); B. Shelf edge (with rocky outcrops); C. Outer shelf with high Halimeda (>40%); D. Inter-reef I; E. Inter-reef II ( 100 m depth but >2% pelagics); F. Lee-ward reef talus wedge (<2 km from sea level reefs); G. Lagoonal.  相似文献   

17.
Current scientific consensus is that inshore regions of the central and southern Great Barrier Reef, Australia, are at risk of impacts from increased nutrient (as well as sediment and pesticide) loads delivered to Reef waters. Increases in the discharge of water quality contaminants to the Reef are largely a consequence of the expansion of agricultural practices in northern Queensland catchments following European settlement in the 1850s. In particular, the presence of elevated chlorophyll a and nutrient concentrations in many parts of the inshore Great Barrier Reef together with intense and extensive phytoplankton blooms following the discharge of nutrient-rich river flood waters suggest that the central and southern inshore area of the Great Barrier Reef is likely to be significantly impacted by elevated nutrient loads. The biological consequences of this are not fully quantified, but are likely to include changes in reef condition including hard and soft coral biodiversity, macroalgal abundance, hard coral cover and coral recruitment, as well as change in seagrass distribution and tissue nutrient status. Contemporary government policy is centered around promotion and funding of better catchment management practices to minimize the loss of catchment nutrients (both applied and natural) and the maintenance of a Reef wide water quality and ecosystem monitoring program. The monitoring program is designed to assess trends in uptake of management practice improvements and their associated impacts on water quality and ecosystem status over the next 10 years. A draft set of quantitative criteria to assess the eutrophication status of Great Barrier Reef waters is outlined for further discussion and refinement.  相似文献   

18.
Crustose coralline algae (CCA) fulfill two key functional roles in coral reef ecosystems: they contribute significantly to reef calcification, and they induce larval settlement of many benthic organisms. Percentage cover of CCA, and environmental conditions, were visually estimated on 144 reefs of the Great Barrier Reef between 10 and 24° latitude S. Reefs were located across the shelf and ranged from turbid near-shore reefs close to rivers to clean-water reefs hundreds of kilometers from coastal influences. On each reef, two sites were surveyed between 0.5 and 18 m depth. Strong cross-shelf trends occurred in cover of CCA, amount of sediment deposited, water clarity, and slope angle. Relative distance across the shelf and sedimentation jointly explained 84% of variation in CCA cover. Three regions running parallel to the shore were identified, with a mean CCA cover of <1% on the inner third of the shelf, and >20% cover on the outer half of the shelf, with a narrow transition region between the two. Within each region, the cover of CCA was unrelated to distance across the shelf, but was related to the sedimentary environment, being relatively higher on reefs with low sediment deposits. On the inner third of the shelf, the most sediment-exposed reefs were unsuitable habitats for CCA. The inverse relationship between CCA and sediment has implications for the recruitment of CCA-specialised organisms, and for rates of reef calcification.  相似文献   

19.
The degree of internal bioerosion was examined in the dead basal portions of live branches of the scleractinian coral Acropora formosa collected from six reefs across the continental shelf in the central region of the Great Barrier Reef, Australia. The bioeroders included the sponges Cliona spp. and Cliothosa spp., the boring bivalve Lithophaga sp., and sipunculid and polychaete worms. Total internal bioerosion exhibited higher means and variances inshore and at the mid-shelf than the outer shelf specimens, which were characterized by low means and low variances. Bioerosion by Cliothosa and all sponges combined declined slightly across the shelf. Bivalves accounted for a small proportion of the internal bioerosion in A. formosa. The bioerosion pattern exhibited by worms (polychaetes and sipunculids) was similar in pattern to that of the sponges. All groups exhibited lowest levels of bioerosion at the outer shelf. Highest variance in the data was observed at the intra-branch/intra-colony and the intercolony levels. Inter-site variance was high in worms and vivalves. Boring sponges generally dominated the bioeroder community. The relative abundance of Cliona declined on the outer shelf while the relative abundance of worms increased. Percent bioerosion in Acropora formosa was 2–3 times higher than in Porites lobata in this region. The low level of bioerosion at the outer shelf versus the inner- and mid-shelf areas may be partially due to lower levels of productivity and lower concentrations of terrestrially derived organic matter. Other potential factors may include higher fish grazing/predation activity on the outer shelf.  相似文献   

20.
The processes underlying the distributional limits of both corals and coral reefs can be elucidated by examining coral communities at high latitudes. Coral-dominated communities in eastern Australia cover a latitudinal range of >2,500 km, from the northern Great Barrier Reef (11°S) to South West Rocks (31.5°S). Patterns of coral species richness from 11 locations showed a clear separation between the Great Barrier Reef and subtropical sites, with a further abrupt change at around 31°S. Differences in community structure between the Great Barrier Reef and more southern sites were mainly attributable to higher cover of massive corals, branching Acropora, dead coral and coralline algae on the Great Barrier Reef, and higher cover of macroalgae and bare rock at more southern sites. The absence of some major reef-building taxa (i.e., staghorn Acropora and massive Porites) from most subtropical sites coincided with the loss of reef accretion capacity. Despite high cover of hard corals in communities at up to 31°S, only Lord Howe Island contained areas of reef accretion south of the Great Barrier Reef. Factors that have been hypothesized to account for latitudinal changes in coral community structure include water temperature, aragonite saturation, light availability, currents and larval dispersal, competition between corals and other biota including macroalgae, reduced coral growth rates, and failure of coral reproduction or recruitment. These factors do not operate independently of each other, and they interact in complex ways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号