首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The reaction between cytochrome c1 and cytochrome c   总被引:3,自引:0,他引:3  
The kinetics of electron transfer between the isolated enzymes of cytochrome c1 and cytochrome c have been investigated using the stopped-flow technique. The reaction between ferrocytochrome c1 and ferricytochrome c is fast; the second-order rate constant (k1) is 3.0 . 10(7) M-1 . s-1 at low ionic strength (I = 223 mM, 10 degrees C). The value of this rate constant decreases to 1.8 . 10(5) M-1 . s-1 upon increasing the ionic strength to 1.13 M. The ionic strength dependence of the electron transfer between cytochrome c1 and cytochrome c implies the involvement of electrostatic interactions in the reaction between both cytochromes. In addition to a general influence of ionic strength, specific anion effects are found for phosphate, chloride and morpholinosulphonate. These anions appear to inhibit the reaction between cytochrome c1 and cytochrome c by binding of these anions to the cytochrome c molecule. Such a phenomenon is not observed for cacodylate. At an ionic strength of 1.02 M, the second-order rate constants for the reaction between ferrocytochrome c1 and ferricytochrome c and the reverse reaction are k1 = 2.4 . 10(5) M-1 . s-1 and k-1 = 3.3 . 10(5) M-1 . s-1, respectively (450 mM potassium phosphate, pH 7.0, 1% Tween 20, 10 degrees C). The 'equilibrium' constant calculated from the rate constants (0.73) is equal to the constant determined from equilibrium studies. Moreover, it is shown that at this ionic strength, the concentrations of intermediary complexes are very low and that the value of the equilibrium constant is independent of ionic strength. These data can be fitted into the following simple reaction scheme: cytochrome c2+1 + cytochrome c3+ in equilibrium or formed from cytochrome c3+1 + cytochrome c2+.  相似文献   

3.
4.
The reaction between cytochrome c oxidase and ferrocytochrome c has been investigated by the stopped-flow method. It has been found that only one electron acceptor, a heme group, in the oxidase is rapidly reduced by cytochrome c. The presence of N3- does not affect the reduction of the acceptor, which supports the hypothesis that this is identical with cytochrome a. The results are consistent with the existence of a simple equilibrium between cytochrome a and cytochrome c: c-2 + a-3+ in equilibrium c-3+ + a-2+ with an equilibrium constant corresponding to an oxidation-reduction potential of cytochrome a 30 mV higher than that for cytochrome c at pH 7.4. The oxidation-reduction potential of the a-3+ /a-2+ couple, 285 mV (based on a potential of 255 mV for cytochrome c), and the optical properties of the reduced form indicate that it is identical with neither of the reduced hemes seen in potentiometric titrations. The oxidase species resulting from the rapid reduction of cytochrome a by cytochrome c is proposed to represent a metastable intermediate state which, under anaerobic conditions, eventually is transformed into a more stable state characterized by a reduced high-potential heme.  相似文献   

5.
6.
7.
In stopped-flow experiments in which oxidized cytochrome c oxidase was mixed with ferrocytochrome c in the presence of a range of oxygen concentrations and in the absence and presence of cyanide, a fast phase, reflecting a rapid approach to an equilibrium, was observed. Within this phase, one or two molecules of ferrocytochrome were oxidized per haem group of cytochrome a, depending on the concentration of ferrocytochrome c used. The reasons for this are discussed in terms of a mechanism in which all electrons enter through cytochrome a, which, in turn, is in rapid equilibrium with a second site, identified with 'visible' copper (830 nm-absorbing) Cud (Beinert et al., 1971). The value of the bimolecular rate constant for the reaction between cytochromes c2+ and a3+ was between 10(6) and 10(7) M(-1)-S(-1); some variability from preparation to preparation was observed. At high ferrocytochrome c concentrations, the initial reaction of cytochrome c2+ with cytochrome a3+ could be isolated from the reaction involving the 'visible' copper and the stoicheiometry was found to approach one molecule of cytochrome c2+ oxidized for each molecule of cytochrome a3+ reduced. At low ferrocytochrome c concentrations, however, both sites (i.e. cytochrome a and Cud) were reduced simultaneously and the stoicheiometry of the initial reaction was closer to two molecules of cytochrome c2+ oxidized per molecule of cytochrome a reduced. The bleaching of the 830 nm band lagged behind or was simultaneous with the formation of the 605 nm band and does not depend on the cytochrome c concentration, whereas the extinction at the steady-state does. The time-course of the return of the 830 nm-absorbing species is much faster than the bleaching of the 605 nm-absorbing component, and parallels that of the turnover phase of cytochrome c2+ oxidation. Additions of cyanide to the oxidase preparations had no effect on the observed stoicheiometry or kinetics of the reduction of cytochrome a and 'visible' copper, but inhibited electron transfer to the other two sites, cytochrome a3 and the undetectable copper, Cuu.  相似文献   

8.
1. The superoxide anion radical (O2-) reacts with ferricytochrome c to form ferrocytochrome c. No intermediate complexes are observable. No reaction could be detected between O2- and ferrocytochrome c. 2. At 20 degrees C the rate constant for the reaction at pH 4.7 to 6.7 is 1.4-10(6) M-1. S -1 and as the pH increases above 6.7 the rate constant steadily decreases. The dependence on pH is the same for tuna heart and horse heart cytochrome c. No reaction could be demonstrated between O2- and the form of cytochrome c which exists above pH approximately 9.2. The dependence of the rate constant on pH can be explained if cytochrome c has pKs of 7.45 and 9.2, and O2- reacts with the form present below pH 7.45 with k = 1.4-10(6) M-1 - S-1, the form above pH 7.45 with k = 3.0- 10(5) M-1 - S-1, and the form present above pH 9.2 with k = 0. 3. The reaction has an activation energy of 20 kJ mol-1 and an enthalpy of activation at 25 degrees C of 18 kJ mol-1 both above and below pH 7.45. It is suggested that O2- may reduce cytochrome c through a track composed of aromatic amino acids, and that little protein rearrangement is required for the formation of the activated complex. 4. No reduction of ferricytochrome c by HO2 radicals could be demonstrated at pH 1.2-6.2 but at pH 5.3, HO2 radicals oxidize ferrocytochrome c with a rate constant of about 5-10(5)-5-10(6) M-1 - S-1.  相似文献   

9.
An ensemble of structural models of the adduct between cytochrome c and cytochrome c oxidase from Paracoccus denitrificans has been calculated based on the experimental data from site-directed mutagenesis and NMR experiments that have accumulated over the last years of research on this system. The residues from each protein that are at the protein–protein interface have been identified by the above experimental work, and this information has been converted in a series of restraints explicitly used in calculations. It is found that a single static structural model cannot satisfy all experimental data simultaneously. Therefore, it is proposed that the adduct exists as a dynamic ensemble of different orientations in equilibrium, and may be represented by a combination or average of the various limiting conformations calculated here. The equilibrium involves both conformations that are competent for electron transfer and conformations that are not. Long-range recognition of the partners is driven by non-specific electrostatic interactions, while at shorter distances hydrophobic contacts tune the reciprocal orientation. Electron transfer from cytochrome bc 1 to cytochrome c oxidase is mediated through cytochrome c experiencing multiple encounters with both of its partners, only part of which are productive. The number of encounters, and thus the electron transfer rate, may be increased by the formation of a cytochrome bc 1–cytochrome c oxidase supercomplex and/or (in human) by increasing the concentration of the two enzymes in the membrane space. Protein Data Bank Accession numbers The coordinates of the five best structural models for each of the four clusters have been deposited in the Protein Data Bank (PDB ID 1ZYY).  相似文献   

10.
Cytochrome c1 from bovine heart mitochondria was isolated by a modification of the technique of K?nig et al. [(1980) Biochim. Biophys. Acta 621, 283-295] which involved an affinity chromatography step on a gel with yeast cytochrome c as a ligand. Its spectra, electrophoretic pattern in presence of sodium dodecylsulfate, its reducibility by ascorbate and cytochrome c were characteristic of a native cytochrome, with a single polypeptide having an apparent molecular weight of 30 000. By using an arylazido derivative of cytochrome c, having the photoactive group bound to lysine 13, upon illumination a cross-link with the described preparation of cytochrome c1 was obtained. By pepsin digestion of the cross-linked complex a limiting fragment was obtained and partially sequenced. It allowed to identify the site of binding of cytochrome c near the sequence 167-174 of cytochrome c1.  相似文献   

11.
The electron-transfer reaction between azurin and the cytochrome oxidase from Pseudomonas aeruginosa was investigated by temperature-jump relaxation in the absence of O2 and in the presence of CO. The results show that: (i) reduced azurin exists in two forms in equilibrium, only one of which is capable of exchanging electrons with the Pseudomonas cytochrome oxidase, in agreement with M. T. Wilson, C. Greenwood, M. Brunori & E. Antonini (1975) (Biochem. J. 145, 449-457); (ii) the electron transfer between azurin and Pseudomonas cytochrome oxidase occurs within a molecular complex of the two proteins; this internal transfer becomes rate-limiting at high reagent concentrations.  相似文献   

12.
The interaction between the oxidized forms of cytochrome c and cytochrome c oxidase (EC 1.9.3.1) has been investigated by 1H-NMR longitudinal relaxation measurements. It is found that relaxation of methyl groups on the heme ring of cytochrome c markedly deviates from a simple exponential behavior in the presence of small amounts of cytochrome oxidase. A comparison with the relaxation behavior of cytochrome c modified by 4-carboxy-3,5-dinitrophenyl at Lys-13 shows that the oxidase induces a conformation in native cytochrome c that is closely related to that of the derivative. It is suggested that this change in conformation consists of a rupture of the salt bridge between Lys-13 and Glu-90 and a concomitant perturbation of the methionine ligand.  相似文献   

13.
Complex formation between cytochrome c oxidase and cytochrome c perturbs the optical absorption spectrum of heme c and heme a in the region of the alpha-, beta, and gamma-bands. The perturbations have been used to titrate cytochrome c oxidase with cytochrome c. A stoichiometry of one molecule of cytochrome c bound per molecule of cytochrome c oxidase is obtained (1 heme c per heme aa3). In contrast, a stoichiometry of 2:1 was found earlier using a gel-filtration method (Rieder, R., and Bosshard, H.R. (1978) J. Biol. Chem. 253, 6045-6053). From the result of the spectrophotometric titration and from the wavelength position of the perturbation signals it is concluded that cytochrome c oxidase contains only a single binding site for cytochrome c which is close enough to heme a to function as an electron transfer site. The second site detected earlier by the gel-filtration method must be remote from this electron transfer site. Scatchard plots of the titration data are curvilinear, possibly indicating interactions between cytochrome c-binding sites on adjacent monomers of dimeric cytochrome c oxidase. The relationship between cytochrome c binding and the reaction of cytochrome c oxidase with ferrocytochrome c is discussed.  相似文献   

14.
15.
c-Type cytochromes are widespread proteins, fundamental for respiration or photosynthesis in most cells. They contain heme covalently bound to protein in a highly conserved, highly stereospecific post-translational modification. In many bacteria, mitochondria, and archaea this heme attachment is catalyzed by the cytochrome c maturation (Ccm) proteins. Here we identify and characterize a covalent, ternary complex between the heme chaperone CcmE, heme, and cytochrome c. Formation of the complex from holo-CcmE occurs in vivo and in vitro and involves the specific heme-binding residues of both CcmE and apocytochrome c. The enhancement and attenuation of the amounts of this complex correlates completely with known consequences of mutations in genes for other Ccm proteins. We propose the complex is a trapped catalytic intermediate in the cytochrome c biogenesis process, at the point of heme transfer from CcmE to the cytochrome, the key step in the maturation pathway.  相似文献   

16.
The reaction of lysine with dithioesters was applied to horseradish peroxidase donor: hydrogen-peroxide oxidoreductase, EC 1.11.1.7) using carboxymethyl dithiotridecanoate: three to four lysine residues were modified. The modified enzyme was soluble and active in diethyl ether. Papain (EC 3.4.22.2) was modified with carboxymethyl dithiobenzoate: two lysine residues were modified. The modified enzyme was soluble and active in dimethylsulfoxide. From these results it is concluded that dithioesters are efficient reagents for the modification of peripheral lysine residues of proteins. Aromatic dithioesters, less reactive but more selective, should be recommended for thiol-dependent enzymes such as papain.  相似文献   

17.
The interaction between cytochrome c and cytochrome c peroxidase was investigated using sedimentation equilibrium at pH 6,20 degrees C, in a number of buffer systems varying in ionic strength between 1 and 100 mM. Between 10 and 100 mM ionic strengths, the sedimentation of the individual proteins was essentially ideal, and sedimentation equilibrium experiments on mixtures of the two proteins were analyzed assuming ideal solution behavior. Analysis of the distribution of mixtures of cytochrome c and cytochrome c peroxidase in the ultracentrifuge cell based on a model involving the formation of a 1:1 cytochrome c-cytochrome c peroxidase complex gave values of the equilibrium dissociation constant ranging from 2.3 +/- 2.7 microM at 10 mM ionic strength to infinity (no detectable interaction) at 100 mM ionic strength. Attempts to determine the presence of complexes involving two cytochrome c molecules bound to cytochrome c peroxidase were inconclusive.  相似文献   

18.
A stopped-flow investigation of the electron-transfer reaction between oxidized azurin and reduced Pseudomonas aeruginosa cytochrome c-551 oxidase and between reduced azurin and oxidized Ps. aeruginosa cytochrome c-551 oxidase was performed. Electrons leave and enter the oxidase molecule via its haem c component, with the oxidation and reduction of the haem d1 occurring by internal electron transfer. The reaction mechanism in both directions is complex. In the direction of oxidase oxidation, two phases assigned on the basis of difference spectra to haem c proceed with rate constants of 3.2 X 10(5)M-1-S-1 and 2.0 X 10(4)M-1-S-1, whereas the haem d1 oxidation occurs at 0.35 +/- 0.1S-1. Addition of CO to the reduced enzyme profoundly modifies the rate of haem c oxidation, with the faster process tending towards a rate limit of 200S-1. Reduction of the oxidase was similarly complex, with a fast haem c phase tending to a rate limit of 120S-1, and a slower phase with a second-order rate of 1.5 X 10(4)M-1-S-1; the internal transfer rate in this direction was o.25 +/- 0.1S-1. These results have been applied to a kinetic model originally developed from temperature-jump studies.  相似文献   

19.
20.
1. The kinetics of ferrocytochrome c peroxidation by yeast peroxidase are described. Kinetic differences between the older and more recent preparations of the enzyme most probably arise from differences in intrinsic turnover rates. 2. The time-courses of cytochrome c peroxidation by the enzyme follow essentially first-order kinetics in phosphate buffer. Deviations from first-order kinetics occur in acetate buffer, and are due to a higher enzymic turnover rate in this medium accompanied by a greater tendency to autocatalytic peroxidation of cytochrome c. 3. The kinetics of ferrocytochrome c peroxidation by yeast peroxidase are interpreted in terms of a mechanism postulating formation of reversible complexes between the peroxidase and both reduced and oxidized cytochrome c. Formation of these complexes is inhibited at high ionic strengths and by polycations. 4. Oxidized cytochrome c can act as a competitive inhibitor of ferrocytochrome c peroxidation by peroxidase. The K(i) for ferricytochrome c is approximately equal to the K(m) for ferrocytochrome c and thus probably accounts for the observed apparent first-order kinetics even at saturating concentrations of ferrocytochrome c. 5. The results are discussed in terms of a possible analogy between the oxidations of cytochrome c catalysed by yeast peroxidase and by mammalian cytochrome oxidase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号