共查询到20条相似文献,搜索用时 15 毫秒
1.
The acrosomal status of wallaby spermatozoa was evaluated by light and electron microscopy after incubation in 1–100 μM lysophosphatidylcholine (LPC) for up to 120 min. Treatment with 1 and 10 μM LPC for 120 min did not lead to acrosomal loss, or detectable alteration to the acrosome, as detected by Bryan's staining and light microscopy. Incubation with 25 μM LPC had little effect on acrosomal loss, however statistically significant changes (P < 0.05) in the acrosomal matrix (altered) were detected after 10-min incubation by light microscopy. Around 50% of acrosomes were altered after 20-min incubation in 50 μM LPC (P < 0.001), and 40% of spermatozoa had lost their acrosome after 60-min incubation (P < 0.001). Treatment with 75 and 100 μM LPC led to rapid acrosomal loss from around 50% of spermatozoa within 10 min (P < 0.001), and by 60 min acrosomal loss was 70–80%. LPC, like the diacylglycerol DiC8 (1,2-di-octanoyl-sn-glycerol), is thus an effective agent to induce loss of the relatively stable wallaby sperm acrosome, and it also induces changes within the acrosomal matrix. Ultrastructure of the LPC-treated spermatozoa revealed that the plasma membrane and the acrosomal membranes were disrupted in a manner similar to that seen after detergent treatment (Triton X-100). There was no evidence of point fusion between the plasma membrane overlying the acrosome and the outer acrosomal membrane. The plasma membrane was the first structure to disappear from the spermatozoa. The acrosomal membranes and matrix showed increasing disruption with time and LPC concentration. Wallaby spermatozoa incubated with LPC at concentrations that induced significant acrosomal loss also underwent a rapid decline in motility that suggested that acrosomal loss may be due to cell damage, rather than a physiological AR. This study concluded that LPC-induced acrosomal loss from tammar wallaby spermatozoa is due to its action as a natural detergent and not as a phosphoinositide pathway intermediate. The study further demonstrates the unusual stability of the marsupial acrosomal membranes. © 1993 Wiley-Liss, Inc. 相似文献
2.
J. M. Hemmi 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1999,185(6):509-515
Despite earlier assertions that most mammals are colour blind, colour vision has in recent years been demonstrated in a variety
of eutherian mammals from a wide range of different orders. This paper presents the first behavioural evidence from colour
discrimination experiments, that an Australian marsupial, the tammar wallaby (Macropus eugenii), has dichromatic colour vision. In addition, the experiments show that the wallabies readily learn the relationship between
the presented colours rather than the absolute hues. This provides a sensitive method to measure the location of the neutral-point,
which is the wavelength of monochromatic light that is indistinguishable from white. This point is a diagnostic feature for
dichromats. The spectral sensitivity of the wallabies' middle-wavelength-sensitive photoreceptor is known (peak: 539 nm) and
the behavioural results imply that the sensitivity of the short-wavelength-sensitive receptor must be near 420 nm. These spectral
sensitivities are similar to those found in eutherian mammals, supporting the view that the earliest mammals had dichromatic
colour vision.
Accepted: 18 July 1999 相似文献
3.
Developmental changes in chicken skeletal myosin isoenzymes. 总被引:1,自引:0,他引:1
J F Hoh 《FEBS letters》1979,98(2):267-270
4.
Lentle RG Dey D Hulls C Mellor DJ Moughan PJ Stafford KJ Nicholas K 《Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology》2006,176(8):763-774
We compared the rates of change of various morphological parameters of the stomach, small intestine, caecum and colon of tammar wallabies and brushtail possums with body mass during in-pouch development. These were correlated with changes in the numbers of bacterial species in the various gut segments. In the pouch-young of both species, the wet tissue masses of all gut segments increased with body mass in a positively allometric manner (i.e. with a body mass exponent > 1), suggesting that the mass of each component was disproportionately low at birth, but increased disproportionately rapidly postnatally. However, the lengths of the wallaby stomach and small intestine scaled isometrically with respect to body mass (i.e. with a body mass exponent around 0.33), which may indicate that the shape of these components changes to the adult form during early neonatal development. Conversely, the length of the caecum and colon of both wallabies and possums scaled in a positively allometric manner with respect to body mass, showing area to volume compensation. This may indicate a more general pattern of disproportionately rapid postnatal enlargement in areas that are distal to the principal sites of neonatal digestion (i.e. the stomach). The numbers of bacterial species present in the various gastrointestinal segments of both species were low in animals aged 100 days or less but there was a significant increase in microbial diversity in the caecum of brushtail possums aged over 100 days. The possum caecum also showed the greatest rate of increase in wet tissue mass relative to body mass. It is postulated that caecal development may act as a nidus for establishment of communities of commensal microflora in the developing marsupial. 相似文献
5.
The effect of pregnant and oestrous females on male testosterone and behaviour in the tammar wallaby
Nanette Y. Schneider 《Hormones and behavior》2010,58(3):378-384
Tammar wallaby females (Macropus eugenii) are seasonally breeding marsupials with a post-partum oestrus after a highly synchronised birth period when testosterone concentrations rise in males. Chemical communication appears to be important for mating, as males show checking behaviour, sniffing the urogenital opening (UGO) and the pouch of females. This study investigates whether the presence of pregnant and oestrous females directly influences testosterone in males and if oestrous odours or secretion from the pouch or UGO are attractive. Concentrations of plasma testosterone were measured in males housed with pregnant and oestrous females during two consecutive cycles in the breeding season, and an artificially induced cycle in the non-breeding season. Males were also tested for their interest in swabs taken from the urogenital opening (UGO) or pouch of oestrous females. Testosterone increased sharply in males in the presence of pregnant and oestrous females during all cycles in both seasons, but there was no change when males were exposed to non-cycling females in lactational or seasonal diapause. Males had no preference for either oestrous or non-oestrous samples taken from the pouch or from the UGO from oestrous females. This study confirms that the increase in plasma testosterone in tammar males can be induced through the presence of pregnant and oestrous females, regardless of season and that the increase began when the females were in late-pregnancy. This confirms that the male's reproductive state is dependent on a signal from females and is not blocked through seasonal effects. 相似文献
6.
R. F. Mark D. L. Flett L. R. Marotte P. M. E. Waite 《Somatosensory & motor research》2013,30(3):198-206
This study used the extrauterine development of a marsupial wallaby to investigate the onset of functional activity in the somatosensory pathway from the whiskers. In vivo recordings were made from the somatosensory cortex from postnatal day (P) 55 to P138, in response to electrical stimulation of the infraorbital nerve supplying the mystacial whiskers. Current source density analysis was used to localize the responses within the cortical depth. This was correlated with development of cortical lamination and the onset of whisker-related patches, as revealed by cytochrome oxidase. The earliest evoked activity occurred at P61, when layers 5 and 6 are present, but layer 4 has not yet developed. This activity showed no polarity reversal with depth, suggesting activity in thalamocortical afferents. By P72 synaptic responses were detected in developing layer 4 and cytochrome oxidase showed the first hint of segregation into whisker-related patches. These patches were clear by P86. The evoked response at this age showed synaptic activity first in layer 4 and then in deep layer 5/upper layer 6. With maturity, responses became longer lasting with a complex sequence of synaptic activity at different cortical depths. The onset of functional activity is coincident with development of layer 4 and the onset of whisker-related pattern formation. A similar coincidence is seen in the rat, despite the markedly different chronological timetable, suggesting similar developmental mechanisms may operate in both species. 相似文献
7.
Alexandre F. R. Stewart Blanca Camoretti-Mercado David Perlman Madhu Gupta Smilja Jakovcic Radovan Zak 《Journal of molecular evolution》1991,33(4):357-366
Summary We have isolated and characterized five overlapping clones that encompass 3.2 kb and encode a part of the short subfragment 2, the hinge, and the light meromyosin regions of the myosin heavy chain rod as well as 143 bp of the 3 untranslated portion of the mRNA. Northern blot analysis showed expression of this mRNA mainly in ventricular muscle of the adult chicken heart, with trace levels detected in the atrium. Transient expression was seen in skeletal muscle during development and in regenerating skeletal muscle following freeze injury. To our knowledge, this is the first report of an avian ventricular myosin heavy chain sequence. Phylogenetic analysis indicated that this isoform is a distant homolog of other ventricular and skeletal muscle myosin heavy chains and represents a distinct member of the multigene family of sarcomeric myosin heavy chains. The ventricular myosin heavy chain of the chicken is either paralogous to its counterpart in other vertebrates or has diverged at a significantly higher rate.Department of Pharmacological and Physiological Sciences, The University of Chicago, Chicago, IL60637, USA 相似文献
8.
D. J. Colgan 《Development genes and evolution》1986,195(3):197-201
Summary In this paper is reported an example of extensive developmental changes in the isoenzymes controlling a biochemical pathway:
more than half of the glycolytic enzymes of the grasshopper,Caledia captiva differ in electrophoretic phenotype between embryonic and adult stages. A similar pattern of changes is found in each of
the taxa ofC. captiva, which is actually a species complex. The present example of developmental variation differs from that described for glycolytic
enzymes in vertebrates in two main points. Firstly, the changes between the phenotypes of the embryos and adults are co-incident
in time, occurring near hatching. Secondly, in contrast to vertebrates where embryospecific isoenzymes are rare, there exist
inC. captiva isoenzymes of trehalase, glucosephosphate isomerase, aldolase, pyruvate kinase, lactate dehydrogenase and 6-phosphogluconate
dehydrogenase which are found in the embryo but not in the adult. Some of the variable enzymes also exhibit tissue specificity
in the adult. The existence of the changes, whatever their basis, shows that the theory that the expression of housekeeping
genes is developmentally invariant is not generally correct. 相似文献
9.
John M. Squire 《Biophysical reviews》2009,1(3):149-160
Myosin filaments in muscle, carrying the ATPase myosin heads that interact with actin filaments to produce force and movement, come in multiple varieties depending on species and functional need, but most are based on a common structural theme. The now successful journeys to solve the ultrastructures of many of these myosin filaments, at least at modest resolution, have not been without their false starts and erroneous sidetracks, but the picture now emerging is of both diversity in the rotational symmetries of different filaments and a degree of commonality in the way the myosin heads are organised in resting muscle. Some of the remaining differences may be associated with how the muscle is regulated. Several proteins in cardiac muscle myosin filaments can carry mutations associated with heart disease, so the elucidation of myosin filament structure to understand the effects of these mutations has a clear and topical clinical relevance. 相似文献
10.
Estrogens have a feminizing effect on gonadal differentiation in fish, amphibians, reptiles, and birds. However, the role of estrogen during gonadal differentiation in mammals is less clear. We investigated the effect of estrogen on gonadal differentiation of male tammar wallabies. Male pouch young were treated orally with estradiol benzoate or oil from the day of birth, before seminiferous cords develop, to Day 25 postpartum and were killed at Day 50 postpartum. In all estrogen-treated neonates, a decrease in gonadal volume, volume of the seminiferous cords, thickness of the tunica albuginea, and number of germ cells was found. The stage of treatment affected the magnitude of the response. Two of three male young born prematurely after 25 days of gestation and treated subsequently with estradiol had ovary-like gonads, with well-developed cortical and medullary regions and primordial follicle formation. Furthermore, at Day 50 postpartum, many (21%) of the germ cells in these sex-reversed ovaries were in the leptotene and zygotene stages of meiosis, similar to female germ cells at the same stage of development. In the other males born on Day 26 of gestation or later, estradiol treatment from the day of birth caused development of dysgenetic testes, with abnormal Sertoli cells, atrophy of the seminiferous tubules and tunica albuginea, and absence of meiotic germ cells. In this marsupial, therefore, estradiol can induce either partial or complete transformation of the male gonads into an ovary with meiotic germ cells. These results confirm that estrogen can inhibit early testicular development, and that testis determination occurs during a narrow window of time. 相似文献
11.
Hoh JF Kim Y Lim JH Sieber LG Lucas CA Zhong WW 《Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology》2007,177(2):153-163
Cardiac myosins and their subunit compositions were studied in ten species of marsupial mammals. Using native gel electrophoresis,
ventricular myosin in macropodoids showed three isoforms, V
1, V
2 and V
3, and western blots using specific anti-α- and anti-β-cardiac myosin heavy chain (MyHC) antibodies showed their MyHC compositions
to be αα, αβ and ββ, respectively. Atrial myosin showed αα MyHC composition but differed from V
1 in light chain composition. Small marsupials (Sminthopsis crassicaudata, Antechinus stuartii, Antechinus flavipes) showed virtually pure V
1, while the larger (1–3 kg) Pseudocheirus peregrinus and Trichosurus vulpecula showed virtually pure V
3. The five macropodoids (Bettongia penicillata, Macropus eugenii, Wallabia bicolour, M. rufus and M.
giganteus), ranging in body mass from 2 to 66 kg, expressed considerably more α-MyHC (22.8%) than expected for their body size. These
results show that cardiac myosins in marsupial mammals are substantially the same as their eutherian counterparts in subunit
composition and in the correlation of their expression with body size, the latter feature underlies the scaling of resting
heart rate and cardiac cross-bridge kinetics with specific metabolic rate. The data from macropodoids further suggest that
expression of cardiac myosins in mammals may also be influenced by their metabolic scope. 相似文献
12.
Gail E. Wilkes Peter A. Janssens 《Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology》1986,156(6):829-837
Summary The tammar wallaby (Macropus eugenii) is a small macropodid marsupial in which the major part of weaning occupies the period between 28 and 36 weeks of pouch life. Before weaning the diet of the tammar is high in carbohydrate and low in lipid/volatile fatty acid whereas the reverse applies after weaning. The adult tammar is a forestomach fermenter. The aim of this study was to elucidate some of the physiological and metabolic changes associated with this major change in the diet.Hepatic glycogen content increased gradually early in development to a maximum of 7% of liver weight at 28–30 weeks of pouch life. It then fell precipitously to less than 1% of liver weight at 36 weeks before recovering to the adult level of about 3% liver weight. Plasma glucose levels were maintained at about 10 mM until 36 weeks, after which they fell gradually to adult values of about 4 mM. Hepatic hexokinase activity increased several-fold between 18 and 30 weeks of pouch life, remained high until 42 weeks, and then fell to the adult level. The hepatic activities of fructose-bisphosphatase and particulate phosphoenolpyruvate carboxykinase (PEPCK) were unchanged during development but soluble hepatic PEPCK activity, which was low until 28 weeks of pouch life, increased 3–4 fold between 30 and 36 weeks and then fell slightly to the adult level. Hepatic pyruvate kinase increased in activity up to 28 weeks and then fell to about half peak values at 36 weeks and 20% of peak activity in the adult. There was a greater than ten-fold increase in the ratio of soluble PEPCK activity to pyruvate kinase activity between 28 and 36 weeks of development. It has previously been reported that hepatic gluconeogenesis is inducible in pouch young but constitutive in adults. We conclude that the change in regulation of hepatic gluconeogenesis at the PEPCK/pyruvate kinase level is part of the weaning process.The urea content of the plasma changed little during development but plasma ammonia increased consistently through pouch life. Urine urea content was low until about 28 weeks of age and then increased rapidly to adult levels. Urine ammonia increased from about 20 mM early in pouch life to a maximum of more than 100 mM at 28 weeks. Thereafter, urine ammonia content fell rapidly to the adult value of about 20 mM. For the first 27 weeks of pouch life, urine pH was consistently between 4.4 and 5.7, but subsequently it rose and became more variable. Urine pH in adults was 8.1±0.3. The activities of the five enzymes of the ornithine-urea cycle increased 3–5 fold in activity between 28 and 36 weeks of pouch life.These findings indicate that there are major changes in metabolic regulation associated with weaning in the tammar. During weaning, glucose becomes essentially unavailable to the young animal and there is an increase in the rate of hepatic gluconeogenesis which is attributable primarily to increased activity of soluble PEPCK. Metabolism, which is acidotic before weaning, becomes alkalotic and there is a decrease in urinary ammonia content as proton excretion decreases. As ammonia excretion falls, the activity of the urea cycle increases and the concentration of urea in the urine rises. Weaning in the tammar is therefore a complex and well-orchestrated process which may be associated with the change in diet. 相似文献
13.
14.
15.
Moreira CM Oliveira EM Bonan CD Sarkis JJ Vassallo DV 《Comparative biochemistry and physiology. Toxicology & pharmacology : CBP》2003,135(3):269-275
Mercury reduces twitch and tetanic force development in isolated rat papillary muscles, and a putative toxic effect on the contractile machinery has been suggested. Based on that, the actions of HgCl2 on the myosin ATPase activity of the left ventricular myocardium were investigated. Samples for assay of myosin ATPase activity were obtained from rats' left ventricles. Increasing concentrations of HgCl2 reduced dose-dependently the activity of the myosin ATPase. This reduction was observed even at very small concentrations, 50 nM HgCl2. This effect was dependent on the presence of SH groups in the myosin molecule since DTT and glutathione protected the myosin ATPase against toxic effects of mercury; full activity being restored by using 500 nM DTT or 500 nM glutathione. Results also suggested that the metal acts as an uncompetitive inhibitor with a Ki of 200 nM HgCl2. Our results suggest that mercury reduces the activity of the myosin ATPase by an uncompetitive mechanism at a very low dose that does not depress force. DTT and glutathione are effective for protection against the actions of mercury suggesting that SH groups might be the sites of action of the metal on the myosin molecule. 相似文献
16.
The direct binding of S1(A1) and S1(A2) to regulated actin has been investigated by centrifugation. Binding was measured in the presence of either Mg·AdoPP[NH]P or Mg·ADP at 24°C at various ionic strengths. At low ionic strength, in either the presence or absence of Ca2+, the binding of S1(A1) to regulated actin was always stronger than for S1(A2). As the ionic strength was increased the differential binding between S1(A1) and S1(A2) was still maintained in the presence of Ca2+ but not in its absence. These data are discussed in terms of a modifying role for the N-terminal region of the A1 light chain in regulation of the contractile process. 相似文献
17.
Vengamanaidu Modepalli Amit Kumar Lyn A Hinds Julie A Sharp Kevin R Nicholas Christophe Lefevre 《BMC genomics》2014,15(1)
Background
Lactation is a key aspect of mammalian evolution for adaptation of various reproductive strategies along different mammalian lineages. Marsupials, such as tammar wallaby, adopted a short gestation and a relatively long lactation cycle, the newborn is immature at birth and significant development occurs postnatally during lactation. Continuous changes of tammar milk composition may contribute to development and immune protection of pouch young. Here, in order to address the putative contribution of newly identified secretory milk miRNA in these processes, high throughput sequencing of miRNAs collected from tammar milk at different time points of lactation was conducted. A comparative analysis was performed to find distribution of miRNA in milk and blood serum of lactating wallaby.Results
Results showed that high levels of miRNA secreted in milk and allowed the identification of differentially expressed milk miRNAs during the lactation cycle as putative markers of mammary gland activity and functional candidate signals to assist growth and timed development of the young. Comparative analysis of miRNA distribution in milk and blood serum suggests that milk miRNAs are primarily expressed from mammary gland rather than transferred from maternal circulating blood, likely through a new putative exosomal secretory pathway. In contrast, highly expressed milk miRNAs could be detected at significantly higher levels in neonate blood serum in comparison to adult blood, suggesting milk miRNAs may be absorbed through the gut of the young.Conclusion
The function of miRNA in mammary gland development and secretory activity has been proposed, but results from the current study also support a differential role of milk miRNA in regulation of development in the pouch young, revealing a new potential molecular communication between mother and young during mammalian lactation.Electronic supplementary material
The online version of this article (doi:10.1186/1471-2164-15-1012) contains supplementary material, which is available to authorized users. 相似文献18.
Yuanyuan Cheng Hannah V. Siddle Stephan Beck Mark D. B. Eldridge Katherine Belov 《Immunogenetics》2009,61(2):111-118
High levels of MHC diversity are crucial for immunological fitness of populations, with island populations particularly susceptible to loss of genetic diversity. In this study, the level of MHC class II DBB diversity was examined in tammar wallabies (Macropus eugenii) from Kangaroo Island by genotyping class II-linked microsatellite loci and sequencing of DBB genes. Here we show that the tammar wallaby has at least four expressed MHC class II DBB loci and extensive genetic variation in the peptide-binding region of the DBB genes. These results contradict early studies which suggested that wallabies lacked MHC class II diversity and demonstrate that, in spite of the long-term isolation on an offshore island, this population of wallabies has a high level of DBB diversity. 相似文献
19.
Qualitative and quantitative changes in milk fat during lactation in the tammar wallaby (Macropus eugenii) 总被引:1,自引:0,他引:1
There are major quantitative and qualitative changes in the milk lipids during lactation in the tammar wallaby, Macropus eugenii. The crude lipid content of the milk is relatively low during the first 10 weeks of lactation; between 10 and 26 weeks post partum the lipid content increases gradually but after that it increases rapidly. The triglyceride fraction of the lipid at early stages of lactation contains a large amount of palmitic acid and relatively little oleic acid whereas mature milk exhibits little palmitic and much oleic acid. In the early stages of lactation fat represents 15% of the total solids and carbohydrate 55%; around 26-30 weeks post partum the carbohydrate moiety falls sharply to a level less than 2% of the solids while lipids increase to c. 60% of the solids. These changes coincide with increases in milk solids, emergence of the young from the pouch, ingestion of herbage, and fermentation of cellulose in the stomach. 相似文献
20.
D. W. Cooper E. A. Holland K. Rudman J. A. Donald R. Zehavi-Feferman L. M. McKenzie A. H. Sinclair J. A. Spencer J. A. M. Graves W. E. Poole 《Mammalian genome》1994,5(9):531-537
Phosphoglycerate kinase (EC 2.7.2.3; PGK) exists in two forms in marsupials. PGK1 is an X-linked house-keeping enzyme, and PGK2 is a mainly testis-specific enzyme under autosomal control. We have used PGK1 probes derived from two closely related species of macropodid marsupials (kangaroos and wallabies) to demonstrate the existence of a large family of pseudogenes in the tammar wallaby (Macropus eugenii). Over 30 fragments are detectable after Taq digestion. We estimate that there are 25–30 copies per genome. Most are autosomally inherited and are apparently not closely linked. Only two restriction fragments that appeared to be sex linked could be detected. Varying degrees of hybridization of fragments to the probes suggest different levels of homology, and hence different ages of origin. The existence of two PGK1 homologous restriction fragments from the X and a large number from the autosomes was also demonstrated by somatic cell hybridization for two other macropodid species, the wallaroo (M. robustus) and the red kangaroo (M. rufus). These results are compared with those from human and mouse, and it is suggested that the propensity of PGK1 to form pseudogenes is an ancient (130 MYR BP) characteristic of mammals. The high level of polymorphism detected in the tammar makes these PGK1 probes potentially useful for measuring genetic variability in this species and other macropodids. 相似文献