首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The RNase H domain from HIV-1 (HIV RNase H) encodes an essential retroviral activity. Refolding of the isolated HIV RNase H domain shows a kinetic intermediate detectable by stopped-flow far UV circular dichroism and pulse-labeling H/D exchange. In this intermediate, strands 1, 4, and 5 as well as helices A and D appear to be structured. Compared to its homolog from Escherichia coli, the rate limiting step in refolding of HIV RNase H appears closer to the native state. We have modeled this kinetic intermediate using a C-terminal deletion fragment lacking helix E. Like the kinetic intermediate, this variant folds rapidly and shows a decrease in stability. We propose that inhibition of the docking of helix E to this folding intermediate may present a novel strategy for anti HIV-1 therapy.  相似文献   

3.
4.
5.
The function of the conserved Phe 100 residue of RNase T1 (EC 3.1.27.3) has been investigated by site-directed mutagenesis and X-ray crystallography. Replacement of Phe 100 by alanine results in a mutant enzyme with kcat reduced 75-fold and a small increase in Km for the dinucleoside phosphate substrate GpC. The Phe 100 Ala substitution has similar effects on the turnover rates of GpC and its minimal analogue GpOMe, in which the leaving cytidine is replaced by methanol. The contribution to catalysis is independent of the nature of the leaving group, indicating that Phe 100 belongs to the primary site. The contribution of Phe 100 to catalysis may result from a direct van der Waals contact between its aromatic ring and the phosphate moiety of the substrate. Phe 100 may also contribute to the positioning of the pentacovalent phosphorus of the transition state, relative to other catalytic residues. If compared to the corresponding wild-type data, the structural implications of the mutation in the present crystal structure of Phe 100 Ala RNase T1 complexed with the specific inhibitor 2'-GMP are restricted to the active site. Repositioning of 2'-GMP, caused by the Phe 100 Ala mutation, generates new or improved contacts of the phosphate moiety with Arg 77 and His 92. In contrast, interactions with the Glu 58 carboxylate appear to be weakened. The effects of the His 92 Gln and Phe 100 Ala mutations on GpC turnover are additive in the corresponding double mutant, indicating that the contribution of Phe 100 to catalysis is independent of the catalytic acid His 92. The present results lead to the conclusion that apolar residues may contribute considerably to catalyze conversions of charged molecules to charged products, involving even more polar transition states.  相似文献   

6.
7.
8.
9.
10.
11.
The two retroviruses human T-lymphotropic virus type I (HTLV-I) and human immunodeficiency virus type 1 (HIV-1) are the causative agents of severe and fatal diseases including adult T-cell leukemia and the acquired immune deficiency syndrome (AIDS). Both viruses code for a protease that is essential for replication and therefore represents a key target for drugs interfering with viral infection. The retroviral proteases from HIV-1 and HTLV-I share 31% sequence identity and high structural similarities. Yet, their substrate specificities and inhibition profiles differ substantially. In this study, we performed all-atom molecular dynamics (MD) simulations for both enzymes in their ligand-free states and in complex with model substrates in order to compare their dynamic behaviors and enhance our understanding of the correlation between sequence, structure, and dynamics in this protein family. We found extensive similarities in both local and overall protein dynamics, as well as in the energetics of their interactions with model substrates. Interestingly, those residues that are important for strong ligand binding are frequently not conserved in sequence, thereby offering an explanation for the differences in binding specificity. Moreover, we identified an interaction network of contacts between conserved residues that interconnects secondary structure elements and serves as a scaffold for the protein fold. This interaction network is conformationally stable over time and may provide an explanation for the highly similar dynamic behavior of the two retroviral proteases, even in the light of their rather low overall sequence identity.  相似文献   

12.
13.
14.
Optimization studies using an HIV RNase H active site inhibitor containing a 1-hydroxy-1,8-naphthyridin-2(1H)-one core identified 4-position substituents that provided several potent and selective inhibitors. The best compound was potent and selective in biochemical assays (IC50 = 0.045 μM, HIV RT RNase H; 13 μM, HIV RT-polymerase; 24 μM, HIV integrase) and showed antiviral efficacy in a single-cycle viral replication assay in P4-2 cells (IC50 = 0.19 μM) with a modest window with respect to cytotoxicity (CC50 = 3.3 μM).  相似文献   

15.
We introduced mutations into the HIV-1 major homology region (MHR; capsids 153-172) and adjacent C-terminal region to analyze their effects on virus-like particle (VLP) assembly, membrane affinity, and the multimerization of the Gag structural protein. Results indicate that alanine substitutions at K158, F168 or E175 significantly diminished VLP production. All assembly-defective Gag mutants had markedly reduced membrane-binding capacities, but results from a velocity sedimentation analysis suggest that most of the membrane-bound Gag proteins were present, primarily in a higher-order multimerized form. The membrane-binding capacity of the K158A, F168A, and E175A Gag proteins increased sharply upon removal of the MA globular domain. While demonstrating improved multimerization capability, the two MA-deleted versions of F168A and E175A did not show marked improvement in VLP production, presumably due to a defect in association with the raft-like membrane domain. However, K158A bound to detergent-resistant raft-like membrane; this was accompanied by noticeably improved VLP production following MA removal. Our results suggest that the HIV-1 MHR and adjacent downstream region facilitate multimerization and tight Gag packing. Enhanced Gag multimerization may help expose the membrane-binding domain and thus improve Gag membrane binding, thereby promoting Gag multimerization into higher-order assembly products.  相似文献   

16.
17.
HIV-1 Vpr is a virion-associated protein that can cause growth arrest when produced inside the cell but when added externally it can cause cell death. Employing the yeast model system, the C-terminal domain, in particular the sequence HFRIGCRHSRIG (Vpr(71-82)), is essential for both the growth arrest and cytocidal activities. Conservation of this sequence in HIV-2 and SIV suggests that these residues may be functionally important. Using site-directed mutagenesis we show that the most highly conserved aa residues, His71 and Gly75, were important for the cell cycle inhibitory effects. In contrast, we show that the wild-type Vpr(71-82) peptide and three variants of this peptide with Gly75 changed to Ser, Ala, and Ile all exhibited the same cytocidal activity suggesting that the intracellular and extracellular effects are unrelated.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号