首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary .   We study the issue of identifiability of mixture models in the context of capture–recapture abundance estimation for closed populations. Such models are used to take account of individual heterogeneity in capture probabilities, but their validity was recently questioned by Link (2003, Biometrics 59, 1123–1130) on the basis of their nonidentifiability. We give a general criterion for identifiability of the mixing distribution, and apply it to establish identifiability within families of mixing distributions that are commonly used in this context, including finite and beta mixtures. Our analysis covers binomial and geometrically distributed outcomes. In an example we highlight the difference between the identifiability issue considered here and that in classical binomial mixture models.  相似文献   

2.
Holzmann H  Munk A  Zucchini W 《Biometrics》2006,62(3):934-6; discussion 936-9
We study the issue of identifiability of mixture models in the context of capture-recapture abundance estimation for closed populations. Such models are used to take account of individual heterogeneity in capture probabilities, but their validity was recently questioned by Link (2003, Biometrics 59, 1123-1130) on the basis of their nonidentifiability. We give a general criterion for identifiability of the mixing distribution, and apply it to establish identifiability within families of mixing distributions that are commonly used in this context, including finite and beta mixtures. Our analysis covers binomial and geometrically distributed outcomes. In an example we highlight the difference between the identifiability issue considered here and that in classical binomial mixture models.  相似文献   

3.
Summary Estimation of abundance is important in both open and closed population capture–recapture analysis, but unmodeled heterogeneity of capture probability leads to negative bias in abundance estimates. This article defines and develops a suite of open population capture–recapture models using finite mixtures to model heterogeneity of capture and survival probabilities. Model comparisons and parameter estimation use likelihood‐based methods. A real example is analyzed, and simulations are used to check the main features of the heterogeneous models, especially the quality of estimation of abundance, survival, recruitment, and turnover. The two major advances in this article are the provision of realistic abundance estimates that take account of heterogenetiy of capture, and an appraisal of the amount of overestimation of survival arising from conditioning on the first capture when heterogeneity of survival is present.  相似文献   

4.
Wildlife populations consist of individuals that contribute disproportionately to growth and viability. Understanding a population's spatial and temporal dynamics requires estimates of abundance and demographic rates that account for this heterogeneity. Estimating these quantities can be difficult, requiring years of intensive data collection. Often, this is accomplished through the capture and recapture of individual animals, which is generally only feasible at a limited number of locations. In contrast, N‐mixture models allow for the estimation of abundance, and spatial variation in abundance, from count data alone. We extend recently developed multistate, open population N‐mixture models, which can additionally estimate demographic rates based on an organism's life history characteristics. In our extension, we develop an approach to account for the case where not all individuals can be assigned to a state during sampling. Using only state‐specific count data, we show how our model can be used to estimate local population abundance, as well as density‐dependent recruitment rates and state‐specific survival. We apply our model to a population of black‐throated blue warblers (Setophaga caerulescens) that have been surveyed for 25 years on their breeding grounds at the Hubbard Brook Experimental Forest in New Hampshire, USA. The intensive data collection efforts allow us to compare our estimates to estimates derived from capture–recapture data. Our model performed well in estimating population abundance and density‐dependent rates of annual recruitment/immigration. Estimates of local carrying capacity and per capita recruitment of yearlings were consistent with those published in other studies. However, our model moderately underestimated annual survival probability of yearling and adult females and severely underestimates survival probabilities for both of these male stages. The most accurate and precise estimates will necessarily require some amount of intensive data collection efforts (such as capture–recapture). Integrated population models that combine data from both intensive and extensive sources are likely to be the most efficient approach for estimating demographic rates at large spatial and temporal scales.  相似文献   

5.
Dorazio RM  Royle JA 《Biometrics》2003,59(2):351-364
We develop a parameterization of the beta-binomial mixture that provides sensible inferences about the size of a closed population when probabilities of capture or detection vary among individuals. Three classes of mixture models (beta-binomial, logistic-normal, and latent-class) are fitted to recaptures of snowshoe hares for estimating abundance and to counts of bird species for estimating species richness. In both sets of data, rates of detection appear to vary more among individuals (animals or species) than among sampling occasions or locations. The estimates of population size and species richness are sensitive to model-specific assumptions about the latent distribution of individual rates of detection. We demonstrate using simulation experiments that conventional diagnostics for assessing model adequacy, such as deviance, cannot be relied on for selecting classes of mixture models that produce valid inferences about population size. Prior knowledge about sources of individual heterogeneity in detection rates, if available, should be used to help select among classes of mixture models that are to be used for inference.  相似文献   

6.
Rivest LP  Daigle G 《Biometrics》2004,60(1):100-107
The robust design is a method for implementing a mark-recapture experiment featuring a nested sampling structure. The first level consists of primary sampling sessions; the population experiences mortality and immigration between primary sessions so that open population models apply at this level. The second level of sampling has a short mark-recapture study within each primary session. Closed population models are used at this stage to estimate the animal abundance at each primary session. This article suggests a loglinear technique to fit the robust design. Loglinear models for the analysis of mark-recapture data from closed and open populations are first reviewed. These two types of models are then combined to analyze the data from a robust design. The proposed loglinear approach to the robust design allows incorporating parameters for a heterogeneity in the capture probabilities of the units within each primary session. Temporary emigration out of the study area can also be accounted for in the loglinear framework. The analysis is relatively simple; it relies on a large Poisson regression with the vector of frequencies of the capture histories as dependent variable. An example concerned with the estimation of abundance and survival of the red-back vole in an area of southeastern Québec is presented.  相似文献   

7.
Population dynamic models combine density dependence and environmental effects. Ignoring sampling uncertainty might lead to biased estimation of the strength of density dependence. This is typically addressed using state‐space model approaches, which integrate sampling error and population process estimates. Such models seldom include an explicit link between the sampling procedures and the true abundance, which is common in capture–recapture settings. However, many of the models proposed to estimate abundance in the presence of capture heterogeneity lead to incomplete likelihood functions and cannot be straightforwardly included in state‐space models. We assessed the importance of estimating sampling error explicitly by taking an intermediate approach between ignoring uncertainty in abundance estimates and fully specified state‐space models for density‐dependence estimation based on autoregressive processes. First, we estimated individual capture probabilities based on a heterogeneity model for a closed population, using a conditional multinomial likelihood, followed by a Horvitz–Thompson estimate for abundance. Second, we estimated coefficients of autoregressive models for the log abundance. Inference was performed using the methodology of integrated nested Laplace approximation (INLA). We performed an extensive simulation study to compare our approach with estimates disregarding capture history information, and using R‐package VGAM, for different parameter specifications. The methods were then applied to a real data set of gray‐sided voles Myodes rufocanus from Northern Norway. We found that density‐dependence estimation was improved when explicitly modeling sampling error in scenarios with low process variances, in which differences in coverage reached up to 8% in estimating the coefficients of the autoregressive processes. In this case, the bias also increased assuming a Poisson distribution in the observational model. For high process variances, the differences between methods were small and it appeared less important to model heterogeneity.  相似文献   

8.
Effective conservation and management require reliable monitoring methods and estimates of abundance to prioritize human and financial investments. Camera trapping is a non-invasive sampling method allowing the use of capture–recapture (CR) models to estimate abundance while accounting for the difficulty of detecting individuals in the wild. We investigated the relative performance of standard closed CR models and spatially explicit CR models (SECR) that incorporate spatial information in the data. Using simulations, we considered 4 scenarios comparing low versus high detection probability and small versus large populations and contrasted abundance estimates obtained from both approaches. Standard CR and SECR models both provided minimally biased abundance estimates, but precision was improved when using SECR models. The associated confidence intervals also provided better coverage than their non-spatial counterpart. We concluded SECR models exhibit better statistical performance than standard closed CR models and allow for sound management strategies based on density maps of activity centers. To illustrate the comparison, we considered the Eurasian lynx (Lynx lynx) as a case study that provided the first abundance estimates of a local population in France. © 2012 The Wildlife Society.  相似文献   

9.
Rivest LP  Baillargeon S 《Biometrics》2007,63(4):999-1006
This article revisits Chao's (1989, Biometrics45, 427-438) lower bound estimator for the size of a closed population in a mark-recapture experiment where the capture probabilities vary between animals (model M(h)). First, an extension of the lower bound to models featuring a time effect and heterogeneity in capture probabilities (M(th)) is proposed. The biases of these lower bounds are shown to be a function of the heterogeneity parameter for several loglinear models for M(th). Small-sample bias reduction techniques for Chao's lower bound estimator are also derived. The application of the loglinear model underlying Chao's estimator when heterogeneity has been detected in the primary periods of a robust design is then investigated. A test for the null hypothesis that Chao's loglinear model provides unbiased abundance estimators is provided. The strategy of systematically using Chao's loglinear model in the primary periods of a robust design where heterogeneity has been detected is investigated in a Monte Carlo experiment. Its impact on the estimation of the population sizes and of the survival rates is evaluated in a Monte Carlo experiment.  相似文献   

10.
Variation between and within individuals in life history traits is ubiquitous in natural populations. When affecting fitness‐related traits such as survival or reproduction, individual heterogeneity plays a key role in population dynamics and life history evolution. However, it is only recently that properly accounting for individual heterogeneity when studying population dynamics of free‐ranging populations has been made possible through the development of appropriate statistical models. We aim here to review case studies of individual heterogeneity in the context of capture–recapture models for the estimation of population size and demographic parameters with imperfect detection. First, we define what individual heterogeneity means and clarify the terminology used in the literature. Second, we review the literature and illustrate why individual heterogeneity is used in capture–recapture studies by focusing on the detection of life‐history tradeoffs, including senescence. Third, we explain how to model individual heterogeneity in capture–recapture models and provide the code to fit these models ( https://github.com/oliviergimenez/indhet_in_CRmodels ). The distinction is made between situations in which heterogeneity is actually measured and situations in which part of the heterogeneity remains unobserved. Regarding the latter, we outline recent developments of random‐effect models and finite‐mixture models. Finally, we discuss several avenues for future research.  相似文献   

11.
Camera trapping with capture-recapture analyses has provided estimates of the abundances of elusive species over the last two decades. Closed capture-recapture models (CR) based on the recognition of individuals and incorporating natural heterogeneity in capture probabilities are considered robust tools; however, closure assumption is often questionable and the use of an Mh jackknife estimator may fail in estimations of real abundance when the heterogeneity is high and data is sparse. A novel, spatially explicit capture-recapture (SECR) approach based on the location-specific capture histories of individuals overcomes the limitations of closed models. We applied both methods on a closed population of 16 critically endangered Western Derby elands in the fenced 1,060-ha Fathala reserve, Senegal. We analyzed the data from 30 cameras operating during a 66-day sampling period deployed in two densities in grid and line arrays. We captured and identified all 16 individuals in 962 trap-days. Abundances were estimated in the programs CAPTURE (models M0, Mh and Mh Chao) and R, package secr (basic Null and Finite mixture models), and compared with the true population size. We specified 66 days as a threshold in which SECR provides an accurate estimate in all trapping designs within the 7-times divergent density from 0.004 to 0.028 camera trap/ha. Both SECR models showed uniform tendency to overestimate abundance when sampling lasted shorter with no major differences between their outputs. Unlike the closed models, SECR performed well in the line patterns, which indicates promising potential for linear sampling of properly defined habitats of non-territorial and identifiable herbivores in dense wooded savanna conditions. The CR models provided reliable estimates in the grid and we confirmed the advantage of Mh Chao estimator over Mh jackknife when data appeared sparse. We also demonstrated the pooling of trapping occasions with an increase in the capture probabilities, avoiding violation of results.  相似文献   

12.
Detecting senescence in wild populations and estimating its strength raise three challenges. First, in the presence of individual heterogeneity in survival probability, the proportion of high‐survival individuals increases with age. This increase can mask a senescence‐related decrease in survival probability when the probability is estimated at the population level. To accommodate individual heterogeneity we use a mixture model structure (discrete classes of individuals). Second, the study individuals can elude the observers in the field, and their detection rate can be heterogeneous. To account for detectability issues we use capture–mark–recapture (CMR) methodology, mixture models and data that provide information on individuals’ detectability. Last, emigration to non‐monitored sites can bias survival estimates, because it can occur at the end of the individuals’ histories and mimic earlier death. To model emigration we use Markovian transitions to and from an unobservable state. These different model structures are merged together using hidden Markov chain CMR models, or multievent models. Simulation studies illustrate that reliable evidence for survival senescence can be obtained using highly heterogeneous data from non site‐faithful individuals. We then design a tailored application for a dataset from a colony of black‐headed gull Chroicocephalus ridibundus. Survival probabilities do not appear individually variable, but evidence for survival senescence becomes significant only when accounting for other sources of heterogeneity. This result suggests that not accounting for heterogeneity leads to flawed inference and/or that emigration heterogeneity mimics survival heterogeneity and biases senescence estimates.  相似文献   

13.
Shirley Pledger 《Biometrics》2005,61(3):868-873
Summary .   Dorazio and Royle (2003, Biometrics 59, 351–364) investigated the behavior of three mixture models for closed population capture–recapture analysis in the presence of individual heterogeneity of capture probability. Their simulations were from the beta-binomial distribution, with analyses from the beta-binomial, the logit-normal, and the finite mixture (latent class) models. In this response, simulations from many different distributions give a broader picture of the relative value of the beta-binomial and the finite mixture models, and provide some preliminary insights into the situations in which these models are useful.  相似文献   

14.
The heterogeneity of catchability (HC) among the individuals encountered during a capture–recapture study has long been regarded as a liability. However, heterogeneous capture probabilities may reflect interesting but hidden features of the population, such as social status. The difficulty is to distinguish between this intrinsic heterogeneity and the extrinsic heterogeneity induced by the study itself. So far, population ecologists have not been able to distinguish between these two sources of variation in capture heterogeneity because, in the presence of heterogeneity of capture in the data, they have frequently used a too simple approach. This traditional approach, which consists of incorporating two common sources of lack of fit (transience and trap-dependence), does not directly model the HC and thus cannot investigate its biological meaning. In this context, we propose, for open populations, to directly model the HC by employing multievent models. Multievent models make it possible to break HC into two classes of catchability viewed as uncertain states. With the introduction of a coefficient of heterogeneity to model proportional probabilities of capture over time in the two classes, our approach allows the investigation of HC in a parsimonious way. In this paper, we apply both this new approach and the traditional approach to a long-term data set of male deer mice Peromyscus maniculatus. We then compare 13 candidate models separately for each approach. Our results indicate that the new approach is superior to the traditional approach. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
Open population capture‐recapture models are widely used to estimate population demographics and abundance over time. Bayesian methods exist to incorporate open population modeling with spatial capture‐recapture (SCR), allowing for estimation of the effective area sampled and population density. Here, open population SCR is formulated as a hidden Markov model (HMM), allowing inference by maximum likelihood for both Cormack‐Jolly‐Seber and Jolly‐Seber models, with and without activity center movement. The method is applied to a 12‐year survey of male jaguars (Panthera onca) in the Cockscomb Basin Wildlife Sanctuary, Belize, to estimate survival probability and population abundance over time. For this application, inference is shown to be biased when assuming activity centers are fixed over time, while including a model for activity center movement provides negligible bias and nominal confidence interval coverage, as demonstrated by a simulation study. The HMM approach is compared with Bayesian data augmentation and closed population models for this application. The method is substantially more computationally efficient than the Bayesian approach and provides a lower root‐mean‐square error in predicting population density compared to closed population models.  相似文献   

16.
Shirley Pledger 《Biometrics》2005,61(3):868-73; discussion 874-6
Dorazio and Royle (2003, Biometrics 59, 351-364) investigated the behavior of three mixture models for closed population capture-recapture analysis in the presence of individual heterogeneity of capture probability. Their simulations were from the beta-binomial distribution, with analyses from the beta-binomial, the logit-normal, and the finite mixture (latent class) models. In this response, simulations from many different distributions give a broader picture of the relative value of the beta-binomial and the finite mixture models, and provide some preliminary insights into the situations in which these models are useful.  相似文献   

17.
Dynamic N‐mixture models have been recently developed to estimate demographic parameters of unmarked individuals while accounting for imperfect detection. We propose an application of the Dail and Madsen ( 2011 : Biometrics, 67 , 577–587) dynamic N‐mixture model in a manipulative experiment using a before‐after control‐impact design (BACI). Specifically, we tested the hypothesis of cavity limitation of a cavity specialist species, the northern flying squirrel, using nest box supplementation on half of 56 trapping sites. Our main purpose was to evaluate the impact of an increase in cavity availability on flying squirrel population dynamics in deciduous stands in northwestern Québec with the dynamic N‐mixture model. We compared abundance estimates from this recent approach with those from classic capture–mark–recapture models and generalized linear models. We compared apparent survival estimates with those from Cormack–Jolly–Seber (CJS) models. Average recruitment rate was 6 individuals per site after 4 years. Nevertheless, we found no effect of cavity supplementation on apparent survival and recruitment rates of flying squirrels. Contrary to our expectations, initial abundance was not affected by conifer basal area (food availability) and was negatively affected by snag basal area (cavity availability). Northern flying squirrel population dynamics are not influenced by cavity availability at our deciduous sites. Consequently, we suggest that this species should not be considered an indicator of old forest attributes in our study area, especially in view of apparent wide population fluctuations across years. Abundance estimates from N‐mixture models were similar to those from capture–mark–recapture models, although the latter had greater precision. Generalized linear mixed models produced lower abundance estimates, but revealed the same relationship between abundance and snag basal area. Apparent survival estimates from N‐mixture models were higher and less precise than those from CJS models. However, N‐mixture models can be particularly useful to evaluate management effects on animal populations, especially for species that are difficult to detect in situations where individuals cannot be uniquely identified. They also allow investigating the effects of covariates at the site level, when low recapture rates would require restricting classic CMR analyses to a subset of sites with the most captures.  相似文献   

18.
Mountain lions (Puma concolor) are often difficult to monitor because of their low capture probabilities, extensive movements, and large territories. Methods for estimating the abundance of this species are needed to assess population status, determine harvest levels, evaluate the impacts of management actions on populations, and derive conservation and management strategies. Traditional mark–recapture methods do not explicitly account for differences in individual capture probabilities due to the spatial distribution of individuals in relation to survey effort (or trap locations). However, recent advances in the analysis of capture–recapture data have produced methods estimating abundance and density of animals from spatially explicit capture–recapture data that account for heterogeneity in capture probabilities due to the spatial organization of individuals and traps. We adapt recently developed spatial capture–recapture models to estimate density and abundance of mountain lions in western Montana. Volunteers and state agency personnel collected mountain lion DNA samples in portions of the Blackfoot drainage (7,908 km2) in west-central Montana using 2 methods: snow back-tracking mountain lion tracks to collect hair samples and biopsy darting treed mountain lions to obtain tissue samples. Overall, we recorded 72 individual capture events, including captures both with and without tissue sample collection and hair samples resulting in the identification of 50 individual mountain lions (30 females, 19 males, and 1 unknown sex individual). We estimated lion densities from 8 models containing effects of distance, sex, and survey effort on detection probability. Our population density estimates ranged from a minimum of 3.7 mountain lions/100 km2 (95% CI 2.3–5.7) under the distance only model (including only an effect of distance on detection probability) to 6.7 (95% CI 3.1–11.0) under the full model (including effects of distance, sex, survey effort, and distance × sex on detection probability). These numbers translate to a total estimate of 293 mountain lions (95% CI 182–451) to 529 (95% CI 245–870) within the Blackfoot drainage. Results from the distance model are similar to previous estimates of 3.6 mountain lions/100 km2 for the study area; however, results from all other models indicated greater numbers of mountain lions. Our results indicate that unstructured spatial sampling combined with spatial capture–recapture analysis can be an effective method for estimating large carnivore densities. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

19.
Estimating animal abundance in industrial scale batches of ground meat is important for mapping meat products through the manufacturing process and for effectively tracing the finished product during a food safety recall. The processing of ground beef involves a potentially large number of animals from diverse sources in a single product batch, which produces a high heterogeneity in capture probability. In order to estimate animal abundance through DNA profiling of ground beef constituents, two parameter-based statistical models were developed for incidence data. Simulations were applied to evaluate the maximum likelihood estimate (MLE) of a joint likelihood function from multiple surveys, showing superiority in the presence of high capture heterogeneity with small sample sizes, or comparable estimation in the presence of low capture heterogeneity with a large sample size when compared to other existing models. Our model employs the full information on the pattern of the capture-recapture frequencies from multiple samples. We applied the proposed models to estimate animal abundance in six manufacturing beef batches, genotyped using 30 single nucleotide polymorphism (SNP) markers, from a large scale beef grinding facility. Results show that between 411~1367 animals were present in six manufacturing beef batches. These estimates are informative as a reference for improving recall processes and tracing finished meat products back to source.  相似文献   

20.
In open population capture-recapture studies, it is usually assumed that similar animals (e.g., of the same sex and age group) have similar survival rates and capture probabilities. These assumptions are generally perceived to be an oversimplification, and they can lead to incorrect model selection and biased parameter estimates. Allowing for individual variability in survival and capture probabilities among apparently similar animals is now becoming possible, due to advances in closed population models and improved computing power. This article presents a flexible framework of likelihood-based models which allow for individual heterogeneity in survival and capture rates. Heterogeneity is modeled using finite mixtures, which have enough flexibility of distribution shape to accommodate a wide variety of different patterns of individual variation. The models condition on the first capture of each animal, and include as a special case the Cormack-Jolly-Seber model. Model selection is done either using Akaike's information criterion or by likelihood ratio tests, making available checks of different influences on survival rates. Bias in parameter estimates is reduced by including individual heterogeneity. Model selection and bias reduction are important in population studies and for making informed management decisions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号