首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Signaling by phosphatidylinositol (PI) 3-kinases is mediated by 3-phosphoinositides, which bind to Pleckstrin homology (PH) domains that are present in a wide spectrum of proteins. PH domains can be classified into three groups based on their different lipid binding specificities. Distinct 3-phosphoinositides can accumulate upon PI 3-kinase activation in cells in response to different stimuli and mediate specific cellular responses. In Swiss 3T3 mouse fibroblasts, oxidative stress induced by 1 mM H(2)O(2) caused almost exclusive accumulation of phosphatidylinositol 3,4-bisphosphate (PtdIns(3, 4)P(2)), whereas osmotic stress increased both phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3)) and PtdIns(3,4)P(2) levels. The increase in PtdIns(3,4)P(2) levels, caused by oxidative stress, correlated with the activation of protein kinase B, which has a promiscuous PH domain that binds both PtdIns(3,4,5)P(3) and PtdIns(3, 4)P(2). p70 S6 kinase, another signaling component downstream of PI 3-kinase, however, was not activated by this oxidative stress-induced increase in PtdIns(3,4)P(2) levels. Increased PtdIns(3,4,5)P(3) and PtdIns(3,4)P(2) levels in response to osmotic stress did not correlate with protein kinase B activation, because of concomitant activation of an inhibitory pathway, but p70 S6 kinase was activated by osmotic stress. These results demonstrate that PtdIns(3,4)P(2) can accumulate independently of PtdIns(3,4, 5)P(3) and exerts a pattern of cellular responses that is distinct from that induced by accumulation of PtdIns(3,4,5)P(3).  相似文献   

2.
Phosphatidylinositol 3-kinase (PI3K) mediates a variety of cellular responses by generating PtdIns(3,4)P2 and PtdIns(3,4,5)P3. These 3-phosphoinositides then function directly as second messengers to activate downstream signaling molecules by binding pleckstrin homology (PH) domains in these signaling molecules. We have established a novel assay in the yeast Saccharomyces cerevisiae to identify proteins that bind PtdIns(3,4)P2 and PtdIns(3,4,5)P3 in vivo which we have called TOPIS (Targets of PI3K Identification System). The assay uses a plasma membrane-targeted Ras to complement a temperature-sensitive CDC25 Ras exchange factor in yeast. Coexpression of PI3K and a fusion protein of activated Ras joined to a PH domain known to bind PtdIns(3,4)P2 (AKT) or PtdIns(3,4,5)P3 (BTK) rescues yeast growth at the non-permissive temperature of 37 degreesC. Using this assay, we have identified several amino acids in the beta1-beta2 region of PH domains that are critical for high affinity binding to PtdIns(3,4)P2 and/or PtdIns(3,4,5)P3, and we have proposed a structural model for how these PH domains might bind PI3K products with high affinity. From these data, we derived a consensus sequence which predicts high-affinity binding to PtdIns(3, 4)P2 and/or PtdIns(3,4,5)P3, and we have identified several new PH domain-containing proteins that bind PI3K products, including Gab1, Dos, myosinX, and Sbf1. Use of this assay to screen for novel cDNAs which rescue yeast at the non-permissive temperature should provide a powerful approach for uncovering additional targets of PI3K.  相似文献   

3.
New efforts in cancer therapy are being focused at various levels of signaling pathways. With phosphoinositide 3-kinase (PI3-K) potentially being necessary for a range of cancer-related functions, we have investigated the influence of selected inositol tris- to hexakisphosphates on cell growth and tumorigenicity. We show that micromolar concentrations of inositol 1,3,4,5,6-pentakisphosphate and inositol 1,4,5,6-tetrakisphosphate [Ins(1,4,5,6)P(4)] inhibit IGF-1-induced [(3)H]-thymidine incorporation in human breast cancer (MCF-7) cells and the ability to grow in liquid medium and form colonies in agarose semisolid medium by small cell lung cancer (SCLC) cells, a human cancer cell line containing a constitutively active PI3-K. In an ovarian cancer cell line that also contains a constitutively active PI3-K (SKOV-3 cells), Ins(1,4,5,6)P(4) again inhibited liquid medium growth. Furthermore, when applied extracellularly, inositol 1,3,4,5-tetrakisphosphate was shown indeed to enter SCLC cells. These effects appeared specifically related to PH domains known to bind to phosphatidylinositol 3,4-bisphosphate [PtdIns(3,4)P(2)] and phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P(3)], indicating involvement of the PI3-K downstream target protein kinase B (PKB/Akt). This was further supported by inhibition of PKB/Akt PH domain membrane targeting in COS-7 cells by Ins(1,4,5,6)P(4). Thus, we propose that specific inositol polyphosphates inhibit PI3-K by competing with PtdIns(3,4, 5)P(3)-binding PH domains and that this occurs mainly at the level of the downstream PI3-K target, PKB/Akt.  相似文献   

4.
Phosphatidylinositol (PI) 3-kinase is a cytoplasmic signaling molecule that is recruited to activated growth factor receptors after growth factor stimulation of cells. Activation of PI 3-kinase results in increased intracellular levels of 3' phosphorylated inositol phospholipids and the induction of signaling responses, including the activation of the protein kinase Akt, which is also known as RAC-PK or PKB. We tested the possibility that the phospholipid products of PI 3-kinase directly mediate the activation of Akt. We have previously described a constitutively active PI 3-kinase, p110, which can stimulate Akt activity. We used purified p110 protein to generate a series of 3' phosphorylated inositol phospholipids and tested whether any of these lipids could activate Akt in vitro. Phospholipid vesicles containing PI3,4 bisphosphate (P2) specifically activated Akt in vitro. By contrast, the presence of phospholipid vesicles containing PI3P or PI3,4,5P3 failed to increase the kinase activity of Akt. Akt could also be activated by synthetic dipalmitoylated PI3,4P2 or after enzymatic conversion of PI3,4,5P3 into PI3,4P2 with the signaling inositol polyphosphate 5' phosphatase SIP. We show that PI3,4P2-mediated activation is dependent on a functional pleckstrin homology domain in Akt, since a point mutation in the pleckstrin homology domain abrogated the response to PI3,4P2. Our findings show that a phospholipid product of PI 3-kinase can directly stimulate an enzyme known to be an important mediator of PI 3-kinase signaling.  相似文献   

5.
Interest in phosphopinositide 3-kinase (PI 3-kinase) has been fuelled by its identification as a major phosphotyrosyl protein detected in cells following growth factor stimulation and oncogenic transformation. It is found complexed with activated growth factor receptors and non-receptor tyrosine kinases, thus suggesting that it participates in the signal transduction pathways initiated by the activation of tyrosine kinases. PI 3-kinase phosphorylates the 3-position in the inositol ring of the well known inositol phospholipids in vitro giving phosphatidylinositol 3-phosphate, phosphatidylinositol 3,4-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate [PtdIns3P, PtdIns(3,4)P2 and PtdIns(3,4,5)P3], respectively. The cellular levels of PtdIns(3,4)P2 and PtdIns(3,4,5)P3 rapidly increase in circumstances where PI 3-kinase becomes complexed with tyrosine kinases. Accumulation of the same lipids also occurs in platelets and neutrophils following stimulation of G-protein linked -thrombin and chemotactic peptide receptors, respectively, leading to speculation that one or both of these lipids is a new second messenger whose function is not yet known. This review brings together recent information on the isolation, characterization and regulation of PI 3-kinase, the cellular occurrence of 3-phosphorylated inositol phospholipids and possible functions of the PI 3-kinase pathway in cell signalling.  相似文献   

6.
Phosphoinositide 3-kinase (PI3K) regulates cell polarity and migration by generating phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P(3)) at the leading edge of migrating cells. The serine-threonine protein kinase Akt binds to PI(3,4,5)P(3), resulting in its activation. Active Akt promotes spatially regulated actin cytoskeletal remodeling and thereby directed cell migration. The inositol polyphosphate 5-phosphatases (5-ptases) degrade PI(3,4,5)P(3) to form PI(3,4)P(2), which leads to diminished Akt activation. Several 5-ptases, including SKIP and SHIP2, inhibit actin cytoskeletal reorganization by opposing PI3K/Akt signaling. In this current study, we identify a molecular co-chaperone termed silencer of death domains (SODD/BAG4) that forms a complex with several 5-ptase family members, including SKIP, SHIP1, and SHIP2. The interaction between SODD and SKIP exerts an inhibitory effect on SKIP PI(3,4,5)P(3) 5-ptase catalytic activity and consequently enhances the recruitment of PI(3,4,5)P(3)-effectors to the plasma membrane. In contrast, SODD(-/-) mouse embryonic fibroblasts exhibit reduced Akt-Ser(473) and -Thr(308) phosphorylation following EGF stimulation, associated with increased SKIP PI(3,4,5)P(3)-5-ptase activity. SODD(-/-) mouse embryonic fibroblasts exhibit decreased EGF-stimulated F-actin stress fibers, lamellipodia, and focal adhesion complexity, a phenotype that is rescued by the expression of constitutively active Akt1. Furthermore, reduced cell migration was observed in SODD(-/-) macrophages, which express the three 5-ptases shown to interact with SODD (SKIP, SHIP1, and SHIP2). Therefore, this study identifies SODD as a novel regulator of PI3K/Akt signaling to the actin cytoskeleton.  相似文献   

7.
We have identified the structure of phosphatidylinositol 3-phosphate (PtdIns(3)P), phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P2) and phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) in human platelets. These lipids accounted for less than 2% of the total 32P incorporated into inositol phospholipids in the platelets. All three lipids were labeled in unstimulated platelets, but incorporation of 32P changed rapidly by 15 s after thrombin stimulation, suggesting that they are important in platelet activation. Specific inositol polyphosphate phosphatases were used to both identify the lipid structures and to determine the route of synthesis of these lipids. During 32P labeling and after thrombin stimulation of human platelets, as much as 60% of the total radioactivity present in PtdIns(3,4)P2 was found in the D-4 phosphate and only 35% in the D-3 phosphate indicating that PtdIns(3)P is the precursor of PtdIns(3,4)P2. In addition, the D-5 and D-4 phosphates of PtdIns(3,4,5)P3 each contained 35-40% of the total radioactivity in the molecule compared with only 18-28% in the D-3 position, suggesting that PtdIns(3,4)P2 and not PtdIns(4,5)P2 is the major precursor of this lipid. These results define the predominant pathway for synthesis of these lipids in platelets as PtdIns----PtdIns(3)P----PtdIns(3,4)P2----PtdIns(3,4,5)P3.  相似文献   

8.
Phosphoinositide-specific inositol polyphosphate 5- phosphatase IV has the affinity for PI(3,4,5)P(3) (K(m) = 0.65 microM) that is approximately 10-fold greater than the other inositol polyphosphate 5-phosphatases, which use this substrate including SHIP, OCRL, and 5ptase II, suggesting that it may be important in controlling intracellular levels of this metabolite. We created cell lines stably expressing the enzyme to study its effect on cell function. We found that overexpression of 5ptase IV in 293 cells caused the rapid depletion of both PI(4,5)P(2) and PI(3,4,5)P(3) in cells with corresponding increases in the products, PI(4)P and PI(3,4)P(2), changing the balance of two phosphoinositol products of phosphoinositide 3-kinase, PI(3,4)P(2) and PI(3,4,5)P(3), in the cell. One of the targets of these phosphoinositides is the serine/threonine kinase Akt, which plays an important role in the control of apoptosis. We were able to address the relative roles of PI(3,4)P(2) and PI(3,4,5)P(3) in the activation of Akt by selective depletion of these phosphoinositides in cells stably transfected with 5ptase IV and inositol polyphosphate 4-phosphatase (4ptase I). In cells transfected with 4ptase I, the level of PI(3,4)P(2) was reduced, and PI(3,4,5)P(3) was increased. Expression of the two enzymes had the opposite effect on the phosphorylation of Akt in response to stimulation with growth factors or heat shock. Akt phosphorylation was inhibited in cells expressing 5ptase IV but increased in 4ptase I cells and correlated with the intracellular level of PI(3,4,5)P(3) and not that of PI(3,4)P(2). The inhibition of Akt phosphorylation in cells expressing 5ptase IV makes them highly susceptible to FAS-induced apoptosis, whereas overexpressing of the 4ptase I protects cells from apoptosis. Our results place 5ptase IV as a relevant biological regulator of PI3K/Akt pathway in cells.  相似文献   

9.
Arap3 is a phosphoinositide (PI) 3 kinase effector that serves as a GTPase activating protein (GAP) for both Arf and Rho G-proteins. The protein has multiple pleckstrin homology (PH) domains that bind preferentially phosphatidyl-inositol-3,4,5-trisphosphate (PI(3,4,5,)P3) to induce translocation of Arap3 to the plasma membrane upon PI3K activation. Arap3 also contains a Ras association (RA) domain that interacts with the small G-protein Rap1 and a sterile alpha motif (SAM) domain of unknown function. In a yeast two-hybrid screen for new interaction partners of Arap3, we identified the PI 5'-phosphatase SHIP2 as an interaction partner of Arap3. The interaction between Arap3 and SHIP2 was observed with endogenous proteins and shown to be mediated by the SAM domain of Arap3 and SHIP2. In vitro, these two domains show specificity for a heterodimeric interaction. Since it was shown previously that Arap3 has a higher affinity for PI(3,4,5,)P3 than for PI(3,4)P2, we propose that the SAM domain of Arap3 can function to recruit a negative regulator of PI3K signaling into the effector complex.  相似文献   

10.
In macrophages, enzymes that synthesize or hydrolyze phosphatidylinositol (3,4,5)-trisphosphate [PI(3,4,5)P(3)] regulate Fcgamma receptor-mediated phagocytosis. Inhibition of phosphatidylinositol 3-kinase (PI3K) or overexpression of the lipid phosphatases phosphatase and tensin homologue (PTEN) and Src homology 2 domain-containing inositol phosphatase (SHIP-1), which hydrolyze PI(3,4,5)P(3) to phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3,4-bisphosphate [PI(3,4)P(2)], respectively, inhibit phagocytosis in macrophages. To examine how these enzymes regulate phagosome formation, the distributions of yellow fluorescent protein (YFP) chimeras of enzymes and pleckstrin homology (PH) domains specific for their substrates and products were analyzed quantitatively. PTEN-YFP did not localize to phagosomes, suggesting that PTEN regulates phagocytosis globally within the macrophage. SHIP1-YFP and p85-YFP were recruited to forming phagosomes. SHIP1-YFP sequestered to the leading edge and dissociated from phagocytic cups earlier than did p85-cyan fluorescent protein, indicating that SHIP-1 inhibitory activities are restricted to the early stages of phagocytosis. PH domain chimeras indicated that early during phagocytosis, PI(3,4,5)P(3) was slightly more abundant than PI(3,4)P(2) at the leading edge of the forming cup. These results support a model in which phagosomal PI3K generates PI(3,4,5)P(3) necessary for later stages of phagocytosis, PTEN determines whether those late stages can occur, and SHIP-1 regulates when and where they occur by transiently suppressing PI(3,4,5)P(3)-dependent activities necessary for completion of phagocytosis.  相似文献   

11.
In the course of delineating the regulatory mechanism underlying phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3) metabolism, we have discovered three distinct phosphoinositide-specific phospholipase D (PI-PLD) isozymes from rat brain, tentatively designated as PI-PLDa, PI-PLDb, and PI-PLDc. These enzymes convert [3H]PI(3,4,5)P3 to generate a novel inositol phosphate, D-myo-[3H]inositol 3,4,5-trisphosphate ([3H]Ins(3,4,5)P3) and phosphatidic acid. These isozymes are predominantly associated with the cytosol, a notable difference from phosphatidylcholine PLDs. They are partially purified by a three-step procedure consisting of DEAE, heparin, and Sephacryl S-200 chromatography. PI-PLDa and PI-PLDb display a high degree of substrate specificity for PI(3,4, 5)P3, with a relative potency of PI(3,4,5)P3 > phosphatidylinositol 3-phosphate (PI(3)P) or phosphatidylinositol 4-phosphate (PI(4)P) > phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) > phosphatidylinositol 3,4-bisphosphate (PI(3,4)P2). In contrast, PI-PLDc preferentially utilizes PI(3)P as substrate, followed by, in sequence, PI(3,4,5)P3, PI(4)P, PI(3,4)P2, and PI(4,5)P2. Both PI(3, 4)P2 and PI(4,5)P2 are poor substrates for all three isozymes, indicating that the regulatory mechanisms underlying these phosphoinositides are different from that of PI(3,4,5)P3. None of these enzymes reacts with phosphatidylcholine, phosphatidylserine, or phosphatidylethanolamine. All three PI-PLDs are Ca2+-dependent. Among them, PI-PLDb and PI-PLDc show maximum activities within a sub-microM range (0.3 and 0.9 microM Ca2+, respectively), whereas PI-PLDa exhibits an optimal [Ca2+] at 20 microM. In contrast to PC-PLD, Mg2+ has no significant effect on the enzyme activity. All three enzymes require sodium deoxycholate for optimal activities; other detergents examined including Triton X-100 and Nonidet P-40 are, however, inhibitory. In addition, PI(4,5)P2 stimulates these isozymes in a dose-dependent manner. Enhancement in the enzyme activity is noted only when the molar ratio of PI(4,5)P2 to PI(3,4, 5)P3 is between 1:1 and 2:1.  相似文献   

12.
The PI3K-PKB pathway is an important and widely studied pathway in cell signaling. The enzyme activity of PI3K produces D-3 phosphoinositides, including the lipid second messengers PI(3,4,5)P3 and PI(3,4)P2. PI(3,4,5)P3 has been deemed to be the most important second messenger for triggering PKB phosphorylation. PKB has two regulatory phosphorylation sites, Thr308 and Ser473, both of which contribute to its full activity. The direct relationship between PI3K lipid products and PKB phosphorylation is still not entirely clear. Our previous study showed that PI(3,4)P2 has a specific role in contributing to PKB phosphorylation on Ser473 sites in mast cells. In this study, we used two strategies to further elucidate this question in a well-established B cell system. First, by SHIP overexpression, we examined PKB activation under conditions where PI(3,4,5)P3 accumulation is largely suppressed. Second, we used dose response of different forms of B-cell receptor ligands to manipulate the relative levels of PI(3,4,5)P3 and PI(3,4)P2. Our results demonstrate a close relationship between PI(3,4,5)P3 levels and Thr308 phosphorylation levels, and PI(3,4)P2 levels and Ser473 phosphorylation levels, respectively. Furthermore, overall PKB activity, primarily consisting of cytosolic enzyme, was dependent upon levels of PI(3,4)P2, while only membrane-associated PKB activity was dependent upon PI(3,4,5)P3 levels. We conclude that PI(3,4,5)P3 and PI(3,4)P2 have distinct roles in determining PKB phosphorylation and activity. Thus, when investigating PI3K-PKB pathways, the importance of both lipids must be considered.  相似文献   

13.
In 3T3-L1 and human preadipocytes, insulin results in the isolated rise in phosphatidylinositol (PI)-3,4,5-P3, whereas PDGF produces PI(3,4)P2 in addition to PI(3,4,5)P3. SH2 domain-containing inositol 5-phosphatase 2 (SHIP2) converts PI(3,4,5)P3 into PI(3,4)P2. PDGF, but not insulin, stimulates SHIP2 tyrosine phosphorylation and its association with Shc in human and 3T3-L1 preadipocytes. We now demonstrate that SHIP2 tyrosine phosphorylation and association with Shc in PDGF-treated 3T3-L1 preadipocytes was reduced by bisindolylmaleimide I (BisI), an inhibitor of conventional/novel protein kinase C (PKC). However, the production of PI(3,4)P2 and PI(3,4,5)P3 by PDGF was unaffected by BisI. Activation of PKC by 12-O-tetradecanoylphorbol-13-acetate (TPA) was not sufficient to induce SHIP2 tyrosine phosphorylation. Furthermore, we identified threonine 958 (T958) as a novel PDGF-responsive SHIP2 phosphorylation site. Mutation of T958 to alanine reduced PDGF-stimulated SHIP2 tyrosine phosphorylation and association with Shc, but did not alter its anti-proliferative effect on preadipocytes. This study demonstrates that SHIP2 tyrosine phosphorylation and Shc association can be regulated by serine/threonine signaling pathways, either indirectly (via PKC), or directly (via T958). Interestingly, the anti-proliferative effect of SHIP2 T958A, as well as another SHIP2 mutant (Y986F, Y987F) that also displays defective tyrosine phosphorylation and Shc association, does not depend on these molecular events.  相似文献   

14.
The role of the inositol lipid 5-phosphatase (SHIP2) in preadipocyte signaling is not known. Although overexpression of SHIP2 inhibited proliferation and (3)H-thymidine incorporation in 3T3-L1 preadipocytes, there was no effect on insulin-induced adipogenesis. Insulin promoted SHIP2 tyrosine phosphorylation in differentiated 3T3-L1 adipocytes, but did not do so in preadipocytes. The absence of SHIP2 tyrosine phosphorylation suggests a potential explanation for the isolated rise in PI(3,4,5)P3, without any changes in PI(3,4)P2, previously observed following insulin treatment of these cells. Lack of SHIP2 tyrosine phosphorylation by insulin was also observed in primary cultures of human abdominal subcutaneous preadipocytes. These cells also produced PI(3,4,5)P3, but not PI(3,4)P2, in response to insulin. Comparison of insulin vs. PDGF treatment on SHIP2 tyrosine phosphorylation in 3T3-L1 and human preadipocytes revealed that only PDGF, which stimulates the accumulation of PI(3,4,5)P3 as well as PI(3,4)P2, was active in this regard, and only PDGF promoted the association of 52 kDa form of Shc with SHIP2. Nevertheless, both insulin and PDGF were equally effective in translocating SHIP2 to the plasma membrane in 3T3-L1 preadipocytes. Lack of SHIP2 tyrosine phosphorylation may account for the insulin-specific inositol phospholipid pattern of accumulation in preadipocytes.  相似文献   

15.
Platelet activation by thrombin or collagen results in secretion and synthesis of several platelet agonists that enhance the responses to the primary agonists (autocrine stimulation). To disclose the effects of thrombin and collagen on the phosphorylation of 3-phosphoinositides per se we incubated platelets with five inhibitors of platelet autocrine stimulation (IAS) that act extracellularly. We found that IAS almost totally blocked thrombin-induced production of phosphatidylinositol 3,4-bisphosphate [PtdIns(3,4)P(2)] and phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P(3)]. In contrast, collagen induced massive production of PtdIns(3,4)P(2) and PtdIns(3,4,5)P(3) in the presence of IAS. When testing the effect of each inhibitor individually we found the strongest inhibition of thrombin-induced PtdIns(3,4)P(2) production with the ADP scavenger system CP/CPK. Furthermore, we found a strong synergistic effect between exogenously added ADP and thrombin on production of PtdIns(3,4)P(2). In contrast to the results from 3-phosphorylated phosphoinositides, CP/CPK had little effect on thrombin-induced protein tyrosine phosphorylation. Our results show the importance of autocrine stimulation in thrombin-induced accumulation of 3-phosphorylated phosphoinositides and raise the question as to whether thrombin by itself is capable of inducing PI 3-K activation. In marked contrast to thrombin, collagen per se appears to be able to trigger increased production of PtdIns(3,4)P(2) and PtdIns(3,4,5)P(3).  相似文献   

16.
Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) is a tumor suppressor that is lost in many human tumors and encodes a phosphatidylinositol phosphate phosphatase specific for the 3-position of the inositol ring. Here we report a novel mechanism of PTEN regulation. Binding of di-C8-phosphatidylinositol 4,5-P2 (PI(4,5)P2) to PTEN enhances phosphatase activity for monodispersed substrates, PI(3,4,5)P3 and PI(3,4)P2. PI(5)P also is an activator, but PI(4)P, PI(3,4)P2, and PI(3,5)P2 do not activate PTEN. Activation by exogenous PI(4,5)P2 is more apparent with PI(3,4)P2 as a substrate than with PI(3,4,5)P3, probably because hydrolysis of PI(3,4)P2 yields PI(4)P, which is not an activator. In contrast, hydrolysis of PI(3,4,5)P3 yields a potent activator, PI(4,5)P2, creating a positive feedback loop. In addition, neither di-C4-PI(4,5)P2 nor inositol trisphosphate-activated PTEN. Hence, the interaction between PI(4,5)P2 and PTEN requires specific, ionic interactions with the phosphate groups on the inositol ring as well as hydrophobic interactions with the fatty acid chains, likely mimicking the physiological interactions that PTEN has with the polar surface head groups and the hydrophobic core of phospholipid membranes. Mutations of the apparent PI(4,5)P2-binding motif in the PTEN N terminus severely reduced PTEN activity. In contrast, mutation of the C2 phospholipid-binding domain had little effect on PTEN activation. These results suggest a model in which a PI(4,5)P2 monomer binds to PTEN, initiates an allosteric conformational change and, thereby, activates PTEN independent of membrane binding.  相似文献   

17.
The activity of nuclear phosphoinositide 3-kinase C2beta (PI3K-C2beta) was investigated in HL-60 cells induced to differentiate along granulocytic or monocytic lineages. A significant increase in the activity of immunoprecipitated PI3K-C2beta was observed in the nuclei and nuclear envelopes isolated from all-trans-retinoic acid (ATRA)-differentiated cells which was inhibited by the presence of PI3K inhibitor LY 294002. High-performance liquid chromatography analysis of inositol lipids showed an increased incorporation of radiolabelled phosphate in both PtdIns(3)P and PtdIns(3,4,5)P(3) with no changes in the levels of PtdIns(4)P, PtdIns(3,4)P(2) and PtdIns(4,5)P(2). Western blot analysis of the PI3K-C2beta immunoprecipitates with anti-P-Tyr antibody revealed a significant increase in the level of the immunoreactive band corresponding to PI3K-C2beta in the nuclei and nuclear envelopes isolated from ATRA-differentiated cells.  相似文献   

18.
The products of PI 3-kinase activation, PtdIns(3,4,5)P3 and its immediate breakdown product PtdIns(3,4)P2, trigger physiological processes, by interacting with proteins possessing pleckstrin homology (PH) domains. One of the best characterized PtdIns(3,4,5)P3/PtdIns(3,4)P2 effector proteins is protein kinase B (PKB), also known as Akt. PKB possesses a PH domain located at its N terminus, and this domain binds specifically to PtdIns(3,4,5)P3 and PtdIns(3,4)P2 with similar affinity. Following activation of PI 3-kinase, PKB is recruited to the plasma membrane by virtue of its interaction with PtdIns(3,4,5)P3/PtdIns(3,4)P2. PKB is then activated by the 3-phosphoinositide-dependent pro-tein kinase-1 (PDK1), which like PKB, possesses a PtdIns(3,4,5)P3/PtdIns(3,4)P2 binding PH domain. Here, we describe the high-resolution crystal structure of the isolated PH domain of PKB(alpha) in complex with the head group of PtdIns(3,4,5)P3. The head group has a significantly different orientation and location compared to other Ins(1,3,4,5)P4 binding PH domains. Mutagenesis of the basic residues that form ionic interactions with the D3 and D4 phosphate groups reduces or abolishes the ability of PKB to interact with PtdIns(3,4,5)P3 and PtdIns(3,4)P2. The D5 phosphate faces the solvent and forms no significant interactions with any residue on the PH domain, and this explains why PKB interacts with similar affinity with both PtdIns(3,4,5)P3 and PtdIns(3,4)P2.  相似文献   

19.
Insulin sensitivity is critically dependent on the activity of PI3K (phosphoinositide 3-kinase) and generation of the PtdIns(3,4,5)P(3) second messenger. PtdIns(3,4,5)P(3) can be broken down to PtdIns(3,4)P(2) through the action of the SHIPs (Src-homology-2-domain-containing inositol phosphatases). As PtdIns(3,4)P(2) levels peak after those of PtdIns(3,4,5)P(3), it has been proposed that PtdIns(3,4)P(2) controls a negative-feedback loop that down-regulates the insulin and PI3K network. Previously, we identified two related adaptor proteins termed TAPP [tandem PH (pleckstrin homology)-domain-containing protein] 1 and TAPP2 that specifically bind to PtdIns(3,4)P(2) through their C-terminal PH domain. To determine whether TAPP1 and TAPP2 play a role in regulating insulin sensitivity, we generated knock-in mice that express normal endogenous levels of mutant TAPP1 and TAPP2 that are incapable of binding PtdIns(3,4)P(2). These homozygous TAPP1(R211L/R211L) TAPP2(R218L/R218L) double knock-in mice are viable and exhibit significantly enhanced activation of Akt, a key downstream mediator of insulin signalling. Consistent with increased PI3K and Akt activity, the double knock-in mice display enhanced whole body insulin sensitivity and disposal of glucose uptake into muscle tissues. We also generated wild-type and double TAPP1(R211L/R211L) TAPP2(R218L/R218L) knock-in embryonic fibroblasts and found that insulin triggered enhanced production of PtdIns(3,4,5)P(3) and Akt activity in the double knock-in fibroblasts. These observations provide the first genetic evidence to support the notion that binding of TAPP1 and TAPP2 adap-tors to PtdIns(3,4)P(2) function as negative regulators of the insulin and PI3K signalling pathways.  相似文献   

20.
SHIP2 belongs to the inositol 5-phosphatase family and is characterized by a phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P(3)) 5-phosphatase activity. Evidence based on mice lacking the SHIP2 gene has demonstrated its predominant role in the control of insulin sensitivity. However, SHIP2 expression in both hematopoietic and non-hematopoietic cells suggests additional functions. SHIP2 was previously identified in chronic myelogenous progenitor cells, in which its constitutive tyrosine phosphorylation was reported by Wisniewski et al., [Blood 93 (1999) 2707-2720]. Here, we further investigated the function of SHIP2 in this hematopoietic and malignant context. A detailed analysis of the substrate specificity of SHIP2 indicated that this phosphatase is primarily directed towards PI(3,4,5)P(3) both in vitro and in K562 chronic myeloid leukemia cells. The SHIP2-mediated decrease in PI(3,4,5)P(3) levels and increase in phosphatidylinositol 3,4-bisphosphate (PI(3,4)P(2)) was accompanied by a reduction of cell proliferation, characterized by an accumulation of the cells in the G2/M phase of the cell cycle. Thus, in addition to its role in the control of insulin sensitivity, SHIP2 may also play a role in cell proliferation, at least in chronic myelogenous progenitor cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号