首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sialic acids, occupying a terminal position in cell surface glycoconjugates, are major contributors to the net negative charge of the vascular endothelial cell surface. As integral membrane glycoproteins, LDL receptors also bear terminal sialic acid residues. Pretreatment of near-confluent, cultured bovine aortic endothelial cells (BAEC) with neuraminidase (50 mU/ml, 30 min, 37 degrees C) stimulated a significant increase in receptor-mediated 125I-LDL internalization and degradation relative to PBS-treated control cells. Binding studies at 4 degrees C revealed an increased affinity of LDL receptor sites on neuraminidase-treated cells compared to control BAEC (6.9 vs. 16.2 nM/10(6) BAEC) without a change in receptor site number. This enhanced LDL endocytosis in neuraminidase-treated cells was dependent upon the enzymatic activity of the neuraminidase and the removal of sialic acid from the cell surface. Furthermore, enhanced endocytosis due to enzymatic alteration of the 125I-LDL molecules was excluded. In contrast to BAEC, neuraminidase pretreatment of LDL receptor-upregulated cultured normal human fibroblasts resulted in an inhibition of 125I-LDL binding, internalization, and degradation. Specifically, a significant inhibition in 125I-LDL internalization was observed at 1 hr after neuraminidase treatment, which was associated with a decrease in the number of cell surface LDL receptor sites. Like BAEC, neuraminidase pretreatment of human umbilical vein endothelial cells resulted in enhanced receptor-mediated 125I-LDL endocytosis. These results indicate that sialic acid associated with either adjacent endothelial cell surface molecules or the endothelial LDL receptor itself may modulate LDL receptor-mediated endocytosis and suggest that this regulatory mechanism may be of particular importance to endothelial cells.  相似文献   

2.
3.
We demonstrate here that hepatic triglyceride lipase (HTGL) enhances VLDL degradation in cultured cells by a LDL receptor-mediated mechanism. VLDL binding at 4 degrees C and degradation at 37 degrees C by normal fibroblasts was stimulated by HTGL in a dose-dependent manner. A maximum increase of up to 7-fold was seen at 10 microg/ml HTGL. Both VLDL binding and degradation were significantly increased (4-fold) when LDL receptors were up-regulated by treatment with lovastatin. HTGL also stimulated VLDL degradation by LDL receptor-deficient FH fibroblasts but the level of maximal degradation was 40-fold lower than in lovastatin-treated normal fibroblasts. A prominent role for LDL receptors was confirmed by demonstration of similar HTGL-promoted VLDL degradation by normal and LRP-deficient murine embryonic fibroblasts. HTGL enhanced binding and internalization of apoprotein-free triglyceride emulsions, however, this was LDL receptor-independent. HTGL-stimulated binding and internalization of apoprotein-free emulsions was totally abolished by heparinase indicating that it was mediated by HSPG. In a cell-free assay HTGL competitively inhibited the binding of VLDL to immobilized LDL receptors at 4 degrees C suggesting that it may directly bind to LDL receptors but may not bind VLDL particles at the same time.We conclude that the ability of HTGL to enhance VLDL degradation is due to its ability to concentrate lipoprotein particles on HSPG sites on the cell surface leading to LDL receptor-mediated endocytosis and degradation.  相似文献   

4.
The sulfated glycosaminoglycan, heparin, was found to release 125I-labeled low density lipoprotein (125I-LDL) from its receptor site on the surface of normal human fibroblasts. Measurement of the amount of 125I-LDL released by heparin permitted the resolution of the total cellular uptake of 125I-LDL at 37 degrees C into two components: first, an initial rapid, high affinity binding of the lipoprotein to the surface receptor, from which the 125I-LDL could be released by heparin, and second, a slower process attributable to an endocytosis of the receptor-bound lipoprotein, which rendered it resistant to heparin release. At 4 degrees C the amount of heparin-releasable 125I-LDL was similar to that at 37 degrees C, but interiorization of the lipoprotein did not occur at the lower temperature. The physiologic importance of the cell surface LDL receptor was emphasized by the finding that mutant fibroblasts from a subject with homozygous Familial Hypercholesterolemia, which lack the ability to take up 125I-LDL at 37 degrees C, did not show cell surface binding of 125I-LDL, as measured by heparin release, at either 4 degrees C or 37 degrees C. Although heparin released 125I-LDL from its binding site, it did not release 3H-concanavalin A from its surface receptor, and conversely, alpha-methyl-D-mannopyranoside, which released 3H-concanavalin A, did not release surface-bound 125I-LDL. When added to the culture medium simultaneously with LDL, heparin prevented the binding of LDL to its receptor and hence prevented the LDL-mediated suppression of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity. The uptake of LDL by fibroblasts is proposed as a model of receptor-mediated adsorptive endocytosis of macromolecules in human cells.  相似文献   

5.
The rate of receptor-mediated endocytosis of diferric 125I-transferrin by Chinese-hamster ovary cells expressing human transferrin receptors was compared with the rate measured for cells expressing hamster transferrin receptors. It was observed that the rate of endocytosis of the human transferrin receptor was significantly higher than that for the hamster receptor. In order to examine the molecular basis for the difference between the observed rates of endocytosis, a cDNA clone corresponding to the cytoplasmic domain of the hamster receptor was isolated. The predicted primary sequence of the cytoplasmic domain of the hamster transferrin receptor is identical with that of the human receptor, except at position 20, where a tyrosine residue in the human sequence is replaced with a cysteine residue. To test the hypothesis that this structural change in the receptor is related to the difference in the rate of internalization, we used site-directed mutagenesis to examine the effect of the replacement of tyrosine-20 with a cysteine residue in the human transferrin receptor. It was observed that the substitution of tyrosine-20 with cysteine caused a 60% inhibition of the rate of iron accumulation by cells incubated with [59Fe]diferric transferrin. No significant difference between the rate of internalization of the mutant (cysteine-20) human receptor and the hamster receptor was observed. Thus the substitution of tyrosine-20 with a cysteine residue can account for the difference between the rate of endocytosis of the human and hamster transferrin receptors.  相似文献   

6.
W Hunziker  C Harter  K Matter  I Mellman 《Cell》1991,66(5):907-920
In MDCK cells, Golgi to basolateral transport of several membrane proteins has been found to involve a cytoplasmic domain determinant. In some cases (Fc receptor, lysosomal glycoprotein Igp120), the determinant appears similar to that required for endocytosis via clathrin-coated pits; for Igp120, elimination of a single cytoplasmic domain tyrosine both blocks internalization and results in apical transport. In other cases (LDL receptor), the determinant does not involve the cytoplasmic domain tyrosine required for endocytosis. Thus, contrary to current models, basolateral transport in MCDK cells occurs not by default but depends on one or more cytoplasmic domain determinants, the precise nature of which is unknown. For some proteins, it is closely related to coated pit determinants. The fact that many membrane proteins can reach the apical surface in the absence of this determinant suggests that signals for apical transport are widely distributed.  相似文献   

7.
Macrophage recognition and endocytosis of 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (diI)-labeled low-density lipoprotein (LDL) and acetyl LDL (Ac-LDL) was studied using fluorescence flow cytometry and fluorescence video intensification microscopy. RAW264 macrophages and U937 monocytes were grown in the tissue culture media in the presence and absence of LDL and Ac-LDL. Several lines of evidence indicate that receptor-mediated endocytosis of diI-labeled LDL or Ac-LDL was taking place. Binding can be distinguished from binding plus endocytosis by incubation at 4 and 37 degrees C, respectively. Binding was saturable at 4 degrees C and uptake at 37 degrees C was time- and ligand dose-dependent. Also, unlabeled LDL and Ac-LDL compete for their receptors. Macrophages grown in the presence or absence of LDL demonstrated distinct labeling patterns. LDL receptors were significantly increased by culture in defined medium without serum lipoproteins, while Ac-LDL receptors remained unaffected. Flow cytometry can provide an important tool to examine receptor levels, modulation of these levels and receptor-mediated endocytosis. Video intensification microscopy of similarly labeled cells has been performed. Receptors appear as punctate fluorescence, usually distributed randomly across the cell surface.  相似文献   

8.
Varicella-zoster virus (VZV) encodes a cell surface Fc receptor, glycoprotein gE. VZV gE has previously been shown to display several features common to nonviral cell surface receptors. Most recently, VZV gE was reported to be tyrosine phosphorylated on a dimeric form (J. K. Olson, G. A. Bishop, and C. Grose, J. Virol. 71:110-119, 1997). Thereafter, attention focused on the ability of VZV gE to undergo receptor-mediated endocytosis. The current transient transfection studies demonstrated by confocal microscopy and internalization assays that VZV gE was endocytosed when expressed in HeLa cells. Endocytosis of gE was shown to be dependent on clathrin-coated vesicle formation within the cells. Subsequent colocalization studies showed that endocytosis of VZV gE closely mimicked endocytosis of the transferrin receptor. The gE cytoplasmic tail and more specifically tyrosine residue 582 were determined by mutagenesis studies to be important for efficient internalization of the protein; this tyrosine residue is part of a conserved YXXL motif. The amount of gE internalized at any given time reached a steady state of 32%. In addition, like the transferrin receptor, internalized gE recycled to the cell surface. The finding of gE endocytosis provided insight into earlier documentation of gE serine/threonine and tyrosine phosphorylation, since these phosphorylation events may serve as sorting signals for internalized receptors. Taken together with the previous discovery that both human and simian immunodeficiency virus envelope proteins can undergo endocytosis, the gE findings suggest that endocytosis of envelope components may be a posttranslational regulatory mechanism among divergent families of enveloped viruses.  相似文献   

9.
Wild-type and mutant human transferrin receptors have been expressed in chicken embryo fibroblasts using a helper-independent retroviral vector. The internalization of mutant human transferrin receptors, in which all but four of the 61 amino acids of the cytoplasmic domain had been deleted, was greatly impaired. However, when expressed at high levels, such "tailless" mutant receptors could provide chicken embryo fibroblasts with sufficient iron from diferric human transferrin to support a normal rate of growth. As the rate of recycling of the mutant receptors was not significantly different from wild-type receptors, an estimate of relative internalization rates could be obtained from the distribution of receptors inside the cell and on the cell surface under steady-state conditions. This analysis and the results of iron uptake studies both indicate that the efficiency of internalization of tailless mutant receptors is approximately 10% that of wild-type receptors. Further studies of a series of mutant receptors with different regions of the cytoplasmic domain deleted suggested that residues within a 10-amino acid region (amino acids 19-28) of the human transferrin receptor cytoplasmic domain are required for efficient endocytosis. Insertion of this region into the cytoplasmic domain of the tailless mutant receptors restored high efficiency endocytosis. The only tyrosine residue (Tyr 20) in the cytoplasmic domain of the human transferrin receptor is found within this 10-amino acid region. A mutant receptor containing glycine instead of tyrosine at position 20 was estimated to be approximately 20% as active as the wild-type receptor. We conclude that the cytoplasmic domain of the transferrin receptor contains a specific signal sequence located within amino acid residues 19-28 that determines high efficiency endocytosis. Further, Tyr 20 is an important element of that sequence.  相似文献   

10.
125I-labeled and ferritin-labeled low density lipoprotein (LDL) were used as visual probes to study the surface distribution of LDL receptors and to examine the mechanism of the endocytosis of this lipoprotein in cultured human fibrobasts. Light microscopic autoradiograms of whole cells incubated with 125I-LDL at 4 degrees C showed that LDL receptors were widely but unevenly distributed over the cell surface. With the electron microscope, we determined that 60-70% of the ferritin-labeled LDL that bound to cells at 4 degrees C was localized over short coated segments of the plasma membrane that accounted for no more than 2% of the total surface area. To study the internalization process, cells were first allowed to bind ferritin-labeled LDL at 4 degrees C and were then warmed to 37 degrees C. Within 10 min, nearly all the surface-bound LDL-ferritin was incorporated into coated endocytic vesicles that were formed by the invagination and pinching-off of the coated membrane regions that contained the receptor-bound LDL. With increasing time at 37 degrees C, these coated vesicles were observed sequentially to migrate through the cytoplasm (1 min), to lose their cytoplasmic coat (2 min), and to fuse with either primary or secondary lysosomes (6 min). The current data indicate that the coated regions of plasma membrane are specialized structures of rapid turnover that function to carry receptor-bound LDL, and perhaps other receptor-bound molecules, into the cell.  相似文献   

11.
Diphtheria toxin enters toxin-sensitive mammalian cells by receptor-mediated endocytosis employing the heparin-binding EGF-like growth factor precursor as its receptor. We reported previously (Almond and Eidels, 1994) that cytoplasmic domain mutants of the toxin receptor and cells expressing wild-type receptor internalize toxin slowly, the rate being approximately that of normal turnover of the plasma membrane. To determine whether it was possible to increase toxin sensitivity by increasing the rate of toxin internalization, we constructed diphtheria toxin cytoplasmic domain mutant cell lines containing rapid-internalization signals from either the low density lipoprotein receptor or from the lysosomal acid phosphatase precursor. Although cells transfected with mutant receptor genes internalized toxin at a faster rate than those expressing the wild-type receptor, they showed a decrease in toxin sensitivity. This decreased sensitivity may be accounted for by an observed decrease in the number of toxin-binding sites and by an increased rate of toxin internalization and degradation. These results suggest that the rate of toxin internalization may not be the rate-limiting step in the cytotoxic process.  相似文献   

12.
Effect of hypo-osmotic incubation on membrane recycling   总被引:1,自引:0,他引:1  
Incubation of alveolar macrophages in hypo-osmotic media causes a time-and temperature-dependent increase in the number of surface receptors for three different ligands. Exposure of cells to solutions of 210 mOsM or less, at 37 degrees C but not at 0 degree C, resulted in an increase in the number of surface receptors for diferric transferrin, alpha-macroglobulin-protease complexes, and mannose-terminated glycoproteins. Upon media dilution at 37 degrees C, surface receptor number reached a maximum within 5 min and returned to near-normal values by 30 min. The increase in surface receptor number was the result of a decrease in the rate of internalization of receptors, either occupied or unoccupied. The rate of receptor exteriorization was unaltered by hypo-osmotic incubation of cells. The rate of fluid-phase pinocytosis was also inhibited upon incubation in hypo-osmotic solution. In experiments in which both receptor-mediated endocytosis and fluid phase pinocytosis were measured on the same samples, inhibition of both processes occurred with the same kinetics and to a similar extent. The rate of receptor-mediated endocytosis recovered to normal rates after 60 min in hypo-osmotic solutions, whereas the rate of fluid phase pinocytosis did not recover to the same extent.  相似文献   

13.
Cholesteryl ester-loaded macrophages, or foam cells, are a prominent feature of atherosclerotic lesions. Low density lipoprotein (LDL) receptor-mediated endocytosis of native LDL is a relatively poor inducer of macrophage cholesteryl ester accumulation. However, the data herein show that in the presence of a very small amount of sphingomyelinase, LDL receptor-mediated endocytosis of 125I-LDL was enhanced and led to a 2-6-fold increase in 125I-LDL degradation and up to a 10-fold increase in cholesteryl ester accumulation in macrophages. The enhanced lipoprotein uptake and cholesterol esterification was seen after only approximately 12% hydrolysis of LDL phospholipids, was specific for sphingomyelin hydrolysis, and appeared to be related to the formation of fused or aggregated spherical particles up to 100 nm in diameter. Sphingomyelinase-treated LDL was bound by the macrophage LDL receptor. However, when unlabeled acetyl-LDL, a scavenger receptor ligand, was present during or after sphingomyelinase treatment of 125I-LDL, 125I-LDL binding and degradation were enhanced further through the formation of LDL-acetyl-LDL mixed aggregates. Experiments with cytochalasin D suggested that endocytosis, not phagocytosis, was involved in internalization of sphingomyelinase-treated LDL. Nonetheless, the sphingomyelinase effect on LDL uptake was macrophage-specific. These data illustrate that LDL receptor-mediated endocytosis of fused LDL particles can lead to foam cell formation in cultured macrophages. Furthermore, since both LDL and sphingomyelinase are present in atherosclerotic lesions and since some lesion LDL probably is fused or aggregated, there is a possibility that sphingomyelinase-treated LDL is a physiologically important atherogenic lipoprotein.  相似文献   

14.
Endocytotic internalization of alpha-galactosidase by cultured fibroblasts derived from a patient with Fabry's disease was achieved via receptor-mediated endocytosis of alpha-2-macroglobulin (alpha-2-M). alpha-galactosidase of coffee beans was conjugated to alpha-2-M when the latter was treated with trypsin. Internalization of the conjugate resulted in an increase of alpha-galactosidase activity in the crude cell extracts. The observed internalization was blocked by the presence of bacitracin, an inhibitor of binding between alpha-2-M and its receptor on the cell surface. When the cells were incubated at 4 degrees C with the conjugate, internalization was also inhibited. The alpha-galactosidase activity in the cells was saturated when the concentration of the conjugate in the medium was 40 micrograms/ml. Since non-conjugated alpha-galactosidase was not effectively internalized, the observed internalization of the conjugate was mediated by recognition of alpha-2-M by its receptor. The effective internalization of alpha-galactosidase described in this paper has a potential use in the enzyme replacement therapy of Fabry's disease.  相似文献   

15.
The low density lipoprotein (LDL) receptor family comprises several proteins with similar structures including the LDL receptor and apoE receptor 2 (apoER2). The human brain expresses two major splice variants of apoER2 mRNA, one of which includes an additional exon that encodes 59 residues in the cytoplasmic domain. This exon is absent from the LDL receptor and contains three proline-rich (PXXP) motifs that may allow apoER2 to function as a signal transducer. To investigate the role of this insert, we took advantage of the well characterized low density lipoprotein receptor pathway. Chimeras comprising the ectodomain and transmembrane domain of the LDL receptor fused to the cytoplasmic domain of apoER2 lacking the PXXP-containing residues are able to mediate clathrin-dependent endocytosis of LDL as effectively as cells expressing the LDL receptor but not if the PXXP insert is present in the protein. Although expressed on the cell surface, the PXXP-containing chimeric receptor is excluded from clathrin vesicles as judged by its failure to co-localize with adaptor protein-2 possibly due to interaction with intracellular adaptors or scaffolding proteins. Chimeras with the transmembrane domain of apoER2, predicted to be longer than that of the LDL receptor by several residues, fail to mediate endocytosis of LDL or to co-localize with adaptor protein-2 regardless of the presence or absence of the PXXP insert. Thus features of apoER2 that distinguish it as a signaling receptor, rather than as an endocytosis receptor like the LDL receptor, reside in or near the transmembrane domain and in the proline-rich motifs.  相似文献   

16.
Receptor-mediated transport of heme by hemopexin in vivo and in vitro results in catabolism of heme but not the protein, suggesting that intact apohemopexin recycles from cells. However, until now, the intracellular transport of hemopexin by receptor-mediated endocytosis remained to be established. Biochemical studies on cultured human HepG2 and mouse Hepa hepatoma cells demonstrate that hemopexin is transported to an intracellular location and, after endocytosis, is subsequently returned intact to the medium. During incubation at 37 degrees C, hemopexin accumulated intracellularly for ca. 15 min before reaching a plateau while surface binding was saturated by 5 min. No internalization of ligand took place during incubation at 4 degrees C. These and other data suggest that hemopexin receptors recycle, and furthermore, incubation with monensin significantly inhibits the amount of cell associated of heme-[125I]hemopexin during short-term incubation at 37 degrees C, consistent with a block in receptor recycling. Ammonium chloride and methylamine were less inhibitory. Electron microscopic autoradiography of heme-[125I]hemopexin showed the presence of hemopexin in vesicles of the classical pathway of endocytosis in human HepG2 hepatoma cells, confirming the internalization of hemopexin. Colloidal gold-conjugated hemopexin and electron microscopy showed that hemopexin bound to receptors at 4 degrees C is distributed initially over the entire cell surface, including microvilli and coated pits. After incubation at 37 degrees C, hemopexin-gold is located intracellularly in coated vesicles and then in small endosomes and multivesicular bodies. Colocalization of hemopexin and transferrin intracellularly was shown in two ways. Radioiodinated hemopexin was observed in the same subcellular compartment as horseradish peroxidase conjugates of transferrin using the diaminobenzidine-induced density shift assay. In addition, colloidal gold derivatives of heme-hemopexin and diferric transferrin were found together in coated pits, coated vesicles, endosomes and multivesicular bodies. Therefore, hemopexin and transferrin act by a similar receptor-mediated mechanism in which the transport protein recycles after endocytosis from the cell to undergo further rounds of intracellular transport.  相似文献   

17.
The effects of tumour-promoting phorbol esters on the receptor-mediated endocytosis of insulin were investigated in the human hepatoma cell line HepG2. Treatment of these cells with the biologically active phorbol 12-O-tetradecanoylphorbol 13-acetate (TPA), but not with the non-tumour-promoting analogue 4 alpha-phorbol 12,13-didecanoate, resulted in dramatic morphological changes, which were accompanied by a 1.5-2.5-fold increase in specific 125I-insulin association with the cells at 37 degrees C. This increase in insulin binding was not observed when the binding reaction was performed at 4 degrees C. The potentiation of 125I-insulin association with TPA-treated cells at 37 degrees C could be completely accounted for by an increase in the intracellular pool of internalized insulin; there was no concomitant increase in cell-surface insulin binding. Dissociation studies showed that the enhanced internalization of insulin by cells after treatment with TPA resulted from a decrease in the rate of intracellular processing of the insulin after receptor-mediated endocytosis. The phorbol-ester-induced enhancement of internalized insulin in HepG2 cells was additive with the potentiation of endocytosed insulin induced by both the lysosomotropic reagent chloroquine and the ionophore monensin; this indicates that TPA affects the intracellular processing of the insulin receptor at a point other than those disrupted by either of these two reagents. The potentiation of insulin receptor internalization by tumour-promoting phorbol esters could be completely mimicked by treatment with phospholipase C, but not with phospholipase A, and partially mimicked by treatment with the synthetic diacylglycerol 1-oleoyl-2-acetylglycerol. By these criteria, the effects of phorbol esters on the insulin receptor in HepG2 cells appear to be mediated through protein kinase C. These results support the concept that the activation of protein kinase C by treatment with phorbol esters causes a perturbation of the insulin-receptor-mediated endocytotic pathway in HepG2 cells, reflected in a long-term decreased rate of dissociation of internalized insulin by the phorbol-ester-treated cells.  相似文献   

18.
Oxidized low-density lipoprotein particles is a pro-atherogenic factor implicated in atherosclerotic plaque formation. The LOX-1 scavenger receptor binds OxLDL and is linked to atherosclerotic plaque initiation and progression. We tested the hypothesis that the LOX-1 cytoplasmic domain contains a transplantable signal for membrane protein endocytosis. Structural modeling of the LOX-1 cytoplasmic domain reveals that a tripeptide motif (DDL) implicated in LOX-1 endocytosis is part of a curved β-pleated sheet structure. The two aspartic acid residues within this structural model are highly solvent-accessible enabling recognition by cytosolic factor(s). A triple alanine substitution of the DDL motif within the LOX-1 scavenger receptor substantially reduced endocytosis of OxLDL. Transplantation of the LOX-1 cytoplasmic domain into a transferrin receptor reporter molecule conferred efficient endocytosis on this hybrid protein. Mutation of the DDL motif within the hybrid LOX-1-TfR protein also substantially reduced receptor-mediated endocytosis. Thus a transplantable endocytic motif within the LOX-1 cytoplasmic domain is needed to ensure efficient internalization of pro-atherogenic OxLDL particles.  相似文献   

19.
Internalization of biotin-S-S-125I-transferrin (125I-BSST) into semiintact A431 cells were assessed by two different criteria which have allowed us to distinguish partial reactions in the complex overall process of receptor-mediated endocytosis. Early events resulting in the sequestration of ligand into deeply invaginated coated pits were measured by inaccessibility of 125I-BSST to exogenously added antibodies. Later events involving coated vesicle budding and membrane fission were measured by resistance of 125I-BSST to reduction by the membrane impermeant-reducing agent, MesNa. Acquisition of Ab inaccessibility occurred very efficiently in this cell-free system (approximately 50% of total cell-associated 125I-BSST became inaccessible) and could be inhibited by anti-clathrin mAbs and by antibodies directed against the cytoplasmic domain of the transferrin-receptor. In contrast, acquisition of MesNa resistance occurred less efficiently (approximately 10-20% of total cell-associated 125I-BSST) and showed differential sensitivity to inhibition by anti-clathrin and anti-transferrin receptor mAbs. Both partial reactions were stimulated by ATP and cytosol; indicating at least two ATP-requiring events in receptor-mediated endocytosis. The temperature dependence of both reactions was similar to that for 125I-BSST internalization in intact cells with no activity being observed below 10 degrees C. Morphological studies using gold-labeled ligands confirmed that internalization of transferrin receptors into semiintact A431 cell occurred via coated pits and coated vesicles and resulted in delivery of ligand to endosomal structures.  相似文献   

20.
Genetic variations in LRP6 gene are associated with high serum LDL cholesterol levels. We have previously shown that LDL clearance in peripheral B-lymphocytes of the LRP6(R611C) mutation carriers is significantly impaired. In this study we have examined the role of wild type LRP6 (LRP6(WT)) and LRP6(R611C) in LDL receptor (LDLR)-mediated LDL uptake. LDL binding and uptake were increased when LRP6(WT) was overexpressed and modestly reduced when it was knocked down in LDLR-deficient CHO (ldlA7) cells. These findings implicated LRP6 in LDLR-independent cellular LDL binding and uptake. However, LRP6 knockdown in wild type CHO cells resulted in a much greater decline in LDL binding and uptake compared with CHO-ldlA7 cells, suggesting impaired function of the LDLR. LDLR internalization was severely diminished when LRP6 was knocked down and was restored after LRP6 was reintroduced. Further analysis revealed that LRP6(WT) forms a complex with LDLR, clathrin, and ARH and undergoes a clathrin-mediated internalization after stimulation with LDL. LDLR and LRP6 internalizations as well as LDL uptake were all impaired in CHO-k1 cells expressing LRP6(R611C). These studies identify LRP6 as a critical modulator of receptor-mediated LDL endocytosis and introduce a mechanism by which variation in LRP6 may contribute to high serum LDL levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号