首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Physiological functions of Pten in mouse tissues   总被引:6,自引:0,他引:6  
PTEN is a tumor suppressor gene mutated in many human sporadic cancers and in hereditary cancer syndromes such as Cowden disease, Bannayan-Zonana syndrome and Lhermitte-Duclos disease. The major substrate of PTEN is PIP3, a second messenger molecule produced following PI3K activation induced by variety of stimuli. PIP3 activates the serine-threonine kinase PKB/Akt which is involved in anti-apoptosis, proliferation and oncogenesis. In mice, heterozygosity for a null mutation of Pten (Pten(+/-) mice) frequently leads to the development of a variety of cancers and autoimmune disease. Homozygosity for the null mutation (Pten (-/-) mice) results in early embryonic lethality, precluding the functional analysis of Pten in various organs. To investigate the physiological functions of Pten in viable mice, various tissue-specific Pten mutations have been generated using the Cre-loxP system. This review will summarize the phenotypes of conditional mutant mice lacking Pten function in specific tissues, and discuss how these phenotypes relate to the physiological roles of Pten in various organ systems.  相似文献   

2.
Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) is a lipid phosphatase. PTEN inhibits the action of phosphatidylinositol-3-kinase and reduces the levels of phosphatidylinositol triphosphate, a crucial second messenger for cell proliferation and survival, as well as insulin signaling. In this study, we deleted Pten specifically in the insulin producing beta cells during murine pancreatic development. Pten deletion leads to increased cell proliferation and decreased cell death, without significant alteration of beta-cell differentiation. Consequently, the mutant pancreas generates more and larger islets, with a significant increase in total beta-cell mass. PTEN loss also protects animals from developing streptozotocin-induced diabetes. Our data demonstrate that PTEN loss in beta cells is not tumorigenic but beneficial. This suggests that modulating the PTEN-controlled signaling pathway is a potential approach for beta-cell protection and regeneration therapies.  相似文献   

3.
PTEN tumor suppressor is frequently mutated in human cancers, including breast cancers. Female patients with inherited PTEN mutations suffer from virginal hypertrophy of the breast with high risk of malignant transformation. However, the exact mechanisms of PTEN in controlling mammary gland development and tumorigenesis are unclear. In this study, we generated mice with a mammary-specific deletion of the Pten gene. Mutant mammary tissue displayed precocious lobulo-alveolar development, excessive ductal branching, delayed involution and severely reduced apoptosis. Pten null mammary epithelial cells were disregulated and hyperproliferative. Mutant females developed mammary tumors early in life. Similar phenotypes were observed in Pten-null mammary epithelia that had been transplanted into wild-type stroma, suggesting that PTEN plays an essential and cell-autonomous role in controlling the proliferation, differentiation and apoptosis of mammary epithelial cells.  相似文献   

4.
PTENless means more   总被引:10,自引:0,他引:10  
Recent studies indicate that certain key molecules that are vital for various developmental processes, such as Wnt, Shh, and Notch, cause cancer when dysregulated. PTEN, a tumor suppressor that antagonizes the PI3 kinase pathway, is the newest one on the list. The biological function of PTEN is evolutionarily conserved from C. elegans to humans, and the PTEN-controlled signaling pathway regulates cellular processes crucial for normal development, including cell proliferation, soma growth, cell death, and cell migration. In this review, we will focus on the function of PTEN in murine development and its role in regulating stem cell self-renewal and proliferation. We will summarize the organomegaly phenotypes associated with Pten tissue-specific deletion and discuss how PTEN controls organ size, a fundamental aspect of development. Last, we will review the role of PTEN in hormone-dependent, adult-onset mammary and prostate gland development.  相似文献   

5.
6.
Chondrocytes within the growth plates acclimatize themselves to a variety of stresses that might otherwise disturb cell fate. The tumor suppressor PTEN (phosphatase and tensin homolog deleted from chromosome 10) has been implicated in the maintenance of cell homeostasis. However, the functions of PTEN in regulating chondrocytic adaptation to stresses remain largely unknown. In this study, we have created chondrocyte-specific Pten knockout mice (Pten(co/co);Col2a1-Cre) using the Cre-loxP system. Following AKT activation, Pten mutant mice exhibited dyschondroplasia resembling human enchondroma. Cartilaginous nodules originated from Pten mutant resting chondrocytes that suffered from impaired proliferation and differentiation, and this was coupled with enhanced endoplasmic reticulum (ER) stress. We further found that ER stress in Pten mutant chondrocytes only occurred under hypoxic stress, characterized by an upregulation of unfolded protein response-related genes as well as an engorged and fragmented ER in which collagens were trapped. An upregulation of hypoxia-inducible factor 1alpha (HIF1alpha) and downstream targets followed by ER stress induction was also observed in Pten mutant growth plates and in cultured chondrocytes, suggesting that PI3K/AKT signaling modulates chondrocytic adaptation to hypoxic stress via regulation of the HIF1alpha pathway. These data demonstrate that PTEN function in chondrocytes is essential for their adaptation to stresses and for the inhibition of dyschondroplasia.  相似文献   

7.
PTEN deletion leads to up-regulation of a secreted growth factor pleiotrophin   总被引:13,自引:0,他引:13  
Li G  Hu Y  Huo Y  Liu M  Freeman D  Gao J  Liu X  Wu DC  Wu H 《The Journal of biological chemistry》2006,281(16):10663-10668
Tumor suppressor gene PTEN is highly mutated in a wide variety of human tumors. To identify unknown targets or signal transduction pathways that are regulated by PTEN, microarray analysis was performed to compare the gene expression profiles of Pten null mouse embryonic fibroblasts (MEFs) cell lines and their isogenic counterparts. Expression of a heparin binding growth factor, pleiotrophin (Ptn), was found to be up-regulated in Pten-/- MEFs as well as Pten null mammary tumors. Further experiments revealed that Ptn expression is regulated by the PTEN-PI3K-AKT pathway. Knocking down the expression of Ptn by small interfering RNA resulted in the reduction of Akt and GSK-3beta phosphorylation and suppression of the growth and the tumorigenicity of Pten null MEFs. Our results suggest that PTN participates in tumorigenesis caused by PTEN loss and PTN may be a potential target for anticancer therapy, especially for those tumors with PTEN deficiencies.  相似文献   

8.
9.
The AKT/PI3K/mTOR pathway is frequently altered in a range of human tumours, including bladder cancer. Here we report the phenotype of mice characterised by deletion of two key players in mTOR regulation, Pten and Lkb1, in a range of tissues including the mouse urothelium. Despite widespread recombination within the range of epithelial tissues, the primary phenotype we observe is the rapid onset of bladder tumorigenesis, with median onset of approximately 100 days. Single deletion of either Pten or Lkb1 had no effect on bladder cell proliferation or tumour formation. However, simultaneous deletion of Lkb1 and Pten led to an upregulation of the mTOR pathway and the hypoxia marker GLUT1, increased bladder epithelial cell proliferation and ultimately tumorigenesis. Bladder tissue also exhibited characteristic features of epithelial-mesenchymal transition, with loss of the epithelial markers E-cadherin and the tight junction protein ZO-1, and increases in the mesenchymal marker vimentin as well as nuclear localization of epithelial-mesenchymal transition (EMT) regulator Snail. We show that these effects were all dependent upon mTOR activity, as rapamycin treatment blocked both EMT and tumorigenesis. Our data therefore establish clear synergy between Lkb1 and Pten in controlling the mTOR pathway within bladder epithelium, and show that loss of this control leads to the disturbance of epithelial structure, EMT and ultimately tumorigenesis.  相似文献   

10.
PTEN/MMAC is a phosphatase that is mutated in multiple human tumors. PTEN/MMAC dephosphorylates 3-phosphorylated phosphatidylinositol phosphates that activate AKT/protein kinase B (PKB) kinase activity. AKT/PKB is implicated in the inhibition of apoptosis, and cell lines and tumors with mutated PTEN/MMAC show increased AKT/PKB kinase activity and resistance to apoptosis. PTEN/MMAC contains a PDZ domain-binding site, and we show here that the phosphatase binds to a PDZ domain of membrane-associated guanylate kinase with inverted orientation (MAGI) 3, a novel inverted membrane-associated guanylate kinase that localizes to epithelial cell tight junctions. Importantly, MAGI3 and PTEN/MMAC cooperate to modulate the kinase activity of AKT/PKB. These data suggest that MAGI3 allows for the juxtaposition of PTEN/MMAC to phospholipid signaling pathways involved with cell survival.  相似文献   

11.
Hypomorphic mutation of PDK1 suppresses tumorigenesis in PTEN(+/-) mice   总被引:2,自引:0,他引:2  
Many cancers possess elevated levels of PtdIns(3,4,5)P(3), the second messenger that induces activation of the protein kinases PKB/Akt and S6K and thereby stimulates cell proliferation, growth, and survival. The importance of this pathway in tumorigenesis has been highlighted by the finding that PTEN, the lipid phosphatase that breaks down PtdIns(3,4,5)P(3) to PtdIns(4,5)P(2), is frequently mutated in human cancer. Cells lacking PTEN possess elevated levels of PtdIns(3,4,5)P(3), PKB, and S6K activity and heterozygous PTEN(+/-) mice develop a variety of tumors. Knockout of PKBalpha in PTEN-deficient cells reduces aggressive growth and promotes apoptosis, whereas treatment of PTEN(+/-) mice with rapamycin, an inhibitor of the activation of S6K, reduces neoplasia. We explored the importance of PDK1, the protein kinase that activates PKB and S6K, in mediating tumorigenesis caused by the deletion of PTEN. We demonstrate that reducing the expression of PDK1 in PTEN(+/-) mice, markedly protects these animals from developing a wide range of tumors. Our findings provide genetic evidence that PDK1 is a key effector in mediating neoplasia resulting from loss of PTEN and also validate PDK1 as a promising anticancer target for the prevention of tumors that possess elevated PKB and S6K activity.  相似文献   

12.
13.
The tumor suppressor gene PTEN, which is frequently mutated in human cancers, encodes a lipid phosphatase for phosphatidylinositol 3,4,5-triphosphate [PtdIns(3,4,5)P3] and antagonizes phosphatidylinositol 3 kinase. Primordial germ cells (PGCs), which are the embryonic precursors of gametes, are the source of testicular teratoma. To elucidate the intracellular signaling mechanisms that underlie germ cell differentiation and proliferation, we have generated mice with a PGC-specific deletion of the Pten gene. Male mice that lacked PTEN exhibited bilateral testicular teratoma, which resulted from impaired mitotic arrest and outgrowth of cells with immature characters. Experiments with PTEN-null PGCs in culture revealed that these cells had greater proliferative capacity and enhanced pluripotent embryonic germ (EG) cell colony formation. PTEN appears to be essential for germ cell differentiation and an important factor in testicular germ cell tumor formation.  相似文献   

14.
The phosphatase and tensin homolog(PTEN) and the zinc finger homeobox 3(ZFHX3)/AT-motif binding factor 1(ATBF1) genes have been established as tumor suppressor genes in prostate cancer by their frequent deletions and mutations in human prostate cancer and by the formation of mouse prostatic intraepithelial neoplasia(mPIN) or tumor by their deletions in mouse prostates.However,whether ZFHX3/ATBF1 deletion together with PTEN deletion facilitates prostatic tumorigenesis is unknown.In this study,we simultaneously deleted both genes in mouse prostatic epithelia and performed histological and molecular analyses.While deletion of one Pten allele alone caused low-grade(LG) mPIN as previously reported,concurrent deletion of 2fla3/Atbf1 promoted the progression to high-grade(HG)mPIN or early carcinoma.Zfhx3/Atbf1 and Pten deletions together increased cell proliferation,disrupted the smooth muscle layer between epithelium and stroma,and increased the number of apoptotic cells.Deletion of both genes also accelerated the activation of Akt and Erk1/2 oncoproteins.These results suggest an additive effect of ZFHX3/ATBF1 and PTEN deletions on the development and progression of prostate neoplasia.  相似文献   

15.
Pten (Phosphatase and tensin homolog deleted on chromosome 10) is a recently identified tumor suppressor gene which is deleted or mutated in a variety of primary human cancers and in three cancer predisposition syndromes [1]. Pten regulates apoptosis and cell cycle progression through its phosphatase activity on phosphatidylinositol (PI) 3,4,5-trisphosphate (PI(3,4,5)P(3)), a product of PI 3-kinase [2-5]. Pten has also been implicated in controlling cell migration [6], but the exact mechanism is not very clear. Using the isogenic Pten(+/+) and Pten(-/-) mouse fibroblast lines, here we show that Pten deficiency led to increased cell motility. Reintroducing the wild-type Pten, but not the catalytically inactive Pten C124S or lipid-phosphatase-deficient Pten G129E mutant, reduced the enhanced cell motility of Pten-deficient cells. Moreover, phosphorylation of the focal adhesion kinase p125(FAK) was not changed in Pten(-/-) cells. Instead, significant increases in the endogenous activities of Rac1 and Cdc42, two small GTPases involved in regulating the actin cytoskeleton [7], were observed in Pten(-/-) cells. Overexpression of dominant-negative mutant forms of Rac1 and Cdc42 reversed the cell migration phenotype of Pten(-/-) cells. Thus, our studies suggest that Pten negatively controls cell motility through its lipid phosphatase activity by down-regulating Rac1 and Cdc42.  相似文献   

16.
The molecular basis of B cell receptor (BCR)-induced apoptosis during the negative selection of immature B cells is largely unknown. We use transitional immature B cells that are highly susceptible to BCR-induced apoptosis to show that Pten is selectively required for BCR-mediated initiation of the mitochondrial death pathway. Specifically, deleting Pten, but not other pro-apoptotic molecules, abrogates BCR-elicited apoptosis and improves viability in wild-type immature B cells. We further identify a physiologically and significantly higher intracellular Pten level in immature B cells, as compared to mature B cells, which is responsible for low AKT activity and the propensity towards death in immature B cells. Restoration of AKT activity using a constitutive form of AKT or reduction of Pten to a level comparable with that seen in mature B cells rescues immature B cells from BCR-induced apoptosis. Thus, we provide evidence that Pten is an essential mediator of BCR-induced cell death, and that differential regulation of intracellular Pten levels determines whether BCR ligation promotes cell death or survival. Our findings provide a valuable insight into the mechanisms underlying negative selection and clonal deletion of immature B cells.  相似文献   

17.
丹皮酚对肝癌MHCC97-H细胞PTEN、AKT表达的影响   总被引:2,自引:0,他引:2  
目的:探讨丹皮酚(Paeonol,Pae)在体外对人肝癌MHCC97-H细胞PTEN、AKT表达的影响。方法:体外培养人肝癌MHCC97-H细胞,MTT法检测丹皮酚对MHCC97-H细胞的增殖抑制作用,RT-PCR法检测PTEN、Akt1、Akt2mRNA表达,West- ern Blot法检测PTEN、p-AKT蛋白的表达。结果:丹皮酚呈时间剂量依赖性抑制人肝癌MHCC97-H细胞的增殖;肝癌MHCC97-H细胞低表达PTEN,高表达AKT,丹皮酚能显著上调MHCC97-H细胞PTEN表达,下调AKT表达。结论:丹皮酚可上调抑癌基因PTEN的表达,下调致癌基因AKT的表达,抑制MHCC97-H细胞的增殖。  相似文献   

18.
19.
Kaposi''s sarcoma (KS) is an AIDS-defining cancer with aberrant neovascularization caused by KS-associated herpesvirus (KSHV). Although the interaction between HIV-1 and KSHV plays a pivotal role in promoting the aggressive manifestations of KS, the pathogenesis underlying AIDS-KS remains largely unknown. Here we examined HIV-1 Nef protein promotion of KSHV oncoprotein K1-induced angiogenesis. We showed that both internalized and ectopic expression of Nef in endothelial cells synergized with K1 to facilitate vascular tube formation and cell proliferation, and enhance angiogenesis in a chicken CAM model. In vivo experiments further indicated that Nef accelerated K1-induced angiogenesis and tumorigenesis in athymic nu/nu mice. Mechanistic studies revealed that Nef and K1 synergistically activated PI3K/AKT/mTOR signaling by downregulating PTEN. Furthermore, Nef and K1 induced cellular miR-718, which inhibited PTEN expression by directly targeting a seed sequence in the 3′ UTR of its mRNA. Inhibition of miR-718 expression increased PTEN synthesis and suppressed the synergistic effect of Nef- and K1-induced angiogenesis and tumorigenesis. These results indicate that, by targeting PTEN, miR-718 mediates Nef- and K1-induced angiogenesis via activation of AKT/mTOR signaling. Our results demonstrate an essential role of miR-718/AKT/mTOR axis in AIDS-KS and thus may represent an attractive therapeutic target.  相似文献   

20.
Dysregulated epidermal growth factor receptor (EGFR) signaling through either genomic amplification or dominant-active mutation (EGFR(vIII)), in combination with the dual inactivation of INK4A/ARF and PTEN, is a leading cause of gliomagenesis. Our global expression analysis for microRNAs revealed that EGFR activation induces miR-146a expression, which is further potentiated by inactivation of PTEN. Unexpectedly, overexpression of miR-146a attenuates the proliferation, migration, and tumorigenic potential of Ink4a/Arf(-/-) Pten(-/-) Egfr(vIII) murine astrocytes. Its ectopic expression also inhibits the glioma development of a human glioblastoma cell line in an orthotopic xenograft model. Such an inhibitory function of miR-146a on gliomas is largely through downregulation of Notch1, which plays a key role in neural stem cell maintenance and is a direct target of miR-146a. Accordingly, miR-146a modulates neural stem cell proliferation and differentiation and reduces the formation and migration of glioma stem-like cells. Conversely, knockdown of miR-146a by microRNA sponge upregulates Notch1 and promotes tumorigenesis of malignant astrocytes. These findings indicate that, in response to oncogenic cues, miR-146a is induced as a negative-feedback mechanism to restrict tumor growth by repressing Notch1. Our results provide novel insights into the signaling pathways that link neural stem cells to gliomagenesis and may lead to new strategies for treating brain tumors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号