首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
对黑曲霉(Aspergillus niger)高产菌株T21和原始菌株3.795糖化酶的基因表达从菌体生长、酶形成动力学、glaA基因拷贝数、糖化酶mRNA含量及其稳定性等多个方面进行了分析和比较。T21和3.795糖化酶的大量产生均自菌体生长的静止期开始。培养72h后,两者的菌体浓度相同,但T2l产生的糖化酶量为3.795的10~17倍,说明糖化酶产量的差异不是因生物量或酶起始合成期不同引起的,而是由于细胞内酶表达量不同引起的。Northern杂交显示T21总RNA中糖化酶mRNA含量为3.795的4.3~4.4倍.两菌株glaA基因拷贝数及糖化酶mRNA的稳定性分析结果排除了这两个因素的影响,因此T21糖化酶mRNA含量的增加主要是glaA基因转录水平提高的结果。T21与3.795之间糖化酶水平差异(10~17倍)与糖化酶mRNA水平差异(4.3~4.4倍)的不一致性,提示T21和3.795之间除转录水平外可能还存在着翻译水平上的差异(2~4倍)。此外,T21和3.795均存在着对糖化酶基因表达的碳源调控机制,根据两者在淀粉、麦芽糖和葡萄糖培养条件下所产生的mRNA比均为4:3:2,可以认为,这种调控作用发生在转录水平上,并且具有相同的调控方式。  相似文献   

2.
对黑曲霉高产菌株T21和原始菌株3.795糖化酶的基因表达从菌体生长、酶形成动力学、glaA基因拷贝数、糖化酶mRNA含量及其稳定性等多个方面进行了分析和比较。T21和3.795糖化酶的大量产生均自菌体生长的静止期开始。培养72h捂得的菌体浓度相同,但T21产生的糖化酶量为3.795的10 ̄17倍,说明糖化酶产量的差异不是因生物量或酶起始合成期不同引起的,而是由于细胞内酶表达量不同引起的。Nort  相似文献   

3.
以PCR合成的糖化酶高产菌株黑曲霉(Asp. Niger)T21糖化酶基因5’近端非编码区588bp(EcoRI-BamHI)的序列为探针,从T21染色体DNA中克隆到近2.0kb的糖化酶基因5’端非编码区序列,并以此序列为探针从糖化酶低产菌株黑曲霉3.795(T21的诱变出发株)的染色体DNA中克隆到1.5kb的糖化酶基因5’端非编码区序列。该二序列的分析测定结果表明,其结构特征与文献报道的黑曲霉糖化酶基因5’端非编码区的基本一致,被称为“核心启动子”(Core promoter)的TATAAAT框及GCAAT框,分别在翻译起始点的-109bp及-178bp处。此外,在曲霉amdS,amyB基因中已发现有调控功能的CCAAT序列存在于-449bp和-799bp处。高产和低产菌株糖化酶基因5’端非编码区序列的分析比较结果表明,有9个部位的碱基发生了变化。此实验结果为进一步研究黑曲霉糖化酶基因在转录水平上的调控规律打下了基础。  相似文献   

4.
对糖化酶高产菌株A.nigerT21和原始菌株A.niger3.795和glaA5′上游区的序列分析证明,两者在1.5kb的区域内有9个部位的碱基不同。为考察这些碱基差异是否是引起T21glaA基因转录水平提高的原因,构建了以T21和3.795alaA基因转录调控区及A.nidulans trpC基因终止子为表达元件的E.coli hph基因表达载体(pXH12和pGH1),用pXH2和pGH1分  相似文献   

5.
对糖化酶高产菌株A.nigerT21和原始菌株Aniger3.795的glaA5'上游区的序列分析证明,两者在1.5kb的区域内有9个部位的碱基不同。为考察这些碱基差异是否是引起T21glaA基因转录水平提高的原因,构建了以T21和3.795glaA基因转录调控区及A.nidulans trpC基因终止子为表达元件的E.colihph基因表达载体(pXH2和pGH1),用pXH2和pGH1分别转化A.nigerT21,对两种转化子的HmB抗性水平测定和Southern杂交分析显示,在转化子XH2C和GH1C中,pXH2和pGH1以相同拷贝数(2拷贝串联)整合到染色体DNA的相同位置上,XH2C的HmB抗性水平(3000μg/ml)为GH1C(1500μg/ml)的2倍。这一结果表明,诱变引起的调控区序列改变使T21glaA基因转录调控区的功能水平比3.795提高1倍。  相似文献   

6.
对糖化酶高产菌株A.nigerT21和原始菌株Aniger3.795的glaA5'上游区的序列分析证明,两者在1.5kb的区域内有9个部位的碱基不同。为考察这些碱基差异是否是引起T21glaA基因转录水平提高的原因,构建了以T21和3.795glaA基因转录调控区及A.Nidulans trpC基因终止子为表达元件的E.Colihph基因表达载体(pXH2和pGH1),用pXH2和pGH1分别转化A.nigerT21,对两种转化子的HmB抗性水平测定和Southern杂交分析显示,在转化子XH2C和GH1C中,pXH2和pGH1以相同拷贝数(2拷贝串联)整合到染色体DNA的相同位置上,XH2C的HmB抗性水平(3000μg/ml)为GH1C(1500μg/ml)的2倍。这一结果表明,诱变引起的调控区序列改变使T21glaA基因转录调控区的功能水平比3.795提高1倍。  相似文献   

7.
8.
9.
产糖化酶黑曲霉固定化方法比较的研究   总被引:5,自引:0,他引:5  
采用海藻酸钙凝胶电埋法、以沸石、多孔聚酯等材料为固定化载体的吸附法固定黑曲霉(Aspergillus niger AS3.4309)菌丝细胞,以游离菌丝体作为对照,进行发酵产糖化酶的比较,结果表明:以聚酯泡沫作为固定化载体吸附固定化菌丝细胞产糖化酶活力最高。在产糖化酶的发酵过程中,与游离菌丝体细胞相比,固定化黑曲霉持续产酶时间有一定程度的延长。  相似文献   

10.
从糖化酶高产菌株(Aspergills niger)T21中分离出染色体DNA.Southern印跡分析表明糖化酶结构基因位于约2.5kb的EcoRⅠ-EcoRV片段中.该染色体DNA经EcorⅠ、EcoRⅤ完全酶切后,用琼脂糖凝胶电泳分离,回收2.0—3.0kb的片段,与载体pBR322连接后转化宿主菌大肠杆菌DH5,获得转化子.通过原位杂交,从转化子中筛选出4个阳性克隆.阳性克隆的进一步酶切鉴定及序列分析表明,黑曲霉T21糖化酶结构基因大小为2.3kb,含有4个内含子.  相似文献   

11.
产糖化酶黑曲霉的固定化研究   总被引:4,自引:2,他引:4  
采用多孔聚酯材料作为固定化载体,考察并比较了载体吸附固定化黑曲霉菌丝细胞的条件,当菌丝体细胞与载体预培养的条件为pH值5.0、孢子浓度为105个/ml、固液比为1/75时,有利于菌丝体的生长、吸附固定及发酵产酶.在产糖化酶的发酵过程中,与游离菌丝体细胞相比,发酵过程持续产酶时间有一定程度的延长,产糖化酶活力始终高于游离菌丝体.  相似文献   

12.
从黑曲霉糖化酶高产株T21分离总Poly(A)+RNA,经反转录合成cDNA,建立cDNA库。以糖化酶基因片段为探针从cDNA库进行筛选,阳性率达1.6%。由限制酶酶切图谱确定30%的阳性克隆携带全长的糖化酶cDNA。序列分析结果表明,菌株T21虽经多次诱变获得,但糖化酶基因编码区序列与文献报道的黑曲霉糖化酶基因编码区序列一致。从菌株T2l构建的cDNA库中含糖化酶cDNA插入片段的克隆的高比率充分证明,菌株T21中稳态糖化酶mRNA含量很高,显然这是突变株T21糖化酶高产的重要原因之一。  相似文献   

13.
黑曲霉糖化酶的分离纯化及其性质   总被引:7,自引:0,他引:7  
采用硫酸铵分级DEAE-纤维素离子交换层析、Sephadez G—150凝胶过滤等方法,从黑曲霉AS 3.4309变异株B-11的发酵液中分离出三种电泳均一的糖化酶(GI、Gill、GII)。其收率分别为0.8%、50%和18.6%。GI、Gill和GII的分子量分别为27000、67000和53000;等电点分别为3.38、3.52和3.59;含糖量分别为8.7%.13.6%和18.3%;最适pH分别为4.4、4.6和4.6;对可溶性淀粉的Km值分别为2.0、0.77和1.18g/L;二级结构中a-螺旋含量分别为18.4%、23.9%和28.9%;最适温度均为70℃。生淀粉可吸附Gill,吸附率达80%。此外还测定了三种同工酶的氨基酸组成及含量。GI、GII和GIII均由一条多肽链组成。  相似文献   

14.
考察了蓝光对黑曲霉产糖化酶的影响并采用扫描电镜观察蓝光下黑曲霉形态发育过程,结果表明,与黑暗对照组相比,蓝光处理使菌丝粗壮,孢囊增大,分生孢子发育提前,黑曲霉糖化酶活力增加,孢子发育和产糖化酶的进程有一定的对应性。黑曲霉在黑暗下生长至36h时,经蓝光诱导糖化酶产量提高更为明显,提示了黑曲霉存在一个对蓝光反应产生最适光感应的发育阶段,对于光调节黑曲霉产糖化酶来说,蓝光诱导的光强由弱到强,比持续蓝光培养或采用较高光强诱导效果更好,表明黑曲霉产糖化酶存在一种光适应机制,能够感应和适应光强度变化,调节其自身代谢。从抑制性扣除杂交实验和蓝光光强变化对差异基因表达的分析来看,糖化酶基因以及呼吸链中部分氧化还原酶基因在蓝光诱导下表达皆有增强,蓝光信号转导影响了核基因编码的线粒体呼吸链相关酶基因表达水平,交替氧化酶可能参与了蓝光信号途径,影响了黑曲霉产糖化酶和孢子发育。研究结果可为在现有水平上应用蓝光调节提高糖化酶产量找到新的技术突破口和提供新思路。  相似文献   

15.
徐欣  李杰 《生物技术》2012,22(1):7-10
目的:通过基因工程方法改造糖化酶基因上游调控区,提高糖化酶产量提供研究。方法:以糖化酶生产菌黑曲霉为材料,通过PCR扩增获得糖化酶基因上游调控区片段PglaA。经测序比对发现该序列与GenBank中编号AM270061的序列相似性为100%。进一步的分析结果表明此序列含有2个保守的激活蛋白结合位点序列CCAAT和1个可能的葡萄糖阻遏位点CT-GGGG。结果:通过不同浓度葡萄糖对糖化酶合成的影响确定该菌株存在葡萄糖阻遏效应,当浓度到到3%以上时阻遏率高达70%以上,为葡萄糖阻遏位点预测结果提供了实验证据,并且经实验测得糖化酶活力随着接种量的增加而增加,当增加到5%时,相对酶活最高。  相似文献   

16.
黑曲霉糖化酶在酿酒酵母中的表达和分泌   总被引:9,自引:0,他引:9  
从黑曲霉糖化酶高产株T2l合成的糖化酶cDNA,经5’端和3’端改造后克隆到酵母质粒YFDl8上,转化酿酒酵母。转化子的淀粉培养基平板检测,培养滤液蛋白电泳和糖化酶活力分析都表明,含有糖化酶基因表达质粒的酵母转化子能有效地分泌有功能的糖化酶到细胞外。实验证明酵母a园子启动子和分泌信号序列能促使黑曲霉糖化酶cDNA在酵母中表达和分泌.实验还表明.黑曲霉糖化酶原的翻译后加工序列很可能亦能被酵母识别,加工生成有功能的成熟的糖化酶。以上成功为构建有实用意义的淀粉水解酵母工程菌迈出了重要的一步。  相似文献   

17.
蓝光促进黑曲霉分生孢子发育和产糖化酶的研究   总被引:5,自引:1,他引:5  
以黑暗为对照 ,研究了不同光质对黑曲霉产糖化酶及生长发育的影响。持续蓝光作用下 ,孢子萌发后菌丝较粗 ,菌丝细胞顶端膨大显著 ,菌丝细胞膜的通透性增加 ,残糖消耗快 ,孢子和孢子穗增大。在 3(4d时 ,蓝光下菌丝产糖化酶活力最高达 6 6 0 (30U mL ,比黑暗高出了 15. 4 % ,生物量增加了 4 9. 4 8% ,菌丝细胞可溶性蛋白含量提高了10 0. 5 6 % ,尤其是在开始产孢子的阶段 ,蓝光下黑曲霉产糖化酶活力、生物量有很大提高。研究表明 ,蓝光明显促进黑曲霉分生孢子发育和产孢阶段包括糖化酶在内的多种淀粉酶活力的迅速增加。  相似文献   

18.
黑曲霉糖化酶cDNA的改造及其在酿酒酵母中的表达   总被引:3,自引:0,他引:3  
应用PCR技术扩增黑曲霉糖化酶cDNA不含非编码区50bp的5’端740bp的序列与该cDNA3’端1400bp的序列连接,获得切除了5’端非编码的糖化酶cDNA。将改造后的cDNA插到质粒pMA91的酵母PGK基因的启动子和转录终止信号之间,构建了含黑曲霉糖化酶基因的表达载体pMAG17。用原生质体转化法将重组质粒pMAG17引入酿酒酵母GRF18。酿酒酵母GRF18转化子在淀粉平板上产生水解透明圈,表明糖化酶已在酵母中表达并分泌至培养基中。测定转化子的胞外酶活力及淀粉水解率。结果表明:改造后的糖化酶基  相似文献   

19.
大麦α-淀粉酶和黑曲霉糖化酶在酿酒酵母中的表达和分泌   总被引:1,自引:0,他引:1  
将大麦α 淀粉酶和黑曲霉糖化酶cDNA重组进同一大肠杆菌 酵母穿梭质粒构建含双基因的表达分泌载体 pMAG1 5 .用原生质体转化法将 pMAG1 5引入酿酒酵母 (S .cerevisiae  GRF1 8) ,在酵母PGK基因的启动子和转录终止信号及本身的信号序列的调控下 ,实现大麦α 淀粉酶和糖化酶的高效表达 ,99%以上的酶活力分泌至培养基中 .构建的酿酒酵母菌株GRF1 8( pMAG1 5 )在含 1 5 %可溶性淀粉的培养基中 ,培养 47h能水解 99%的淀粉 ,并能发酵产生酒精  相似文献   

20.
黑曲霉S1生淀粉糖化酶生物合成的调节研究   总被引:5,自引:1,他引:4  
本文对黑曲霉S_1(Aspergillus niger S_1)生淀粉糖化酶生物合成调节进行了初步研究,认为该菌生淀粉糖化酶的合成与菌体生长呈负相关,即酶的合成过程是典型的选择性合成过程。该菌生淀粉糖化酶的合成受降解物阻遏调控,缓慢供给低浓度易利用碳源和添加环腺苷磷酸(cAMP)可使酶的合成消阻遏,通过研究放线菌素C_1(Actinomycin C_1)等抑制剂对酶合成的影响而推断黑曲霉S_1生淀粉糖化酶合成的阻遏调控发生在转录水平上。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号