首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 189 毫秒
1.
Interactions of methylmercury (CH(3)HgCl) with non-energized mitochondria from rat liver (non-respiring mitochondria) have been investigated in this paper. It has been shown that CH(3)HgCl induces swelling in mitochondria suspended in a sucrose medium. Swelling has also been induced by detergent compounds and by phenylarsine, a chemical compound which induces opening of the permeant transition pore (MTP). Opening of the MTP is inhibited by means of cyclosporine A. Results indicate that the swelling induced by CH(3)HgCl, as in the case of phenylarsine, is inhibited by cyclosporine A and Mg(2+), while swelling induced by detergent compounds is not cyclosporine sensitive. This comparison suggests that CH(3)HgCl induces opening of a permeability transition pore (MTP). Since the opening of an MTP induces cell death, this interaction with MTP could be one of the causes of toxicity of CH(3)HgCl.  相似文献   

2.
The transport properties of mitochondria are such that net potassium flux across the inner membrane determines mitochondrial volume. It has been known that K+ uptake is mediated by diffusive leak driven by the high electrical membrane potential maintained by redox-driven, electrogenic proton ejection and that regulated K+ efflux is mediated by an 82-kDa inner membrane K+/H+ antiporter. There is also long-standing suggestive evidence for the existence of an inner membrane protein designed to catalyze electrophoretic K+ uptake into mitochondria. We report reconstitution of a highly purified inner membrane protein fraction from rat liver and beef heart mitochondria that catalyzes electrophoretic K+ flux in liposomes and channel activity in planar lipid bilayers. The unit conductance of the channel at saturating [K+] is about 30 pS. Reconstituted K+ flux is inhibited with high affinity by ATP and ADP in the presence of divalent cations and by glibenclamide in the absence of divalent cations. The mitochondrial ATP-dependent K+ channel is selective for K+, with a Km of 32 mM, and does not transport Na+. K+ transport depends on voltage in a manner consistent with a channel activity that is not voltage-regulated. Thus, the mitochondrial ATP-dependent K+ channel exhibits properties that are remarkably similar to those of the ATP-dependent K+ channels of plasma membranes.  相似文献   

3.
We describe here a regulated and highly active K+ uptake pathway in potato (Solanum tuberosum), tomato (Lycopersicon esculentum), and maize (Zea mays) mitochondria. K+ transport was not inhibited by ATP, NADH, or thiol reagents, which regulate ATP-sensitive K+ channels previously described in plant and mammalian mitochondria. However, K+ uptake was completely prevented by quinine, a broad spectrum K+ channel inhibitor. Increased K+ uptake in plants leads to mitochondrial swelling, respiratory stimulation, heat release, and the prevention of reactive oxygen species formation. This newly described ATP-insensitive K+ import pathway is potentially involved in metabolism regulation and prevention of oxidative stress.  相似文献   

4.
Kimber A  Sze H 《Plant physiology》1984,74(4):804-809
The effects of purified Helminthosporium maydis T (HmT) toxin on active Ca2+ transport into isolated mitochondria and microsomal vesicles were compared for a susceptible (T) and a resistant (N) strain of corn (Zea mays). ATP, malate, NADH, or succinate could drive 45Ca2+ transport into mitochondria of corn roots. Ca2+ uptake was dependent on the proton electrochemical gradient generated by the redox substrates or the reversible ATP synthetase, as oligomycin inhibited ATP-driven Ca2+ uptake while KCN inhibited transport driven by the redox substrates. Purified native HmT toxin completely inhibited Ca2+ transport into T mitochondria at 5 to 10 nanograms per milliliter while transport into N mitochondria was decreased slightly by 100 nanograms per milliliter toxin. Malate-driven Ca2+ transport in T mitochondria was frequently more inhibited by 5 nanograms per milliliter toxin than succinate or ATP-driven Ca2+ uptake. However, ATP-dependent Ca2+ uptake into microsomal vesicles from either N or T corn was not inhibited by 100 nanograms per milliliter toxin. Similarly, toxin had no effect on proton gradient formation ([14C]methylamine accumulation) in microsomal vesicles. These results show that mitochondrial and not microsomal membrane is a primary site of HmT toxin action. HmT toxin may inhibit formation of or dissipate the electrochemical proton gradient generated by substrate-driven electron transport or the mitochondrial ATPase, after interacting with a component(s) of the mitochondrial membrane in susceptible corn.  相似文献   

5.
Previous reports that ethacrynic acid and furosemide diminish mitochondrial P : O ratios and reduce (Na+ + K+)-ATPase activity suggested that these diuretics may inhibit mitochondrial phosphorylation reactions. This possibility was initially studied by determining the effects of ethacrynic acid and furosemide on [32P]ATP exchange activity of rat kidney mitochondria. Concentrations of both drugs at 10(-4) M or greater, significantly inhibited [32P]ATP exchange. To investigate the mechanism of this inhibition, the effects of ethacrynic acid and furosemide on the ATPase activity of intract mitochondria and sonicated submitochondrial particles were determined. Both diuretics inhibited ATPase activity of intact mitochondria at 10(-4) M. In contrast, ATPase of submitochondrial particles was significantly less susceptible to inhibition by the diuretics. These results suggested that ethacrynic acid anf furosemide inhibit adenine nucleotide transport across the mitochondrial membrane. This was directly tested by determining the effects of the diretics on the mitochondrial adenine nucleotide translocase. At 5-10(-4) M, both ethacrynic acid and furosemide significantly inhibited adenine nucleotide transport. These findings suggest that ethacrynic acid and furosemide may diminish renal tubular solute reabsorption by direct inhibition of adenine nucleotide transport across the mitochondrial inner membrane.  相似文献   

6.
Effect of ABA on the activity of mitochondrial membrane bound Na+-K+ATPase during isolation of mitochondria from soybean cotyledons, there was an increased activity of the mitochondrial membrane bound Na+-K+ATPase if abscisic acid (ABA) was added to the medium when soybean seedling were grown at 27 ℃ or 16℃, 40 mol/L ABA could change the turning point temperature of Arrhenius the activation energies (Ea) of Na+-K+ATPase from 36.6℃ or 22.7℃ decreased to 30. 3℃ or 17.8℃ respectively. The Km value and S0.5 value for this enzyme with ABA was higher than that without ABA. Hill coefficient (n) of this enzyme with ABA was 1.01 and without ABA was 1.89. The o2 uptake of mitochondria also increased. These results showed that the temperature of phase transition of mitochondrial membrane were decreased by ABA treatment.  相似文献   

7.
Rat liver Golgi vesicles were isolated by differential and density gradient centrifugation. A fraction enriched in galactosyl transferase and depleted in plasma membrane, mitochondrial, endoplasmic reticulum, and lysosomal markers was found to contain an ATP-dependent H+ pump. This proton pump was not inhibited by oligomycin but was sensitive to N-ethyl maleimide, which distinguishes it from the F0-F1 ATPase of mitochondria. GTP did not induce transport, unlike the lysosomal H+ pump. The pump was not dependent on the presence of potassium nor was it inhibited by vanadate, two of the characteristics of the gastric H+ ATPase. Addition of ATP generated a membrane potential that drove chloride uptake into the vesicles, suggesting that Golgi membranes contain a chloride conductance in parallel to an electrogenic proton pump. These results demonstrate that Golgi vesicles can form a pH difference and a membrane potential through the action of an electrogenic proton translocating ATPase.  相似文献   

8.
Coated microvesicle fractions isolated from ox forebrain cortex by the ultracentrifugation procedure of Pearse (1) and by the modified, less time consuming method of Keen et al (2) had comparable Ca2+ +Mg2+ dependent ATPase activities (about 9 mumol/h per mg protein). The Na+ +K+ +Mg2+ dependent ATPase activity was 3.2 mumol/h per mg (+/- 1.0, S.D., n = 3) when microvesicles were prepared according to (1) and 1.5 mumol/h per mg (+/- 1.0, S.D., n = 3) when prepared according to (2). Oligomycin, ruthenium red, and trifluoperazine, inhibitors of Ca2+ transport in mitochondria and erythrocyte membranes had no effect on Ca2+ +Mg2+ dependent ATPase from any of the preparations. As demonstrated both by ATPase assays and electron microscopy, coated microvesicles could be bound to immunosorbents prepared with poly-specific antibodies against a coated microvesicle fraction obtained by the method of Pearse (1). The binding could be inhibited by dissolved coat protein using partially purified clathrin. The fraction of coated vesicles eluted from the immunosorbent was purified relative to the starting material as judged by electron microscopy. The Ca2+ +Mg2+ ATPase activity and calmodulin content was copurified with the coated microvesicles and the specific activity of Na+ +K+ +Mg2+ ATPase was decreased. Na+ +K+ +Mg2+ dependent ATPase activity in the coated microvesicle fraction could be ascribed to membranes with the appearance of microsomes. These membranes were also bound to the immunosorbents, but the binding was not influenced by clathrin. The capacity of the immunosorbents for these membranes was less than for the coated microvesicles, resulting in a decrease of Na+ +K+ +Mg2+ dependent ATPase activity in the eluted coated microvesicle fraction. It was concluded that Ca2+ +Mg2+ ATPase activity is not a contamination from plasma membrane vesicles or mitochondrial membranes but seems to be an integral part of the coated vesicle membrane.  相似文献   

9.
An important antitumour effect of SYD-1 (3-[4-chloro-3-nitrophenyl]-1,2,3-oxadiazolium-5-olate) has been shown. We now report the effects of this mesoionic compound on mitochondrial metabolism. SYD-1 (1.5 micromol mg(-1) protein) dose-dependently inhibited the respiratory rate by 65% and 40% in state 3 using sodium glutamate and succinate, respectively, as substrates. Phosphorylation efficiency was depressed by SYD-1, as evidenced by stimulation of the state 4 respiratory rate, which was more accentuated with glutamate ( approximately 180%) than with succinate ( approximately 40%), with 1.5 micromol mg(-1) protein of SYD-1. As a consequence of the effects on states 3 and 4, the RCC and ADP/O ratios were lowered by SYD-1 using both substrates, although this effect was stronger with glutamate. The formation of membrane electrical potential was inhibited by approximately 50% (1.5 micromol SYD-1mg(-1) protein). SYD-1 interfered with the permeability of the inner mitochondrial membrane, as demonstrated by assays of mitochondrial swelling in the presence of sodium acetate and valinomycin +K(+). SYD-1 (1.5 micromol mg(-1) protein) inhibited glutamate completely and succinate energized-mitochondrial swelling by 80% in preparations containing sodium acetate. The swelling of de-energized mitochondria induced by K(+) and valinomycin was inhibited by 20% at all concentrations of SYD-1. An analysis of the segments of the respiratory chain suggested that the SYD-1 inhibition site goes beyond the complex I and includes complexes III and IV. Glutamate dehydrogenase was inhibited by 20% with SYD-1 (1.5 micromol mg(-1) protein). The hydrolytic activity of complex F(1)F(o) ATPase in intact mitochondria was greatly increased ( approximately 450%) in the presence of SYD-1. Our results show that SYD-1 depresses the efficiency of electron transport and oxidative phosphorylation, suggesting that these effects may be involved in its antitumoural effect.  相似文献   

10.
The mitochondrial functional defects occurring in the early stages of nephrotoxic renal injury secondary to mercuric chloride have been characterized. No loss of cellular integrity or major mitochondrial structural alterations occurred within the first 3 h after a subcutaneous injection of 5 mg/kg of HgCl2. At 3 h, levels of Hg2+ in renal cortex and isolated renal cortical mitochondria were 1.87 and 0.72 nmol/mg of protein, respectively. Much evidence suggested that this Hg2+ had reached the mitochondria in situ and not during the isolation process. Mitochondria isolated beginning 1 h after treatment with HgCl2 showed depressed ADP uptake. At 2 h, inhibitions of State 3 and 2,4-dinitrophenol uncoupled respiration were detected. Inhibition of 2,4-dinitrophenol-activated mitochondrial ATPase activity was present when measured on mitochondria isolated at 3 h. These effects were not reversed by 2 mM dithioerythritol, 50 mg/ml of albumin or 5 mM MgCl2. Analysis of the data in the context of information available on the in vitro effects of HgCl2 (Weinberg, J. M., Harding, P. G., and Humes, H. D. (1982) J. Biol. Chem. 257, 60-67) indicated that the mitochondrial functional effects could not be attributed to interaction of the mitochondria with Hg2+ during their isolation. These studies implicate compromised mitochondrial bioenergetic function as one of the earliest intracellular effects of Hg2+ in the production of nephrotoxicity but suggest that the intracellular process involves events in addition to those seen with direct exposure of mitochondria to Hg2+ in vitro.  相似文献   

11.
The spectral and metabolic properties of Rhodamine 123, a fluorescent cationic dye used to label mitochondria in living cells, were investigated in suspensions of isolated rat-liver mitochondria. A red shift of Rhodamine 123 absorbance and fluorescence occurred following mitochondrial energization. Fluorescence quenching of as much as 75% also occurred. The red shift and quenching varied linearly with the potassium diffusion potential, but did not respond to delta pH. These energy-linked changes were accompanied by dye uptake into the matrix space. Concentration ratios, in-to-out, approached 4000:1. A large fraction of internalized dye was bound. At concentrations higher than those needed to record these spectral changes, Rhodamine 123 inhibited ADP-stimulated (State 3) respiration of mitochondria (Ki = 12 microM) and ATPase activity of inverted inner membrane vesicles (Ki = 126 microM) and partially purified F1-ATPase (Ki = 177 microM). The smaller Ki for coupled mitochondria was accounted for by energy-dependent Rhodamine 123 uptake into the matrix. Above about 20 nmol/mg protein (10 microM), Rhodamine 123 caused rapid swelling of energized mitochondria. Effects on electron-transfer reactions and coupling were small or negligible even at the highest Rhodamine 123 concentrations employed. delta psi-dependent Rhodamine 123 uptake together with Rhodamine 123 binding account for the intense fluorescent staining of mitochondria in living cells. Inhibition of mitochondria ATPase likely accounts for the cytotoxicity of Rhodamine 123. At concentrations which do not inhibit mitochondrial function, Rhodamine 123 is a sensitive and specific probe of delta psi in isolated mitochondria.  相似文献   

12.
We found that as a result of d-lactate uptake and metabolism by Jerusalem artichoke mitochondria, reducing equivalents were exported from the mitochondrial matrix to the exterior in the form of malate. The rate of malate efflux, as measured photometrically using NADP+ and malic enzyme, depended on the rate of transport across the mitochondrial membrane. It showed saturation characteristics (K(m) = 5 mM; V(max) = 9 nmol/min mg of mitochondrial protein) and was inhibited by non-penetrant compounds. We conclude that reducing equivalent export from mitochondria is due to the occurrence of a putative d-lactate/malate antiporter which differs from other mitochondrial carriers, as shown by the different inhibitor sensitivity.  相似文献   

13.
The spectral and metabolic properties of Rhodamine 123, a fluorescent cationic dye used to label mitochondria in living cells, were investigated in suspensions of isolated rat-liver mitochondria. A red shift of Rhodamine 123 absorbance and fluorescence occurred following mitochondrial energization. Fluorescence quenching of as much as 75% also occurred. The red shift and quenching varied linearly with the potassium diffusion potential, but did not respond to ΔpH. These energy-linked changes were accompanied by dye uptake into the matrix space. Concentration ratios, in-to-out, approached 4000:1. A large fraction of internalized dye was bound. At concentrations higher than those needed to record these spectral changes, Rhodamine 123 inhibited ADP-stimulated (State 3) respiration of mitochondria (Ki = 12 μM) and ATPase activity of inverted inner membrane vesicles (Ki = 126 μM) and partially purified F1-ATPase (Ki = 177 μM). The smaller Ki for coupled mitochondria was accounted for by energy-dependent Rhodamine 123 uptake into the matrix. Above about 20 nmol/mg protein (10 μM), Rhodamine 123 caused rapid swelling of energized mitochondria. Effects on electron-transfer reactions and coupling were small or negligible even at the highest Rhodamine 123 concentrations employed. Δψ-dependent Rhodamine 123 uptake together with Rhodamine 123 binding account for the intense fluorescent staining of mitochondria in living cells. Inhibition of mitochondria ATPase likely accounts for the cytotoxicity of Rhodamine 123. At concentrations which do not inhibit mitochondrial function, Rhodamine 123 is a sensitive and specific probe of Δψ in isolated mitochondria.  相似文献   

14.
Using a coupled transport assay which detects only those ATPase molecules functionally inserted into the platelet dense granule membrane, we have characterized the inhibitor sensitivity, substrate specificity, and divalent cation requirements of the granule H+ pump. Under identical assay conditions, the granule ATPase was insensitive to concentrations of NaN3, oligomycin, and efrapeptin which almost completely inhibit ATP hydrolysis by mitochondrial membranes. The granule ATPase was inhibited by dicyclohexylcarbodiimide but only at concentrations much higher than those needed to maximally inhibit mitochondrial ATPase. Vanadate (VO3-) ion and ouabain also failed to inhibit granule ATPase activity at concentrations which maximally inhibited purified Na+,K+-ATPase. Two alkylating agents, 7-chloro-4-nitrobenz-2-oxa-1,3-diazole and N-ethylmaleimide both completely inhibited H+ pumping by the granule ATPase under conditions where ATP hydrolysis by mitochondrial membranes or Na+,K+-ATPase was hardly affected. These results suggest that the H+-pumping ATPase of platelet granule membrane may belong to a class of ion-translocating ATPases distinct from both the phosphoenzyme-type ATPases present in plasma membrane and the F1F0-ATPases of energy-transducing membranes.  相似文献   

15.
Identification of a ryanodine receptor in rat heart mitochondria   总被引:8,自引:0,他引:8  
Recent studies have shown that, in a wide variety of cells, mitochondria respond dynamically to physiological changes in cytosolic Ca(2+) concentrations ([Ca(2+)](c)). Mitochondrial Ca(2+) uptake occurs via a ruthenium red-sensitive calcium uniporter and a rapid mode of Ca(2+) uptake. Surprisingly, the molecular identity of these Ca(2+) transport proteins is still unknown. Using electron microscopy and Western blotting, we identified a ryanodine receptor in the inner mitochondrial membrane with a molecular mass of approximately 600 kDa in mitochondria isolated from the rat heart. [(3)H]Ryanodine binds to this mitochondrial ryanodine receptor with high affinity. This binding is modulated by Ca(2+) but not caffeine and is inhibited by Mg(2+) and ruthenium red in the assay medium. In the presence of ryanodine, Ca(2+) uptake into isolated heart mitochondria is suppressed. In addition, ryanodine inhibited mitochondrial swelling induced by Ca(2+) overload. This swelling effect was not observed when Ca(2+) was applied to the cytosolic fraction containing sarcoplasmic reticulum. These results are the first to identify a mitochondrial Ca(2+) transport protein that has characteristics similar to the ryanodine receptor. This mitochondrial ryanodine receptor is likely to play an essential role in the dynamic uptake of Ca(2+) into mitochondria during Ca(2+) oscillations.  相似文献   

16.
Previous reports that ethacrynic acid and furosemide diminish mitochondrial P : O ratios and reduce (Na+ + K+)-ATPase activity suggested that these diuretics may inhibit mitochondrial phosphorylation reactions. This possibility was initially studied by determining the effects of ethacrynic acid and furosemide on [32P]ATP exchange activity of rat kidney mitochondria. Concentrations of both drugs at 10−4 M or greater, significantly inhibited [32P]ATP exchange. To investigate the mechanism of this inhibition, the effects of ethacrynic acid and furosemide on the ATPase activity of intact mitochondria and sonicated submitochondrial particles were determined. Both diuretics inhibited ATPase activity of intact mitochondria at 10−4 M. In contrast, ATPase of submitochondrial particles was significantly less susceptible to inhibition by the diuretics. These results suggested that ethacrynic acid and furosemide inhibit adenine nucleotide transport across the mitochondrial membrane. This was directly tested by determining the effects of the diuretics on the mitochondrial adenine nucleotide translocase. At 5 · 10−4 M, both ethacrynic acid and furosemide significantly inhibited adenine nucleotide transport. These findings suggest that ethacrynic acid and furosemide may diminish renal tubular solute reabsorption by direct inhibition of adenine nucleotide transport across the mitochondrial inner membrane.  相似文献   

17.
1. Ionophore-induced osmotic swelling was used to study Cl- transport in isolated rat liver mitochondria. 2. Energy-dependent, neutral ionophore-induced swelling in Cl- salts at pH 7.2 required K+ and was preceded by a brief lag phase that was absent in chlorotributyltin-induced swelling. 3. Treatments that stimulated or inhibited mitochondrial K+/H+ exchange had qualitatively similar effects on both valinomycin-induced swelling and the associated lag phase. 4. The results suggest that valinomycin-induced Cl- permeability results from an interaction between the K+/H+ antiporter and neutral ionophore K+ complexes.  相似文献   

18.
Using small, intact frog muscles, the basic properties of Na+ and K+ transport were shown to resemble those of the (Na+ + K+)Mg2+ATPase (EC 3.6.1.3) isolated from skeletal muscle. (a) External K+ is essential for Na+ exit and K+ entry after the muscles are Na+-loaded and K+-depleted; (b) the ouabain concentration causing maximum inhibition of recovery is the same for transport as for the inhibition of the isolated enzyme. Ouabain causes a decrease in the sorbitol space and causes muscle fibre swelling. Absence of Ca2+ and Mg2+ inhibits recovery of normal Na+ and K+ concentrations and increases the sorbitol space. Insulin stimulates K+ uptake and Na+ loss in intact muscles but has no effect on the isolated sarcolemmal (Na+ + K+)Mg2+ATPase. Absence of divalent cations, addition of external ATP and of insulin enhance the ouabain inhibition of recovery. Bound ouabain was measured using [3H]ouabain and [14C]sorbitol (to measure the extracellular space). The process of binding was slowly reversible and was saturable within a range of ouabain concentrations from 1.48 X 10(-7) to 5.96 X 10(-7) M. From the nonexchangeable ouabain bound, the density of glycoside receptors was estimated to be 650 molecules per square micrometre of membrane surface. The absence of divalent cations, addition of external ATP and of insulin significantly enhanced the amount of ouabain bound. Substitution of Na+ and K+ by choline greatly reduced the bound ouabain.  相似文献   

19.
The ability of alpha-adrenergic agonists and vasopressin to increase the mitochondrial volume in hepatocytes is dependent on the presence of extracellular Ca2+. Addition of Ca2+ to hormone-treated cells incubated in the absence of Ca2+ initiates mitochondrial swelling. In the presence of extracellular Ca2+, A23187 (7.5 microM) induces mitochondrial swelling and stimulates gluconeogenesis from L-lactate. Isolated liver mitochondria incubated in KCl medium in the presence of 2.5 mM-phosphate undergo energy-dependent swelling, which is associated with electrogenic K+ uptake and reaches an equilibrium when the volume has increased to about 1.3-1.5 microliter/mg of protein. This K+-dependent swelling is stimulated by the presence of 0.3-1.0 microM-Ca2+, leading to an increase in matrix volume at equilibrium that is dependent on [Ca2+]. Ca2+-activated K+-dependent swelling requires phosphate and shows a strong preference for K+ over Na+, Li+ or choline. It is not associated with either uncoupling of mitochondria or any non-specific permeability changes and cannot be produced by Ba2+, Mn2+ or Sr2+. Ca2+-activated K+-dependent swelling is not prevented by any known inhibitors of plasma-membrane ion-transport systems, nor by inhibitors of mitochondrial phospholipase A2. Swelling is inhibited by 65% and 35% by 1 mM-ATP and 100 microM-quinine respectively. The effect of Ca2+ is blocked by Ruthenium Red (5 micrograms/ml) at low [Ca2+]. Spermine (0.25 mM) enhanced the swelling seen on addition of Ca2+, correlating with its ability to increase Ca2+ uptake into the mitochondria as measured by using Arsenazo-III. Mitochondria derived from rats treated with glucagon showed less swelling than did control mitochondria. In the presence of Ruthenium Red and higher [Ca2+], the mitochondria from hormone-treated animals showed greater swelling than did control mitochondria. These data imply that an increase in intramitochondrial [Ca2+] can increase the electrogenic flux of K+ into mitochondria by an unknown mechanism and thereby cause swelling. It is proposed that this is the mechanism by which alpha-agonists and vasopressin cause an increase in mitochondrial volume in situ.  相似文献   

20.
The effects of Reye's plasma, allantoin, and salicylates on mitochondrial structure and Ca2+ transport have been investigated. Measurements of Ca2+ transport showed that when 20-30 microM Ca2+ was added to isolated rat liver mitochondria preincubated with one of these agents, Ca2+ uptake was followed by its spontaneous release into the medium. This was accompanied by large-amplitude swelling; the onset preceded the Ca2+ release. No further Ca2+ release was induced by uncoupler or the Ca2+ ionophore, A23187. The mitochondria continued to swell even after all of the Ca2+ had been released. The time between the addition of Ca2+ and the onset of swelling (or Ca2+ release) depended on the concentration of the agent added and the preincubation time; the extent of swelling did not. These effects were prevented, but not reversed, by ethylene glycol bis(beta-aminoethyl ether)-N,N'-tetraacetic acid, ruthenium red, rotenone, or adenine nucleotides. The massive swelling and membrane disruption were confirmed by electron microscopy of the treated vs untreated mitochondria. Similar results concerning swelling and Ca2+ release were also seen with Ca2+ alone, but the time scale was much longer (i.e., greater than 3-4 min), indicating that these agents act by potentiating Ca2+-induced alterations in mitochondrial structure, as suggested by our earlier work (T.Y. Segalman and C.P. Lee (1982) Arch. Biochem. Biophys. 214, 522-530; M.E. Martens and C.P. Lee (1984) Biochem. Pharmacol. 33, 2869-2876). Our data show, therefore, that allantoin, salicylates, and the "toxic" agent in Reye's plasma severely limit the ability of isolated rat liver mitochondria to maintain their structural integrity under conditions of limited Ca2+ loading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号