首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To establish a guinea pig model for house dust mite allergy with purified mite allergens, we studied the immune response to two major mite allergens, native Der f 1 (nDer f 1) and recombinant Der f 2 (rDer f 2) and crude mite extract in Hartley guinea pigs. Animals were immunized with either mite extract, nDer f 1 or rDer f 2, four times at 2- to 3-week intervals. Then the guinea pigs were examined as to the status of sensitization to the sensitizing antigen. Intradermal injection of mite antigens to mite extract-, nDer f 1-, and rDer f 2-sensitized animals induced both immediate and late-phase cutaneous reactions. Allergic airway disease was also provoked by the intranasal instillation of rDer f 2 or mite extract. Anti-nDer f 1 and -rDer f 2 IgE as well as anti-mite extract IgE were produced in the sensitized guinea pigs and IgE titer for three mite antigens were comparable. We concluded that immunization of Hartley guinea pigs with nDer f 1 and rDer f 2 achieved sensitization to mite allergens, which was comparable to that obtained by the immunization with mite extract. A mite-allergic model suitable for immunological and pharmacological studies was established from rDer f 2-sensitized guinea pigs.  相似文献   

2.
A generalised model of the life cycle of a house dust mite, which can be tailored to any particular species of domestic mite, is presented. The model takes into account the effects of hygrothermal conditions on each life cycle phase. It is used in a computer simulation program, called POPMITE, which, by incorporating a population age structure, is able to predict population dynamics. The POPMITE simulation is adapted to the Dermatophagoides pteronyssinus (Acari: Pyroglyphidae) (DP) mite using published data on the egg development period, total development period, adult longevity, mortality during egg development, mortality during juvenile development, and fecundity of individual DP mites held at a range of constant hygrothermal conditions. An example is given which illustrates how the model functions under constant hygrothermal conditions. A preliminary validation of POPMITE is made by a comparison of the POPMITE predictions with published measurements of population growth of DP mites held at a range constant hygrothermal conditions for 21 days. The POPMITE simulation is used to provide predictions of population growth or decline for a wide range of constant relative humidity and temperature combinations for 30 and 60 days. The adaptation of the model to correctly take account of fluctuating hygrothermal conditions is discussed.  相似文献   

3.
Predicting the potential geographical distribution of a species is particularly important for pests with strong invasive abilities. Tetranychus evansi Baker & Pritchard, possibly native to South America, is a spider mite pest of solanaceous crops. This mite is considered an invasive species in Africa and Europe. A CLIMEX model was developed to predict its global distribution. The model results fitted the known records of T. evansi except for some records in dry locations. Dryness as well as excess moisture stresses play important roles in limiting the spread of the mite in the tropics. In North America and Eurasia its potential distribution appears to be essentially limited by cold stress. Detailed potential distribution maps are provided for T. evansi in the Mediterranean Basin and in Japan. These two regions correspond to climatic borders for the species. Mite establishment in these areas can be explained by their relatively mild winters. The Mediterranean region is also the main area where tomato is grown in open fields in Europe and where the pest represents a threat. According to the model, the whole Mediterranean region has the potential to be extensively colonized by the mite. Wide expansion of the mite to new areas in Africa is also predicted. Agricultural issues highlighted by the modelled distribution of the pest are discussed. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
A simple mite population index (MPI) model is presented which predicts the effect on house dust mite populations of any combination of temperature and relative humidity (RH). For each combination, the output is an index, or multiplication factor, such that 1.1 indicates 10% population growth and 0.9 indicates 10% population decline. To provide data for the model, laboratory experiments have been carried out using lab cultures of Dermatophagoides pteronyssinus. The population change was observed for mites held in steady-state conditions at different combinations of temperature and RH over 21 days. From the results, a best-fit equation has been derived which forms the basis of the MPI model. The results also enable a new term to be defined: the Population Equilibrium Humidity, PEH, the RH for a given temperature at which house dust mite populations neither grow nor decline. It is similar to Critical Equilibrium Humidity, the RH below which house dust mites are unable to maintain water balance, but relates to a population of mites (rather than a physiological phenomenon) and is more able to take account of the observed effects of extremes of temperature and RH. Compared with previous population models, the MPI model is potentially more accurate and comprehensive. It can be combined with other simple models (described in previous papers), such as BED, which simulates the average hygrothermal conditions in a bed, given room␣conditions, and Condensation Targeter II, which simulates room conditions given a range of easily obtainable inputs for climate, house type and occupant characteristics. In this way it is now possible, for any individual dwelling, to assess the most effective means of controlling mite populations by environmental means, such as by improving standards of ventilation and insulation, or by modifying the occupant behaviour that affects the hygrothermal environment within a dwelling. Although the MPI model requires further development and validation, it has already proved useful for understanding more clearly how the different hygrothermal conditions found in beds and bedrooms can affect mite populations. It has also demonstrated that there is considerable scope for controlling mites by environmental means in cold winter climates such as the UK.  相似文献   

5.
J. R. Carey 《Oecologia》1982,52(3):389-395
Summary A simple life table model was constructed for Tetranychus urticae in which daily survivorship of eggs and motil stages, fecundity, and development time was altered to assess the impact of each parameter on the intrinsic rate of increase. r. Interpretation of the trade-offs focused on management considerations.A second aspect of the study concerned age and stage structure in mite populations including the time path of convergence to a stable age distribution and the effect of changes in birth and death rates on the age profile. The stable stage distributions of 7 tetranychid mite species were computed using 25 separate life tables. In spite of the wide range of r-values induced by different experimental conditions, all of the stage distributions were quite similar averaging roughly 66% eggs, 26% immatures, and 8% adults. Several population studies were cited which reported stage distributions of growing mite populations. The empirical evidence suggested that natural mite populations are often quite near this stable distribution.A practical problem involving the extent to which hormoligosis (insecticide stimulation) affects mite population growth rate was addressed using the life table model and laboratory data from controlled studies. The findings suggested that mite populations treated with insecticide may attain a 1.4- to a 4.2-fold difference in population size relative to an untreated population after 2 generations and over a 1,300-fold potential difference after 10 generations.  相似文献   

6.
The theory of intraguild predation (IGP) largely studies effects on equilibrium densities of predators and prey, while experiments mostly concern transient dynamics. We studied the effects of an intraguild (IG) predator, the bug Orius laevigatus, on the population dynamics of IG-prey, the predatory mite Phytoseiulus persimilis, and a shared prey, the phytophagous two-spotted spider mite Tetranychus urticae, as well as on the performance of cucumber plants in a greenhouse. The interaction of the predatory mite and the spider mite is highly unstable, and ends either by herbivores overexploiting the plant or predators exterminating the herbivores. We studied the effect of IGP on the transient dynamics of this system, and compared the dynamics with that predicted by a simple population-dynamical model with IGP added. Behavioural studies showed that the predatory bug and the predatory mite were both attracted to plants infested by spider mites and that the two predators did not avoid plants occupied by the other predator. Observations on foraging behaviour of the predatory bug showed that it attacks and kills large numbers of predatory mites and spider mites. The model predicts strong effects of predation and prey preference by the predatory bugs on the dynamics of predatory mites and spider mites. However, experiments in which the predatory bug was added to populations of predatory mites and spider mites had little or no effect on numbers of both mite species, and cucumber plant and fruit weight.  相似文献   

7.
The twospotted spider mite, Tetranychus urticae Koch, is a worldwide pest of numerous agronomic and horticultural plants. Sulfur fungicides are known to induce outbreaks of this pest on several crops, although mechanisms associated with sulfur-induced mite outbreaks are largely unknown. Studies were conducted during 2007-2009 in Oregon and Washington hop yards to evaluate the effect of timing of sulfur applications on T. urticae and key predators. In both regions, applications of sulfur made relatively late in the growing season (mid-June to mid-July) were associated with the greatest exacerbation of spider mite outbreaks, particularly in the upper canopy of the crop. The severity of mite outbreaks was closely associated with sulfur applications made during a relatively narrow time period coincident with the early exponential phase of spider mite increase and rapid host growth. A nonlinear model relating mean cumulative mite days during the time of sulfur sprays to the percent increase in total cumulative mite days (standardized to a nontreated plot) explained 58% of the variability observed in increased spider mite severity related to sulfur spray timing. Spatial patterns of spider mites in the Oregon plots indicated similar dispersal of motile stages of spider mites among leaves treated with sulfur versus nontreated leaves; however, in two of three years, eggs were less aggregated on leaves of sulfur-treated plants, pointing to enhanced dispersal. Apart from one experiment in Washington, relatively few predatory mites were observed during the course of these studies, and sulfur-induced mite outbreaks generally occurred irrespective of predatory mite abundance. Collectively, these studies indicate sulfur induces mite outbreaks through direct or indirect effects on T. urticae, mostly independent of predatory mite abundance or toxicity to these predators. Avoidance of exacerbation of spider mite outbreaks by sulfur sprays was achieved by carefully timing applications to periods of low spider mite abundance and slower host development, which is generally early to mid-spring for hop.  相似文献   

8.
A simulation model was used to assess the role of several mechanisms proposed to be responsible for spider mite outbreaks on cotton that are typically observed following applications of insecticides. Simulation results were compared to an outbreak that occurred after two pyrethroid applications on cotton in a controlled experiment in the San Joaquin Valley of California. In the model, physiological effects were simulated by increasing spider mite fecundity and decreasing developmental duration, whereas loss of natural enemies was simulated by increasing spider mite age-specific survival. At the levels simulated, survival had the greatest impact on maximum spider mite density, degree days (oD) to maximum density, and cumulative spider mite-oD, whereas fecundity had the least, and developmental duration had an intermediate effect. There were substantial two-way interactions among all three life history parameters, with age-specific survival having the most influence. Survival had the greatest effect on spider mite population dynamics when in combination with short developmental duration. The influence of developmental duration on maximum spider mite density was greater than comparable percentage changes in fecundity, an effect that was more pronounced at high than at low survival. Changing fecundity, developmental duration, or age-specific survival individually did not result in a spider mite outbreak of the magnitude observed in the field. However, changing these three parameters simultaneously, resulted in a simulated maximum density of 8,000/m2, which represents a 12-fold increase over the untreated control, and closely mimicked the previously observed field outbreak. It is proposed that spider mite outbreaks on cotton following insecticide applications are not solely the result of physiological stimulation, but are rather due to several life history parameters being affected simultaneously, with natural enemy-mediated survival having the greatest individual impact. Implications of chemically-induced phenomena affecting spider mite management on cotton are discussed. A copy of the crop and herbivore simulation models can be obtained by sending an IBM compatible disk to L. T. Wilson.  相似文献   

9.
Abstract  The ultrastructure of the mite Floracarus perrepae was investigated in relation to its host, Lygodium microphyllum , the Old World climbing fern. Floracarus perrepae has been suggested as a means of biological control for the fern, which is an aggressive weed in tropical areas. Feeding by the mite induces a change in the size of epidermal cells, and cell division is stimulated by mite feeding, causing the leaf margin to curl over into a roll with two to three windings. The enlarged epidermal layer greatly increases its cytoplasmic contents, which become a nutritive tissue for the mite and its progeny. Damage by the mite ultimately debilitates the fern. The structure and depth of stylet penetration by the mite, and the thickness of the epidermal cell wall of L. microphyllum , do not appear to account for the mite's differential ability to induce leaf rolling in its co-adapted host from south-east Queensland but not in the invasive genotype of the fern in Florida.  相似文献   

10.
Rodents are the natural hosts for Leptotrombidium mites that transmit Orientia tsutsugamushi, the causative agent of scrub typhus, a potentially fatal febrile human disease. Utilizing mite lines that included O. tsutsugamushi infected and non-infected Leptotrombidium species we investigated the varied infection response of outbred mice (ICR) exposed to L. chiangraiensis (Lc), L. imphalum (Li) and L. deliense (Ld). Each of six mite lines (Lc1, Lc5, Li3, Li4, Li7 and Ld) was separately placed in the inner ears of ICR mice either as a single individual (individual feeding, IF) or as a group of 2-4 individuals (pool feeding, PF). The species of infected chigger feeding on mice significantly affected mortality rates of the mice, with mite lines of Lc causing higher mean (±SE) mortality (90.7 ± 3.6 %) than mite lines of Li (62.9 ± 5.6 %) or Ld (53.6 ± 5.8 %). Mouse responses which included time to death, food consumption and total mice weight change depended on mite species and their O. tsutsugamushi genotype, more than on feeding procedure (IF vs. PF) except for mite lines within the Lc. Infected mite lines of Lc were the most virulent infected mites assessed whereas the infected Ld species was the least virulent for the ICR. Mice killed by various mite lines showed enlarged spleens and produced ascites. The results of this investigation of the clinical responses of ICR mice to feeding by various infected mite lines indicated that the different species of infected mites and their O. tsutsugamushi genotype produced different clinical presentations in ICR mice, a scrub typhus mouse model which mimics the natural transmission of O. tsutsugamushi that is critical for understanding scrub typhus disease in terms of natural transmission, host-pathogen-vector interaction and vaccine development.  相似文献   

11.
Abstract 1. Ecological theory suggests that density‐dependent regulation of organism abundance will vary from exogenous to endogenous factors depending on trophic structure. Changes in abundance of soil arthropods were investigated at three trophic levels, springtails (Collembola), predaceous mites (Acari), and macro‐arthropods (spider, adult and larval beetles, centipedes). Predictions were that springtails are predator regulated and mites are food limited according to the Hairston et al. (1960) model, which predicts alternating regulation by competition and predation from fungi to springtails to mites to macro‐arthropods. The alternate hypothesis was based on the bottom‐up model of trophic dynamics, which predicts that each trophic level is regulated by competition for resources. 2. The relative contributions to springtail and mite population dynamics of endogenous (i.e. density‐dependent population growth related to food availability) and exogenous (i.e. predation and weather) factors were tested using time‐series analysis and experimental manipulation of water conditions. Box patterns were distributed within an aspen forest habitat located in the Canadian prairies and surveyed weekly from May to September 1997–1999. Each box depressed the leaf litter, creating a microhabitat island for soil arthropods that provided counts of invertebrates located immediately beneath the boxes. 3. Strong evidence was found for endogenous control of springtail and mite numbers, indicated by a reduction in population growth related to density in the previous week. Contrary to predictions, no evidence was found for regulation of springtail numbers by mites, or for regulation of mite numbers by macro‐arthropods. Springtail population growth rate was related positively to current springtail density (8 and 23% variation explained) and related negatively to 1‐week lagged density (85 and 58%), and related negatively to temperature (5 and 5%) for time‐series data and for experimental addition of water respectively. Mite population growth rate was related positively to current mite density (54%) and temperature (4%), and negatively to 1‐week lagged mite density (20%) and precipitation (6%) for time‐series analysis. For experimental addition of water, mite growth rate was related positively to current mite density (44%) and temperature (5%), and negatively to 1‐week lagged density (11%). Results differed from the Hairston et al. (1960) model predictions but were consistent with a bottom‐up view that springtail and mite populations were regulated intrinsically by competition for food and secondarily by temperature as a function of reproduction.  相似文献   

12.
Mites have simple life styles and overlapping generations, thus analysis of their populations using stable theory (Lotka's equation) is particularly appropriate. While use of this demographic framework is widespread among mite researchers, the specific context in which it is applied is typically restricted to the conventional life table and associated parameters.In this paper we extend the use of the basic principles of stable population theory in mite populations to include: (i) expectation of future life expectancy and reproduction; (ii) effect of developmental time on population growth rate; (iii) sensitivity analysis of a two-sex model; (iv) distribution of biomass and productivity in stable mite populations; (v) demographic theory of kinship as applied to mites; and (vi) mite mass-rearing. Implications of each are briefly discussed in the context of mite ecology and management.  相似文献   

13.
Eriophyoid big bud mites are key pests of hazelnut throughout the world, but they are difficult to control with chemicals or other methods because they are protected inside the bud. The most effective time for control is during the relatively short emergence period which is difficult for growers to predict. The key objectives of this study were to monitor mite emergence from big buds in spring, determine the phenology of mites in relation to tree phenology and weather, and identify the optimum timing for control measures. Mite emergence was found to occur between early and late spring in Canterbury, New Zealand. Mite emergence and movement occurred when daily maximum temperatures were >15 degrees C and when mean temperatures were >9 degrees C, with mite emergence increasing with temperature. The developmental status of new buds during mite emergence was a crucial factor in the infestation of new buds. An accumulated heat sum model (DD), starting at Julian date 152 and using a lower threshold temperature of 6 degrees C, predicted the onset of emergence on two cultivars and at two sites at approximately 172 DD. A regression model based on leaf number, bud length, bud width, DD and Julian date provided a more satisfactory prediction of percent accumulated mite emergence. It is recommended both peak mite emergence and the developmental status of hazelnut buds be used to optimise the time to apply control measures. The optimum time to apply a control was predicted to be before buds measure 0.5 x 0.5 mm (width x length), are enclosed within the axil, and have a rounded tip, or, when 50% accumulated mite emergence has occurred, whichever occurs first.  相似文献   

14.
1. The extent to which individuals are parasitised is a function of exposure to parasites and the immune response, which in ectotherms may be associated with temperature. 2. We test the hypothesis that seasonal variation in ectoparasite burden is driven by temperature using an extensive mark‐release‐recapture study of adult Coenagrion puella (L.) (Zygoptera) as a model system. Mite counts were taken both at capture and on a subset of subsequent recaptures over two entire, consecutive breeding seasons. 3. Emergence date was the most significant factor in determining individual differences in mite burden, and mean counts for individuals emerging on the same days showed strong unimodal relationships with time of season. Subsequent recounting of mites on a subset of individuals showed that patterns of loss of mites were similar between seasons. 4. While temperature did not significantly affect mite burdens within seasons and ectoparasite prevalence was very similar across the two seasons, intensity of infection and rate of mite gain in unparasitised individuals were significantly higher in the cooler season. 5. We demonstrate that, while temperature may modulate the invertebrate immune response, this modulation does not manifest in variations in mite burdens in natural populations.  相似文献   

15.
Phoretic associations between mites and insects commonly occur in patchy and ephemeral habitats. As plants provide stable habitats for herbivores, herbivorous mites are rarely dependent on other animals for phoretic dispersal. However, a phoretic gall mite, Aceria pallida, which is found on plants, seasonally attaches to a herbivorous insect, Bactericera gobica, for overwintering survival. After detachment, the gall mite shares a habitat with its vector and is likely to compete with this vector for plant resources. However, excessive competition works against the sustainability of the seasonal phoretic association. How the gall mite, as an obligate phoretic mite, balances this relationship with its vector during the growing season to achieve phoresy is unknown. Here, the plant-mediated interspecific interaction between the gall mite and the psyllid after detachment was studied in the laboratory and field. The laboratory results showed that infestation by the gall mite had detrimental effects on the survival and development of psyllid nymphs. Meanwhile, the mite population and the gall size were also adversely affected. The results from the field showed that the mean densities of the mite galls and psyllids were lower in the mixed-species infestation treatment than in the single-species infestation treatment across the investigation period. However, the interspecific interaction between the gall mite and the psyllid decreased rather than accelerated leaf abscission caused by the psyllid, which promoted the persistence of the psyllid population and then indirectly contributed to phoretic association. Our results suggest that the plant-mediated competition between the phoretic gall mite and its vector after detachment facilitates the maintenance of the phoretic association.  相似文献   

16.
Adult female mites of the genusTrochometridium Cross possess a pair of internal sacs between the bases of legs III and IV, which are adapted for carrying spores, apparently ascospores, of an undetermined fungus. A three-way symbiotic relationship exists between the mite, the fungus, and various bees (and possibly other holometabolous insects) which nest in relatively dry alkaline soils. The mite transports spores of the fungus to suitable sites for germination — cells of ground-nesting bees containing a bee egg or young larva which dies as a result of development of the fungus and mite. The mite may also stimulate mycelial growth, possibly by killing the young bee or by secreting a substance when feeding. The fungus provides the preferred mycelial substrate on which the mite feeds and undergoes its life cycle. This mutualistic association between the mite and fungus is at the expense of the bee, which transports the other two entities to favorable sites for their development — its newly made and provisioned cells. The sporothecae and specialized association ofTrochometridium mites with a fungal pathogen or saprophyte of another host organism are compared with those ofSiteroptes mites, which are considerably better understood.  相似文献   

17.
Short-range predator–prey interactions among small soil-dwelling arthropods are poorly understood. In this study, we measured the behavioural interactions between the predacious mite Hypoaspis aculeifer Canestrini (Gamasida: Laelapidae) and its collembolan prey Folsomia fimetaria L. (Collembola: Isotomidae) and the influence of sex, size, starvation, and poisoning with the organophosphate dimethoate. Pairs of mite and springtail were placed in 18-mm diameter test arenas with a plaster of Paris substrate and their behaviour were measured by a computerized vision system, which automatically detected the locomotory activity of the two animals, their encounters, and the precise time of capture and killing. Data suggest that neither the mite nor the springtail possesses near-field sensory detection of the opponent. A Cox regression model showed that mite sex, size ratio between the predator and prey, average mite velocity, and encounter rate had a significant influence on the mite-capture efficiency (springtail survival). Female H. aculeifer demonstrated higher capture efficiency than males by catching and killing their prey after fewer encounters. Surprisingly, starvation had only a moderate effect on the mite locomotory behaviour and no influence on the capture efficiency as such. Also, springtail survival was independent of its moulting stage. Sublethal poisoning with dimethoate, on the other hand, dramatically increased the mite's capture rate, probably by impeding the evasive response of the springtail.  相似文献   

18.
It is well recognised that interactions among multiple species of natural enemies can have important consequences for the population dynamics of the species involved, particularly when intra-guild predation (IGP) occurs. However, these interactions are highly dependent on the type and behaviour of the prey, an aspect of IGP that is frequently overlooked. Here we demonstrate how a parasitoid (Dolichogenidea tasmanica) facilitates attack on a lepidopteran larva (Epiphyas postvittana) by a predatory mite (Anystis baccarum). We show that anti-predator behaviour of the lepidopteran larva is the mechanism that facilitates this. E. postvittana is protected by its silken leaf roll which limits predation by the mite except when the larva is attacked by the parasitoid causing the larva to leave its shelter. We explored the implications of the interactions among these three species for pest suppression by modelling changes in mite density and mite predation intensity. The presence of mites (the IG predator) always leads to a decrease in ability of the parasitoid to control E. postvittana and, as mite predation intensity increases, the ability of the parasitoid to suppress E. postvittana decreases. The results from the experiment show a synergistic interaction, but results from the population model show an interaction resulting in pest release. These findings support the general idea that if uni-directional IGP occurs, and competition is strong between the top and intermediate predator, then a single best control agent will likely be more effective at suppressing the prey population than multiple control agents combined. These findings have important implications for the management of E. postvittana in vineyards across Southern Australia and for other multi-species systems.  相似文献   

19.
We discuss the development of two simulation models, a mechanistic cotton crop model and a spider mite population model. In a strategic mode, the simulation models are used to address basic hypotheses involving the interaction of cotton with its environment, and with the spider mite population, and to develop general strategies for managing the crop and its herbivores. In a tactical mode, these models are used to provide estimates of the anticipated severity of a spider mite population. Tactical modelling is made possible by using a statistically-based adaptive interface. The departure of simulated patterns of growth from observed patterns is used to adapt several crop parameters including rate of photosynthesis, rate of vegetative growth, and metabolite allocation priority for fruit. For the spider mite population model, fecundity, predator-mediated mortality, and acaricide-induced mortality are adapted to specific field conditions.  相似文献   

20.
柑桔全爪螨自然种群动态的模拟模型   总被引:2,自引:0,他引:2  
周建中  罗志义 《生态学报》1992,12(4):348-355
本文运用时间序列分析方法对上海市长兴岛前卫农场柑桔园内柑桔全爪螨及其天敌江原钝绥螨的种群动态进行分析和模拟,分别建立了关于柑桔全爪螨及其天敌种群数量动态的作用,预测柑桔全爪螨种群数量的变化趋势,模拟效果良好,对田间防治具有一定的参考价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号