首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bruce C. Hill  Diann Andrews 《BBA》2012,1817(6):948-954
SCO (synthesis of cytochrome c oxidase) proteins are involved in the assembly of the respiratory chain enzyme cytochrome c oxidase acting to assist in the assembly of the CuA center contained within subunit II of the oxidase complex. The CuA center receives electrons from the reductive substrate ferrocytochrome c, and passes them on to the cytochrome a center. Cytochrome a feeds electrons to the oxygen reaction site composed of cytochrome a3 and CuB. CuA consists of two copper ions positioned within bonding distance and ligated by two histidine side chains, one methionine, a backbone carbonyl and two bridging cysteine residues. The complex structure and redox capacity of CuA present a potential assembly challenge. SCO proteins are members of the thioredoxin family which led to the early suggestion of a disulfide exchange function for SCO in CuA assembly, whereas the copper binding capacity of the Bacillus subtilis version of SCO (i.e., BsSCO) suggests a direct role for SCO proteins in copper transfer. We have characterized redox and copper exchange properties of apo- and metalated-BsSCO. The release of copper (II) from its complex with BsSCO is best achieved by reducing it to Cu(I). We propose a mechanism involving both disulfide and copper exchange between BsSCO and the apo-CuA site. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes.  相似文献   

2.
Antalik M  Jancura D  Palmer G  Fabian M 《Biochemistry》2005,44(45):14881-14889
Internal electron transfer (ET) to heme a(3) during anaerobic reduction of oxidized bovine heart cytochrome c oxidase (CcO) was studied under conditions where heme a and Cu(A) were fully reduced by excess hexaamineruthenium. The data show that ET to heme a(3) is controlled by the state of ionization of a single protolytic residue with a pK(a) of 6.5 +/- 0.2. On the basis of the view that ET to the catalytic site is limited by coupled proton transfer, this pK(a) was attributed to Glu60 which is located at the entrance of the proton-conducting K channel on the matrix side of CcO. It is proposed that Glu60 controls proton entry into the channel. However, even with this channel open, there is the second factor that regulates ET, and this is ascribed to the rate of proton diffusion in the channel. In addition, it is concluded that proton transfer in the K channel is reversibly inhibited by the detergent Triton X-100. It is also found that the rate of ET to heme a(3) in the as-isolated resting enzyme and in CcO "activated" by reaction of fully reduced enzyme with O(2) is the same, implying that the catalytic sites of these two forms of oxidized enzyme are essentially identical.  相似文献   

3.
When cytochrome c oxidase is incubated at 43 degrees C for approximately 75 min in a solution containing the zwitterionic detergent sulfobetaine 12, the CuA site is converted into a type II copper as judged by changes in the 830-nm absorption band and the EPR spectrum of the enzyme. SDS-PAGE and sucrose gradient ultracentrifugation indicate concomitant loss of subunit III and monomerization of the enzyme during the heat treatment. Comparison of the optical and resonance Raman spectra of the heat-treated and native protein shows that the heme chromophores are not significantly perturbed; the resonance Raman data indicate that the small heme perturbations observed are limited to the cytochrome a3 site. Proton pumping measurements, conducted on the modified enzyme reconstituted into phospholipid vesicles, indicate that these vesicles are unusually permeable toward protons during turnover, as previously reported for the p-(hydroxymercuri)benzoate-modified oxidase and the modified enzyme obtained by heat treatment in lauryl maltoside. The sulfobetaine 12 modified enzyme is no longer capable of undergoing the recently reported conformational transition in which the tryptophan fluorescence changes upon reduction of the low-potential metal centers. Control studies on the monomeric and subunit III dissociated enzymes suggest that the disruption of this conformational change in the heat-treated oxidase is most likely associated with perturbation of the CuA site. These results lend support to the suggestion that the fluorescence-monitored conformational change of the native enzyme is initiated by reduction of the CuA site [Copeland et al. (1987) Biochemistry 26, 7311].  相似文献   

4.
5.
Intramolecular electron transfer in partially reduced cytochrome c oxidase has been studied by the perturbed equilibrium method. We have prepared a three-electron-reduced, CO-inhibited form of the enzyme in which cytochrome a and copper A are partially reduced and in an intramolecular redox equilibrium. When these samples were irradiated with a nitrogen laser (0.6-ns, 1.0-mJ pulses) to photodissociate the bound CO, changes in absorbance at 598 and 830 nm were observed which were consistent with a fast electron transfer from cytochrome a to copper A. The absorbance changes at 598 nm gave an apparent rate of 17,000 +/- 2000 s-1 (1 sigma), at pH 7.0 and 25.5 degrees C. These changes were not observed in either the CO mixed-valence or the CO-inhibited fully reduced forms of the enzyme. The rate was fastest at about pH 8.0, falling off toward both lower and higher pHs. There was a small but clear temperature dependence. The process was also observed in the cytochrome c-cytochrome c oxidase high-affinity complex. The electron equilibration measured between cytochrome a and copper A is far faster than any rate measured or inferred previously for this process.  相似文献   

6.
A study is presented on the coupling of electron transfer with proton transfer at heme a and Cu(A) (redox Bohr effects) in carbon monoxide inhibited cytochrome c oxidase isolated from bovine heart mitochondria. Detailed analysis of the coupling number for H(+) release per heme a, Cu(A) oxidized (H(+)/heme a, Cu(A) ratio) was based on direct measurement of the balance between the oxidizing equivalents added as ferricyanide to the CO-inhibited fully reduced COX, the equivalents of heme a, Cu(A), and added cytochrome c oxidized and the H(+) released upon oxidation and all taken up back by the oxidase upon rereduction of the metal centers. One of two reductants was used, either succinate plus a trace of mitochondrial membranes (providing a source of succinate-c reductase) or hexaammineruthenium(II) as the chloride salt. The experimental H(+)/heme a, Cu(A) ratios varied between 0.65 and 0.90 in the pH range 6.0-8.5. The pH dependence of the H(+)/heme a, Cu(A) ratios could be best-fitted by a function involving two redox-linked acid-base groups with pK(o)-pK(r) of 5.4-6.9 and 7.3-9.0, respectively. Redox titrations in the same samples of the CO-inhibited oxidase showed that Cu(A) and heme a exhibited superimposed E'(m) values, which decreased, for both metals, by around 20 mV/pH unit increase in the range 6.0-8.5. A model in which oxido-reduction of heme a and Cu(A) are both linked to the pK shifts of the two acid-base groups, characterized by the analysis of the pH dependence of the H(+)/heme a, Cu(A) ratios, provided a satisfactory fit for the pH dependence of the E'(m) of heme a and Cu(A). The results presented are consistent with a primary involvement of the redox Bohr effects shared by heme a and Cu(A) in the proton-pumping activity of cytochrome c oxidase.  相似文献   

7.
Dilatometry is a sensitive technique for measuring volume changes occurring during a chemical reaction. We applied it to the reduction-oxidation cycle of cytochrome c oxidase, and to the binding of cytochrome c to the oxidase. We measured the volume changes that occur during the interconversion of oxidase intermediates. The numerical values of these volume changes have allowed the construction of a thermodynamic cycle that includes many of the redox intermediates. The system volume for each of the intermediates is different. We suggest that these differences arise by two mechanisms that are not mutually exclusive: intermediates in the catalytic cycle could be hydrated to different extents, and/or small voids in the protein could open and close. Based on our experience with osmotic stress, we believe that at least a portion of the volume changes represent the obligatory movement of solvent into and out of the oxidase during the combined electron and proton transfer process. The volume changes associated with the binding of cytochrome c to cytochrome c oxidase have been studied as a function of the redox state of the two proteins. The volume changes determined by dilatometry are large and negative. The data indicate quite clearly that there are structural alterations in the two proteins that occur on complex formation.  相似文献   

8.
One of the proposed mechanisms of functioning of cytochrome c oxidase (COX) postulates that heme a is the element pumping protons across the membrane. It is generally believed that, to support this mechanism, a substantial proton uptake/release should exist upon heme a reduction/oxidation. Two direct measurements of proton uptake/release in oxidation/reduction of heme a in CO-bound mixed-valence COX were recently reported. In this paper, we develop a general formalism for the interpretation of such experiments and discuss the results of these experiments. A control experiment is proposed to verify the conclusions made in previous studies.  相似文献   

9.
A systemic study has been made of copper and heme a binding to subunits of beef heart cytochrome c oxidase. Copper and heme a were readily mobilized by ionic detergents, high ionic strengths, temperatures above 0 degrees C, thiol compounds, and gel-bound peroxides and free radicals when the subunits of the oxidase were dissociated from one another during polyacrylamide gel electrophoresis. Most subunits showed some affinity for heme a and copper under these conditions. However, in the presence of specific mixtures of ionic and nonionic detergents (e.g. 0.1% sodium dodecyl sulfate, 0.025% Triton X-100) at temperatures below 0 degrees C and in buffers of low ionic strength using 10 to 12% polyacrylamide gels preelectrophoresed for 3 days with thioglycolate, about 90% of the Cu was found on subunit II (Mr = 24,100), and heme a was found in equal amounts of subunits I (Mr = 35,800) and II. The oxidized-reduced and reduced-CO absorption spectra of these subunits resembled those of cytochrome c oxidase. It appears probable that in the native enzyme, subunit I contains heme a and subunit II contains copper and heme a. A relationship of mammalian cytochrome c oxidase to the two-subunit microbial cytochrome oxidase systems appears to exist.  相似文献   

10.
A new EPR signal from Cu2+ has been discovered in reductive experiments with type 2 copper-depleted laccase from Polyporus versicolor. A novel EPR signal has also been found in native laccase from Rhus vernicifera on oxidation of the reduced protein with H2O2. In reoxidation experiments with cytochrome c oxidase from beef heart, a new Cu2+ signal has been observed. With Rhus laccase, the new signal is shown to originate from one of the copper ions that are nondetectable in the resting enzyme, and evidence is presented for the signals in Polyporus laccase and cytochrome c oxidase also stemming from the metal pairs that are antiferromagnetically coupled in the oxidized enzymes. The new signals show strong rhombic character, and the EPR parameters place them in a category different from the signals of type 1 as well as of type 2 Cu2+ ions.  相似文献   

11.
In reoxidation experiments with cytochrome c oxidase (EC 1.9.3.1) in the presence of both reducing substrate and molecular oxygen, a new EPR signal from Cu2+ has been observed. The new signal corresponds to 0.45 Cu per functional unit. It is concluded that the new EPR signal originates from CuB2+, the copper which is EPR-nondetectable in the resting enzyme. Optical absorption changes in the 500-700 nm region accompanies the decay of the new Cu2+ EPR signal. Based on the results in this investigation a catalytic cycle for cytochrome oxidase is proposed.  相似文献   

12.
Olsson MH  Sharma PK  Warshel A 《FEBS letters》2005,579(10):2026-2034
Gaining a detailed understanding of the molecular nature of the redox coupled proton transfer in cytochrome c oxidase (COX) is one of the challenges of modern biophysics. The present work addresses this by integrating approaches for simulations of proton transport (PTR) and electron transfer (ET). The resulting method converts the electrostatic energies of different charge configurations and reorganization energies to free-energy profiles for different PTR and ET pathways. This approach provides for the first time a tool to study the actual activation barriers and kinetics of different feasible PTR processes in the cycle of COX. Using this tool, we explore the PTR through the bottleneck water molecules. It is found that a stepwise PTR along this commonly assumed path leads to far too high barriers and is, thus, inconsistent with the observed kinetics. Furthermore, the simulated free-energy profile does not provide a simple gating mechanism. Fortunately, we obtain reasonable kinetics when we consider a PTR that involves a concerted transfer of protons to and from E286. Finally, semi-qualitative considerations of the forward and backward barriers point toward open questions about the actual gating process and offer a feasible pumping mechanism. Although further studies are clearly needed, we believe that our approach offers a general and effective tool for correlating the structure of COX with its function.  相似文献   

13.
Galactose oxidase is a copper metalloenzyme containing a novel protein-derived redox cofactor in its active site, formed by cross-linking two residues, Cys228 and Tyr272. Previous studies have shown that formation of the tyrosyl-cysteine (Tyr-Cys) cofactor is a self-processing step requiring only copper and dioxygen. We have investigated the biogenesis of cofactor-containing galactose oxidase from pregalactose oxidase lacking the Tyr-Cys cross-link but having a fully processed N-terminal sequence, using both Cu(I) and Cu(II). Mature galactose oxidase forms rapidly following exposure of a pregalactose oxidase-Cu(I) complex to dioxygen (t(1/2) = 3.9s at pH7). In contrast, when Cu(II) is used in place of Cu(I) the maturation process requires several hours (t(1/2) = 5.1 h). EDTA prevents reaction of pregalactose oxidase with Cu(II) but does not interfere with the Cu(I)-dependent biogenesis reaction. The yield of cross-link corresponds to the amount of copper added, although a fraction of the pregalactose oxidase protein is unable to undergo this cross-linking reaction. The latter component, which may have an altered conformation, does not interfere with analysis of cofactor biogenesis at low copper loading. The biogenesis product has been quantitatively characterized, and mechanistic studies have been developed for the Cu(I)-dependent reaction, which forms oxidized, mature galactose oxidase and requires two molecules of O2. Transient kinetics studies of the biogenesis reaction have revealed a pH sensitivity that appears to reflect ionization of a protein group (pKa = 7.3) at intermediate pH resulting in a rate acceleration and protonation of an early oxygenated intermediate at lower pH competing with commitment to cofactor formation. These spectroscopic, kinetic, and biochemical results lead to new insights into the biogenesis mechanism.  相似文献   

14.
Sco1 is a conserved essential protein, which has been implicated in the delivery of copper to cytochrome c oxidase, the last enzyme of the electron transport chain. In this study, we show for the first time that the purified C-terminal domain of yeast Sco1 binds one Cu(I)/monomer. X-ray absorption spectroscopy suggests that the Cu(I) is ligated via three ligands, and we show that two cysteines, present in a conserved motif CXXXC, and a conserved histidine are involved in Cu(I) ligation. The mutation of any one of the conserved residues in Sco1 expressed in yeast abrogates the function of Sco1 resulting in a non-functional cytochrome c oxidase complex. Thus, the function of Sco1 correlates with Cu(I) binding. Data obtained from size-exclusion chromatography experiments with mitochondrial lysates suggest that full-length Sco1 may be oligomeric in vivo.  相似文献   

15.
The functional roles of the amino acid residues of the Cu(A) site in bovine cytochrome c oxidase (CcO) were investigated by utilizing hybrid quantum mechanics (QM)/molecular mechanics (MM) calculations. The energy levels of the molecular orbitals (MOs) involving Cu d(zx) orbitals unexpectedly increased, as compared with those found previously with a simplified model system lacking the axial Met residue (i.e., Cu(2)S(2)N(2)). This elevation of MO energies stemmed from the formation of the anti-bonding orbitals, which are generated by hybridization between the d(zx) orbitals of Cu ions and the p-orbitals of the S and O atoms of the axial ligands. To clarify the roles of the axial Met ligand, the inner-sphere reorganization energies of the Cu(A) site were computed, with the Met residue assigned to either the QM or MM region. The reorganization energy slightly increased when the Met residue was excluded from the QM region. The existing experimental data and the present structural modeling study also suggested that the axial Met residue moderately increased the redox potential of the Cu(A) site. Thus, the role of the Met may be to regulate the electron transfer rate through the fine modulation of the electronic structure of the Cu(A) "platform", created by two Cys/His residues coordinated to the Cu ions. This regulation would provide the optimum redox potential/reorganization energy of the Cu(A) site, and thereby facilitate the subsequent cooperative reactions, such as the proton pump and the enzymatic activity, of CcO. This article is part of a Special Issue entitled: Allosteric cooperativity in respiratory proteins.  相似文献   

16.
A nontraditional role for water in the cytochrome c oxidase reaction   总被引:6,自引:0,他引:6  
J A Kornblatt  G H Hoa 《Biochemistry》1990,29(40):9370-9376
The passage of electrons through cytochrome c oxidase is directly related to the activity of water. Reducing the activity in a system containing reductant, oxygen, and cytochrome oxidase blocks electron transfer between reduced cytochrome a and oxidized cytochrome a3. The extent of the block is directly related to the osmotic pressure of the system, implying that the protein shell of the oxidase acts as a semipermeable membrane that excludes osmotic perturbants but not water. It appears that approximately 10 water molecules must enter and leave the oxidase in order for internal electron transfer to occur.  相似文献   

17.
The cysteine residues in beef cytochrome c oxidase (E.C.1.9.3.1) which act as ligands to a redox site have been located in the C-terminal portion of subunit II.  相似文献   

18.
Fabian M  Jancura D  Bona M  Musatov A  Baran M  Palmer G 《Biochemistry》2006,45(13):4277-4283
Purified bovine heart cytochrome c oxidase (CcO) has been extracted from aqueous solution into hexane in the presence of phospholipids and calcium ions. In extracts, CcO is in the so-called "slow" form and probably situated in reverse micelles. At low water:phospholipid molar ratios, electron transfer from reduced heme a and Cu(A) to the catalytic center is inhibited and both heme a3 and Cu(B) remain in the oxidized state. The rate of binding of cyanide to heme a3 in this oxidized catalytic center is, however, dependent on the redox state of heme a and Cu(A). When heme a and Cu(A) are reduced, the rate is increased 20-fold compared to the rate when these two centers are oxidized. The enhanced rate of binding of cyanide to heme a3 is explained by the destabilization of an intrinsic ligand, located at the catalytic site, that is triggered by the reduction of heme a and Cu(A).  相似文献   

19.
Cox11 is a protein essential for respiratory growth and has been implicated in the assembly of the Cu(B) site of cytochrome c oxidase. In the present study, we demonstrate that Cox11 is a copper-binding protein. The soluble C-terminal domain of Cox11 forms a dimer that coordinates one Cu(I) per monomer via three thiolate ligands. The two Cu(I) ions in the dimer exist in a binuclear cluster and appear to be ligated by three conserved Cys residues. Mutation of any of these Cys residues reduces Cu(I) binding and confers respiratory incompetence. Cytochrome c oxidase activity is reduced in these mutants. Thus, the residues important for Cu(I) binding correlate with in vivo function, suggesting that Cu(I) binding is important in Cox11 function.  相似文献   

20.
We have observed a strong pH dependence in the relaxation rate of Cu(II) cytochrome c following excitation at 532 nm. At pH 8.0 the excited state relaxes with a lifetime of 10 +/- 5 ps while at pH extremes of 2.5 and 13.0 we find that the lifetime becomes longer than 1 ns. This change of more than two orders of magnitude in the lifetime may be due to the Cu coordination number, which is six at neutral pH but five at pH extremes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号