首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary The distribution of putative GABA-ergic neurons in the photosensory pineal organ of the rainbow trout was investigated by use of a specific antiserum against -aminobutyric acid (GABA). GABA-immunoreactive (GABA-IR) neurons were located in the rostral portion of the pineal end-vesicle, presumably constituting a population of interneurons. GABA-IR neurons were also found in the pineal stalk. The axons of these neurons were traced along the pineal stalk toward the brain. The terminal areas of these axons could not be established. GABA-IR glial cells were observed in the pineal end-vesicle, but not in the pineal stalk.  相似文献   

2.
Summary Synaptic ribbons in the pineal organ of the goldfish were examined electron microscopically with particular attention to their topography. These structures were formed of parallel membranes, which were poorly preserved with OsO4 fixation and could be extracted from thin sections with pronase indicating their proteinaceous nature. Synaptic ribbons were closely apposed to the plasma membrane bordering dendrites of ganglion cells, but were also related to processes of both photoreceptor and supportive cells. Their close proximity to invaginations of the plasma membrane and portions of the endoplasmic reticulum suggest that they are involved in the turnover of cytoplasmic membranes. Tubular and spherical organelles of unknown function are also described.  相似文献   

3.
Summary Synaptic connections were studied by means of electron microscopy in the sensory pineal organ of the ayu, Plecoglossus altivelis, a highly photosensitive teleost species. Three types of specific contacts were observed in the pineal end-vesicle: 1) symmetrically organized gap junctions between the basal processes of adjacent photoreceptor cells; 2) sensory synapses endowed with synaptic ribbons, formed by basal processes of photoreceptor cells and dendrites of pineal neurons; 3) conventional synapses between pineal neurons, containing both clear and dense-core vesicles at the presynaptic site. Based on these findings, the following interpretations are given: (i) The gap junctions may be involved in an enhancement of electric communication and signal encoding between pineal photoreceptor cells. (ii) The sensory synapses transmit photic signals from the photoreceptor cells to pineal nerve cells. (iii) The conventional synapses are assumed to be involved in a lateral interaction and/or summation of information in the sensory pineal organ. A concept of synaptic relationships among the sensory and neuronal elements in the pineal organ of the ayu is presented.Fellow of the Alexander von Humboldt Foundation, Federal Republic of Germany  相似文献   

4.
5.
A comparative study of the larval and adult pineal organs, which are sensitive to incident light, was carried out in the river lamprey Lampetra japonica, using intracellular recording from the pineal photoreceptors. The tissue overlying the larval pineal organ is transparent, whereas that over the adult pineal is translucent. The optical density of this oval pineal window in the adult lamprey was 1.2. In order to elucidate the early development of the larval pineal, the ratio r of the diameter (micron) of the pineal to the body-length (cm) was measured. The value of r was 62.5 in a small larva of 2.8 cm, 29.7 in a larger one of 14.3 cm, and 9.3 in an adult of 54 cm body-length. The intracellular response to light of the larval pineal was a hyperpolarization, showing fundamentally the same pattern as that of the adult pineal. It was possible to record a typical response even from the pineal of the smallest larva, 2.8 cm in body length, used in this study. The intensity-amplitude relationship was analysed after Naka-Rushton's hyperbolic equation. The value of sigma of isolated larval pineals was 0.88 log unit higher than that of adults. The value of n was larger in larvae, suggesting a sensitive reaction to changing photic stimulus. The spectral sensitivity was compared. The peak was at 505 nm in the larva, but 525 nm in the adult. A change of visual pigment in the pineal during metamorphosis is suggested.  相似文献   

6.
Cholinergic actions on subfornical organ (SFO) neurons in rat slice preparations were studied by using whole cell voltage- and current-clamp recordings. In the voltage-clamp recordings, carbachol and muscarine decreased the frequency of GABAergic inhibitory postsynaptic currents (IPSCs) in a dose-dependent manner, with no effect on the amplitudes or the time constants of miniature IPSCs. Meanwhile, carbachol did not influence the amplitude of the outward currents induced by GABA. Furthermore, carbachol and muscarine also elicited inward currents in a TTX-containing solution. From the current-voltage relationship, the reversal potential was estimated to be -7.1 mV. These carbachol-induced responses were antagonized by atropine. In the current-clamp recordings, carbachol depolarized the membrane with increased frequency of action potentials. These observations suggest that acetylcholine suppresses GABA release through muscarinic receptors located on the presynaptic terminals. Acetylcholine also directly affects the postsynaptic membrane through muscarinic receptors, by opening nonselective cation channels. A combination of these presynaptic and postsynaptic actions may enhance activation of SFO neurons by acetylcholine.  相似文献   

7.
Cell and Tissue Research - Central connections of the pineal organ of the three-spined stickleback, Gasterosteus aculeatus L., were studied by the use of horseradish peroxidase (HRP) for...  相似文献   

8.
9.
The locus coeruleus (LC) or superior cervical ganglion (SCG) of neonatal rats were co-cultured either with the pineal organ or cerebral cortex (CX) to investigate the innervating capacity of central and peripheral catacholamine neurons under these experimental conditions. After 2 weeks of co-culturing, cultures were fixed for tyrosine hydroxylase (TH) immunohistochemistry to examine the distribution of catecholamine neurons and their fibers. Glial fibrillary acidic protein and fibronectin immunohistochemistry was performed to determine the cell types proliferating around the explants. In LC/CX co-cultures, numerous astrocytes spread between the two explants, and TH-immunoreactive neurites were generally seen to invade CX explants. In contrast, neurite extension from LC to pineal explants occurred only when a glial cell sheet grew between the two explants, and when the pineal explants were not surrounded by a tight fibronectin-positive cell layer. Neurites of the SCG usually invaded both CX and pineal explants, regardless of the existence of glial or non-glial cell layer. These results indicate that central and peripheral catecholamine neurites have the potential of invading both the cortex and pineal, although they are distributed only in particular regions of the intact brain. The distribution of LC neurites, however, seems to be profoundly affected by the cell types spreading around the explants; glial cells appear to support LC neurite extension, whereas non-glial cells appear to inhibit it.  相似文献   

10.
11.
12.
We measured the concentration of neurotransmitters in immortalized neural cell lines of hippo-campal, septal, brainstem and cerebellar origin. While in most of the cell lines, concentrations of monoamines, -aminobutyric acid (GABA) and acetylcholine were low, in some they were markedly higher. This made it quite easy to identify possible monoaminergic, GABAergic or cholinergic cell lines. However all the cell lines contained glutamate and aspartate and there were no outstanding differences in levels of these amino acids differences between the cell lines. Deprivation of serum, which made the cells acquire a more differentiated morphology, caused an increase in the intracellular concentrations of some compounds and a switch from multiple to a single transmitter in the case of some cell lines. It suggested that measurement of transmitter concentrations combined with serum deprivation studies, may provide an indication of the neurochemical characteristics of immortalised neuronal cell lines.  相似文献   

13.
Meyer-ROCHOW  V. BENNO  Morita  Y.  Tamotsu  S. 《Brain Cell Biology》1999,28(2):125-130
In spite of the unique conditions they have to operate under, the pineal organs of Antarctic fishes have not previously been examined. We determined immunohistochemically that in the end-vesicles and the pineal stalks of Pagothenia borchgrevinki (a species found directly beneath the sea-ice) as well as Trematomus bernacchii (a species preferring somewhat deeper water than the former) at least two populations of physiologically-different cells occurred that displayed reactions indicative of typical vertebrate photoreceptors. Comparisons with immunocytochemically treated retinal sections from the eyes of the same two species showed that anti-opsin reactivity, characteristic of rods, was particularly strong in the lumina of the pineal stalks of both species. Anti-visinin reactions stained cones in the retinal sections of both fishes and occurred throughout the pineal organs, but in particular in the end vesicles of the pineals of both species. The difference in preferred habitat depth between the two species appears to have had very little influence on both retinal and pineal immunocytochemistry. It is concluded that the pineal organs of both species, at least during the austral summer, exhibit signs of being directly photo-sensitive.  相似文献   

14.
Summary Restricted numbers of substance P-like-immuno-reactive (SPL-IR) neurons were demonstrated in the photosensory pineal organ of the rainbow trout. The small parapineal organ of this teleost species receives a distinct SPL-IR innervation via the habenular nuclei, but displays no intrinsic SPL-IR neurons. Intrapineal SPL-IR neurons were located in the rostral portion of the pineal end-vesicle. Neuronal somata were found in a lateral position with smooth axonal processes extending mediad. Immunoreactive somata and axonal processes were observed intraparenchymally as well as in the pineal lumen. The pattern of immunoreactivity was not changed in excised pineal organs that had been incubated in tissue culture medium in the dark for 18 h. The possibility that the intrapineal SPL-IR neurons are not part of the neural circuitry involved in the transduction of photic information, but may have other functions, is discussed.Fellow of the Alexander von Humboldt-Stiftung, Bonn, Federal Republic of GermanySupported by research funds from the Deutsche Forschungsge-meinschaft (Ko 758/2-4)  相似文献   

15.
The present immunocytochemical study provides evidence of a previously unrecognized, rich, γ-aminobutyric acid (GABA)-ergic innervation of the pineal organ in the dogfish (Scyliorhinus canicula). In this elasmobranch, the pineal primordium is initially detected at embryonic stage 24 and grows to form a long pineal tube by stage 28. Glutamic acid decarboxylase (GAD)-immunoreactive (-ir) fibers were first observed at stage 26, and by stage 28, thin GAD-ir fibers were detectable at the base of the pineal neuroepithelium. In pre-hatchling embryos, most fibers gave rise to GAD-ir boutons that were localized in the basal region of the neuroepithelium, although a smaller number of labeled terminals ascended to the pineal lumen. A few pale GAD-ir perikarya were observed within the pineal organ of stage 29 embryos, but GAD-ir perikarya were not observed at other developing stages or in adults. In contrast, GABA immunocytochemistry revealed the presence of GABAergic perikarya and fibers in the pineal organ of late stage embryos and adults. Although high densities of GABAergic cells were observed in the paracommissural pretectum, posterior tubercle, and tegmentum of dogfish embryos (regions previously demonstrated to contain pinealopetal cells), the presence of GABA-ir perikarya in the pineal organ strongly suggests that the rich GABAergic innervation of the elasmobranch pineal organ is intrinsic. This contrasts with the central origin of GABAergic fibers in the pineal gland of some mammals. This work was supported by the Spanish Education and Science Ministry and FEDER (BXX2000-0453-C02 and BFU2004-03313/BF1), the Xunta de Galicia (PGIDT99BIO20002), and NIH/NIDCD awards R01 DC01705 and P01 DC01837 (to G.R.H.).  相似文献   

16.
Summary Putative cholinergic neurons in the photosensory pineal organ of a cyprinid teleost, the European minnow, were studied by use of choline acetyltransferase (ChAT) immunocytochemistry and acetylcholinesterase (AChE) histochemistry. Pinealofugally projecting neurons were visualized using retrograde HRP-filling through their cut axons. For comparison, the distribution of choline acetyltransferase immunoreactivity (ChAT-IR) and AChE-positive elements in the retina was investigated.While the distributional patterns of ChAT-IR and strongly AChE-positive perikarya in the retina are similar and may represent the same neuronal population, ChAT-IR and AChE-positive elements in the pineal organ appear to belong to separate populations. In the retina, small- to medium-sized perikarya in the inner nuclear layer, and small perikarya in the ganglion cell layer are ChAT-IR and AChE positive. The entire inner plexiform layer is AChE positive, while only sublaminae 1, 2 and 4 are ChAT-IR. No indication of cholinergic activity was observed in the optic axon layer.In the pineal organ, ChAT-IR is restricted to small perikarya situated rostrally and dorsally in the pineal end-vesicle. AChE-positive neurons are present throughout the pineal end-vesicle and the pineal stalk. The pineal tract (the pinealofugally projecting axons of intrapineal neurons) is strongly AChE positive, but displays no ChAT-IR. The distribution of pinealofugally projecting neurons, labeled with retrogradely transported HRP, is markedly dissimilar to that of the ChAT-IR elements. It is proposed that the photosensory pineal organ transmits photic information to the brain via a non-cholinergic pathway. The possibility that the ChAT-IR neurons represent small local interneurons is discussed in the light of comparative physiological and anatomical findings.  相似文献   

17.
An in vitro organ culture system for buccal ganglia of the adult snail, Helisoma, is described. The system supports: (1) maintenance of characterstic electrophysiological parameters of identified neurons over seven days of culture; (2) choline metabolism including uptake and synthesis over the same duration; (3) sprouting and growth of neurons in response to axotomy; (4) the formation of novel central electrotonic connections between identified neurons as a result of sprouting and growth. These observations on neuronal growth and the formation of connections are similar to those made with in vivo culture. The use of in vitro culture allows precise manipulations not previously possible. When buccal ganglia are cultured in vitro with the cut distal ends of peripheral nerve trunks held closely apposed, axons of neurons 5R and 5L in the nerve trunks are capable of forming electrotonic connections similar to central connections. The capability of these neurons to form electrotonic connections via their peripheral axons implies that special structures (i. e., central neurites) are not required for the formation of connections; and neither are special environments (i. e., the central neurites) required for these connections.  相似文献   

18.
Several aspects of energy metabolism (glucose utilization, lactate production,14CO2 production from labeled glucose, glutamate or pyruvate, oxygen consumption and contents of ATP and phosphocreatine) were measured in cerebellar granule cells (glutamatergic) in primary cultures and compared with corresponding data for cerebral cortical neurons (mainly GABA-ergic) and astrocytes. Cerebellar granule cells and astrocytes were metabolically more active than cerebral cortical neurons. Glutamate which is utilized as a major metabolic fuel as astrocytes and, to a lesser extent, in cerebral cortical neurons, was virtually not oxidized in cerebellar granule cells.Special Issue dedicated to Prof. Holger Hydén.  相似文献   

19.
Neutral and acidic glycolipids from the bovine pineal organ and neutral glycolipids from the bovine retina were characterized. The chemical structures of the isolated glycolipids were determined by means of carbohydrate analysis, methylation analysis, enzyme treatment, fatty acid analysis, long chain base analysis, mass spectrometry, NMR spectroscopy, and IR spectroscopy. GM3, GD3, and GT1 were the major bovine pineal organ gangliosides, GD3 accounting for 75% of the total gangliosides. Galactosylceramide, glucosylceramide, and lactosylceramide were found in both the bovine pineal organ and retina. Sulfatide was also present in both tissues. It had already been reported that the major bovine retina ganglioside was GD3 (Handa, S. & Burton, R.M. (1969) Lipids 4, 205-208). The glycolipid patterns of the two tissues were very similar to each other and quite different from those of other tissues.  相似文献   

20.
The pineal organ of elasmobranchs is an elongated photoreceptive organ. In order to investigate the afferent and efferent connections of the pineal organ of two elasmobranchs, the skate (Raja montagui) and the dogfish (Scyliorhinus canicula), a fluorescent carbocyanine (DiI) was applied to the pineal organ of paraformaldehyde-fixed brains. This application strongly labeled the pineal tract, which formed extensive bilateral projections. In both species, the pinealofugal fibers coursed to the dorsomedial thalamus, the medial pretectal area, the posterior tubercle, and the medial mesencephalic tegmentum and branched profusely in these areas. Application of DiI to the pineal organ also labeled occasional perikarya in the dorsomedial thalamus, posterior commissural region, posterior tubercle, and mesencephalic tegmentum. A comparison of these results with those of immunocytochemical analyses of the dogfish brain with an anti-salmon gonadotropin-releasing hormone (sGnRH) antiserum revealed a close topographical relation between the pineal projections and the midbrain sGnRH-immunoreactive (ir) nucleus, the only structure in the dogfish brain that contained sGnRHir neurons. This and the widespread distribution of sGnRHir fibers in the brain suggest that the midbrain sGnRHir nucleus is a part of the secondary pineal pathways and may be involved in light-mediated pineal regulation of brain function. Although GnRH distribution has not been studied in the skate, a midbrain GnRHir nucleus has been identified in three other elasmobranchs, including a skate relative. The probable existence of direct pineal projections to the GnRHir midbrain nucleus in elasmobranchs and other anamniotes is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号