首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
The Kv3.1 glycoprotein, a voltage-gated potassium channel, is expressed throughout the central nervous system. The role of N-glycans attached to the Kv3.1 glycoprotein on conducting and non-conducting functions of the Kv3.1 channel are quite limiting. Glycosylated (wild type), partially glycosylated (N220Q and N229Q), and unglycosylated (N220Q/N229Q) Kv3.1 proteins were expressed and characterized in a cultured neuronal-derived cell model, B35 neuroblastoma cells. Western blots, whole cell current recordings, and wound healing assays were employed to provide evidence that the conducting and non-conducting properties of the Kv3.1 channel were modified by N-glycans of the Kv3.1 glycoprotein. Electrophoretic migration of the various Kv3.1 proteins treated with PNGase F and neuraminidase verified that the glycosylation sites were occupied and that the N-glycans could be sialylated, respectively. The unglycosylated channel favored a different whole cell current pattern than the glycoform. Further the outward ionic currents of the unglycosylated channel had slower activation and deactivation rates than those of the glycosylated Kv3.1 channel. These kinetic parameters of the partially glycosylated Kv3.1 channels were also slowed. B35 cells expressing glycosylated Kv3.1 protein migrated faster than those expressing partially glycosylated and much faster than those expressing the unglycosylated Kv3.1 protein. These results have demonstrated that N-glycans of the Kv3.1 glycoprotein enhance outward ionic current kinetics, and neuronal migration. It is speculated that physiological changes which lead to a reduction in N-glycan attachment to proteins will alter the functions of the Kv3.1 channel.  相似文献   

2.
The intrinsic electrical properties of a neuron depend on expression of voltage gated potassium (Kv) channel isoforms, as well as their distribution and density in the plasma membrane. Recently, we showed that N-glycosylation site occupancy of Kv3.1b modulated its placement in the cell body and neurites of a neuronal-derived cell line, B35 neuroblastoma cells. To extrapolate this mechanism to other N-glycosylated Kv channels, we evaluated the impact of N-glycosylation occupancy of Kv3.1a and Kv1.1 channels. Western blots revealed that wild type Kv3.1a and Kv1.1 α-subunits had complex and oligomannose N-glycans, respectively, and that abolishment of the N-glycosylation site(s) generated Kv proteins without N-glycans. Total internal reflection fluorescence microscopy images revealed that N-glycans of Kv3.1a contributed to its placement in the cell membrane while N-glycans had no effect on the distribution of Kv1.1. Based on particle analysis of EGFP-Kv proteins in the adhered membrane, glycosylated forms of Kv3.1a, Kv1.1, and Kv3.1b had differences in the number, size or density of Kv protein clusters in the cell membrane of neurites and cell body of B35 cells. Differences were also observed between the unglycosylated forms of the Kv proteins. Cell dissociation assays revealed that cell-cell adhesion was increased by the presence of complex N-glycans of Kv3.1a, like Kv3.1b, whereas cell adhesion was similar in the oligomannose and unglycosylated Kv1.1 subunit containing B35 cells. Our findings provide direct evidence that N-glycans of Kv3.1 splice variants contribute to the placement of these glycoproteins in the plasma membrane of neuronal-derived cells while those of Kv1.1 were absent. Further when the cell membrane distribution of the Kv channel was modified by N-glycans then the cell-cell adhesion properties were altered. Our study demonstrates that N-glycosylation of Kv3.1a, like Kv3.1b, provides a mechanism for the distribution of these proteins to the cell body and outgrowths and thereby can generate different voltage-dependent conductances in these membranes.  相似文献   

3.
High frequency firing in mammalian neurons requires ultra-rapid delayed rectifier potassium currents generated by homomeric or heteromeric assemblies of Kv3.1 and Kv3.2 potassium channel alpha subunits. Kv3.1 alpha subunits can also form slower activating channels by coassembling with MinK-related peptide 2 (MiRP2), a single transmembrane domain potassium channel ancillary subunit. Here, using channel subunits cloned from rat and expressed in Chinese hamster ovary cells, we show that modulation by MinK, MiRP1, and MiRP2 is a general mechanism for slowing of Kv3.1 and Kv3.2 channel activation and deactivation and acceleration of inactivation, creating a functionally diverse range of channel complexes. MiRP1 also negatively shifts the voltage dependence of Kv3.1 and Kv3.2 channel activation. Furthermore, MinK, MiRP1, and MiRP2 each form channels with Kv3.1-Kv3.2 heteromers that are kinetically distinct from one another and from MiRP/homomeric Kv3 channels. The findings illustrate a mechanism for dynamic expansion of the functional repertoire of Kv3.1 and Kv3.2 potassium currents and suggest roles for these alpha subunits outside the scope of sustained rapid neuronal firing.  相似文献   

4.
Mammalian brains contain relatively high amounts of common and uncommon sialylated N-glycan structures. Sialic acid linkages were identified for voltage-gated potassium channels, Kv3.1, 3.3, 3.4, 1.1, 1.2 and 1.4, by evaluating their electrophoretic migration patterns in adult rat brain membranes digested with various glycosidases. Additionally, their electrophoretic migration patterns were compared with those of NCAM (neural cell adhesion molecule), transferrin and the Kv3.1 protein heterologously expressed in B35 neuroblastoma cells. Metabolic labelling of the carbohydrates combined with glycosidase digestion reactions were utilized to show that the N-glycan of recombinant Kv3.1 protein was capped with an oligo/poly-sialyl unit. All three brain Kv3 glycoproteins, like NCAM, were terminated with alpha2,3-linked sialyl residues, as well as atypical alpha2,8-linked sialyl residues. Additionally, at least one of their antennae was terminated with an oligo/poly-sialyl unit, similar to recombinant Kv3.1 and NCAM. In contrast, brain Kv1 glycoproteins consisted of sialyl residues with alpha2,8-linkage, as well as sialyl residues linked to internal carbohydrate residues of the carbohydrate chains of the N-glycans. This type of linkage was also supported for Kv3 glycoproteins. To date, such a sialyl linkage has only been identified in gangliosides, not N-linked glycoproteins. We conclude that all six Kv channels (voltage-gated K+ channels) contribute to the alpha2,8-linked sialylated N-glycan pool in mammalian brain and furthermore that their N-glycan structures contain branched sialyl residues. Identification of these novel and unique sialylated N-glycan structures implicate a connection between potassium channel activity and atypical sialylated N-glycans in modulating and fine-tuning the excitable properties of neurons in the nervous system.  相似文献   

5.
The Kv3.1 potassium channel is expressed at high levels in auditory nuclei and contributes to the ability of auditory neurons to fire at high frequencies. We have tested the effects of streptomycin, an agent that produces progressive hearing loss, on the firing properties of inferior colliculus neurons and on Kv3.1 currents in transfected cells. We found that in inferior colliculus neurons, intracellular streptomycin decreased the current density of a high threshold, noninactivating outward current and reduced the rate of repolarization of action potentials and the ability of these neurons to fire at high frequencies. Furthermore, potassium current in CHO cells transfected with the Kv3.1 gene was reduced by 50% when cells were cultured in the presence of streptomycin or when streptomycin was introduced intracellularly in the pipette solution. In the presence of intracellular streptomycin, the activation rate of Kv3.1 current increased and inhibition by extracellular TEA become voltage-dependent. The data indicate that streptomycin inhibits Kv3.1 currents by inducing a conformational change in the Kv3.1 channel. The hearing loss caused by aminoglycoside antibiotics may be partially mediated by their inhibition of Kv3.1 current in auditory neurons.  相似文献   

6.
Recent genome wide association studies identified a brain and primate specific isoform of a voltage-gated potassium channel, referred to as Kv11.1-3.1, which is significantly associated with schizophrenia. The 3.1 isoform replaces the first 102 amino acids of the most abundant isoform (referred to as Kv11.1-1A) with six unique amino acids. Here we show that the Kv11.1-3.1 isoform has faster rates of channel deactivation but a slowing of the rates of inactivation compared to the Kv11.1-1A isoform. The Kv11.1-3.1 isoform also has a significant depolarizing shift in the voltage-dependence of steady-state inactivation. The consequence of the altered gating kinetics is that there is lower current accumulation for Kv11.1-3.1 expressing cells during repetitive action potential firing compared to Kv11.1-1A expressing cells, which in turn will result in longer lasting trains of action potentials. Increased expression of Kv11.1-3.1 channels in the brain of schizophrenia patients might therefore contribute to disorganized neuronal firing.  相似文献   

7.
Glycosylation of ion channel proteins dramatically impacts channel function. Here we characterize the asparagine (N)-linked glycosylation of voltage-gated K+ channel α subunits in rat brain and transfected cells. We find that in brain Kv1.1, Kv1.2 and Kv1.4, which have a single consensus glycosylation site in the first extracellular interhelical domain, are N-glycosylated with sialic acid-rich oligosaccharide chains. Kv2.1, which has a consensus site in the second extracellular interhelical domain, is not N-glycosylated. This pattern of glycosylation is consistent between brain and transfected cells, providing compelling support for recent models relating oligosaccharide addition to the location of sites on polytopic membrane proteins. The extent of processing of N-linked chains on Kv1.1 and Kv1.2 but not Kv1.4 channels expressed in transfected cells differs from that seen for native brain channels, reflecting the different efficiencies of transport of K+ channel polypeptides from the endoplasmic reticulum to the Golgi apparatus. These data show that addition of sialic acid-rich N-linked oligosaccharide chains differs among highly related K+ channel α subunits, and given the established role of sialic acid in modulating channel function, provide evidence for differential glycosylation contributing to diversity of K+ channel function in mammalian brain. Received: 17 December 1998/Accepted: 20 January 1999  相似文献   

8.
The voltage-dependent potassium channel, Kv1.3, is modulated by the epidermal growth factor receptor (EGFr) and the insulin receptor tyrosine kinases. When the EGFr and Kv1.3 are coexpressed in HEK 293 cells, acute treatment of the cells with EGF during a patch recording can suppress the Kv1.3 current within tens of minutes. This effect appears to be due to tyrosine phosphorylation of the channel, as it is blocked by treatment with the tyrosine kinase inhibitor erbstatin, or by mutation of the tyrosine at channel amino acid position 479 to phenylalanine. Previous work has shown that there is a large increase in the tyrosine phosphorylation of Kv1.3 when it is coexpressed with the EGFr. Pretreatment of EGFr and Kv1.3 cotransfected cells with EGF before patch recording also results in a decrease in peak Kv1.3 current. Furthermore, pretreatment of cotransfected cells with an antibody to the EGFr ligand binding domain (α-EGFr), which blocks receptor dimerization and tyrosine kinase activation, blocks the EGFr-mediated suppression of Kv1.3 current. Insulin treatment during patch recording also causes an inhibition of Kv1.3 current after tens of minutes, while pretreatment for 18 h produces almost total suppression of current. In addition to depressing peak Kv1.3 current, EGF treatment produces a speeding of C-type inactivation, while pretreatment with the α-EGFr slows C-type inactivation. In contrast, insulin does not influence C-type inactivation kinetics. Mutational analysis indicates that the EGF-induced modulation of the inactivation rate occurs by a mechanism different from that of the EGF-induced decrease in peak current. Thus, receptor tyrosine kinases differentially modulate the current magnitude and kinetics of a voltage-dependent potassium channel.  相似文献   

9.
We previously concluded that the Kv2.1 K(+) channel inactivates preferentially from partially activated closed states. We report here that the Kv3.1 channel also exhibits two key features of this inactivation mechanism: a U-shaped voltage dependence measured at 10 s and stronger inactivation with repetitive pulses than with a single long depolarization. More surprisingly, slow inactivation of the Kv1 Shaker K(+) channel (Shaker B Delta 6--46) also has a U-shaped voltage dependence for 10-s depolarizations. The time and voltage dependence of recovery from inactivation reveals two distinct components for Shaker. Strong depolarizations favor inactivation that is reduced by K(o)(+) or by partial block by TEA(o), as previously reported for slow inactivation of Shaker. However, depolarizations near 0 mV favor inactivation that recovers rapidly, with strong voltage dependence (as for Kv2.1 and 3.1). The fraction of channels that recover rapidly is increased in TEA(o) or high K(o)(+). We introduce the term U-type inactivation for the mechanism that is dominant in Kv2.1 and Kv3.1. U-type inactivation also makes a major but previously unrecognized contribution to slow inactivation of Shaker.  相似文献   

10.
The human Kv1.5 potassium channel forms the IKur current in atrial myocytes and is functionally altered by coexpression with Kvbeta subunits. To explore the role of protein kinase A (PKA) phosphorylation in beta-subunit function, we examined the effect of PKA stimulation on Kv1.5 current following coexpression with either Kvbeta1.2 or Kvbeta1.3, both of which coassemble with Kv1.5 and induce fast inactivation. In Xenopus oocytes expressing Kv1.5 and Kvbeta1.3, activation of PKA reduced macroscopic inactivation with an increase in K+ current. Similar results were obtained using HEK 293 cells which lack endogenous K+ channel subunits. These effects did not occur when Kv1.5 was coexpressed with either Kvbeta1.2 or Kvbeta1.3 lacking the amino terminus, suggesting involvement of this region of Kvbeta1.3. Removal of a consensus PKA phosphorylation site on the Kvbeta1.3 NH2 terminus (serine 24), but not alternative sites in either Kvbeta1.3 or Kv1.5, resulted in loss of the functional effects of kinase activation. The effects of phosphorylation appeared to be electrostatic, as replacement of serine 24 with a negatively charged amino acid reduced beta-mediated inactivation, while substitution with a positively charged residue enhanced it. These results indicate that Kvbeta1.3-induced inactivation is reduced by PKA activation, and that phosphorylation of serine 24 in the subunit NH2 terminus is responsible.  相似文献   

11.
The mammalian Kv4.3 potassium channel is a fast activating and inactivating K+ channel widely distributed in mammalian tissues. Kv4.3 is the major component of various physiologically important currents ranging from A-type currents in the CNS to the transient outward potassium conductance in the heart (I(to)). Here we show that the KCNE3 beta-subunit has a strong inhibitory effect on current conducted by heterologously expressed Kv4.3 channels. KCNE3 reduces the Kv4.3 current amplitude, and it slows down the channel activation and inactivation as well as the recovery from inactivation. KCNE3 also inhibits currents generated by Kv4.3 in complex with the accessory subunit KChIP2. We find the inhibitory effect of KCNE3 to be specific for Kv4.3 within the Kv4 channel family. Kv4.3 has previously been shown to interact with a number of beta-subunits, but none of the described subunit-interactions exert an inhibitory effect on the Kv4.3 current.  相似文献   

12.
Liu M  Gong B  Qi Z 《Cell biology international》2008,32(12):1514-1520
The Kv2.1 potassium channel is a principal component of the delayed rectifier I(K) current in the pyramidal neurons of cortex and hippocampus. We used whole-cell patch-clamp recording techniques to systemically compare the electrophysiological properties between the native neuronal I(K) current of cultured rat hippocampal neurons and the cloned Kv2.1 channel currents in the CHO cells. The slope factors for the activation curves of both currents obtained at different prepulse holding potentials and holding times were similar, suggesting similar voltage-dependent gating. However, the half-maximal activation voltage for I(K) was approximately 20 mV more negative than the Kv2.1 channel in CHO cells at a given prepulse condition, indicating that the neuronal I(K) current had a lower threshold for activation than that of the Kv2.1 channel. In addition, the neuronal I(K) showed a stronger holding membrane potential and holding time-dependence than Kv2.1. The Kv2.1 channel gave a U-shaped inactivation, while the I(K) current did not. The I(K) current also had much stronger voltage-dependent inactivation than Kv2.1. These results imply that the neuronal factors could make Kv2.1 channels easier to activate. The information obtained from these comparative studies help elucidate the mechanism of molecular regulation of the native neuronal I(K) current in neurons.  相似文献   

13.
DPP10 is an inactivation modulatory protein of Kv4.3 and Kv1.4   总被引:3,自引:0,他引:3  
Voltage-gated K+ channels exist in vivo as multiprotein complexes made up of pore-forming and ancillary subunits. To further our understanding of the role of a dipeptidyl peptidase-related ancillary subunit, DPP10, we expressed it with Kv4.3 and Kv1.4, two channels responsible for fast-inactivating K+ currents. Previously, DPP10 has been shown to effect Kv4 channels. However, Kv1.4, when expressed with DPP10, showed many of the same effects as Kv4.3, such as faster time to peak current and negative shifts in the half-inactivation potential of steady-state activation and inactivation. The exception was recovery from inactivation, which is slowed by DPP10. DPP10 expressed with Kv4.3 caused negative shifts in both steady-state activation and inactivation of Kv4.3, but no significant shifts were detected when DPP10 was expressed with Kv4.3 + KChIP2b (Kv channel interacting protein). DPP10 and KChIP2b had different effects on closed-state inactivation. At –60 mV, KChIP2b nearly abolishes closed-state inactivation in Kv4.3, whereas it developed to a much greater extent in the presence of DPP10. Finally, expression of a DPP10 mutant consisting of its transmembrane and cytoplasmic 58 amino acids resulted in effects on Kv4.3 gating that were nearly identical to those of wild-type DPP10. These data show that DPP10 and KChIP2b both modulate Kv4.3 inactivation but that their primary effects are on different inactivation states. Thus DPP10 may be a general modulator of voltage-gated K+ channel inactivation; understanding its mechanism of action may lead to deeper understanding of the inactivation of a broad range of K+ channels. potassium channel inactivation; potassium channel ancillary subunits; closed-state inactivation; voltage-gated potassium channels  相似文献   

14.
K+ activates many inward rectifier and voltage-gated K+ channels. In each case, an increase in K+ current through the channel can occur despite a reduced driving force. We have investigated the molecular mechanism of K+ activation of the inward rectifier K+ channel, Kir3.1/Kir3.4, and the voltage-gated K+ channel, Kv1.4. In the Kir3.1/Kir3.4 channel, mutation of an extracellular arginine residue, R155, in the Kir3.4 subunit markedly reduced K+ activation of the channel. The same mutation also abolished Mg2+ block of the channel. Mutation of the equivalent residue in Kv1.4 (K532) abolished K+ activation as well as C-type inactivation of the Kv1.4 channel. Thus, whereas C-type inactivation is a collapse of the selectivity filter, K+ activation could be an opening of the selectivity filter. K+ activation of the Kv1.4 channel was enhanced by acidic pH. Mutation of an extracellular histidine residue, H508, that mediates the inhibitory effect of protons on Kv1.4 current, abolished both K+ activation and the enhancement of K+ activation at acidic pH. These results suggest that the extracellular positive charges in both the Kir3.1/Kir3.4 and the Kv1.4 channels act as "guards" and regulate access of K+ to the selectivity filter and, thus, the open probability of the selectivity filter. Furthermore, these data suggest that, at acidic pH, protonation of H508 inhibits current through the Kv1.4 channel by decreasing K+ access to the selectivity filter, thus favoring the collapse of the selectivity filter.  相似文献   

15.

Background

Vacancy of occupied N-glycosylation sites of glycoproteins is quite disruptive to a multicellular organism, as underlined by congenital disorders of glycosylation. Since a neuronal component is typically associated with this disease, we evaluated the impact of N-glycosylation processing of a neuronal voltage gated potassium channel, Kv3.1b, expressed in a neuronal-derived cell line, B35 neuroblastoma cells.

Methods

Total internal reflection fluorescence and differential interference contrast microscopy measurements of live B35 cells expressing wild type and glycosylation mutant Kv3.1b proteins were used to evaluate the distribution of the various forms of the Kv3.1b protein in the cell body and outgrowths. Cell adhesion assays were also employed.

Results

Microscopy images revealed that occupancy of both N-glycosylation sites of Kv3.1b had relatively similar amounts of Kv3.1b in the outgrowth and cell body while vacancy of one or both sites led to increased accumulation of Kv3.1b in the cell body. Further both the fully glycosylated and partially glycosylated N229Q Kv3.1b proteins formed higher density particles in outgrowths compared to cell body. Cellular assays demonstrated that the distinct spatial arrangements altered cell adhesion properties.

Conclusions

Our findings provide direct evidence that occupancy of the N-glycosylation sites of Kv3.1b contributes significantly to its lateral heterogeneity in membranes of neuronal-derived cells, and in turn alters cellular properties.

General significance

Our study demonstrates that N-glycans of Kv3.1b contain information regarding the association, clustering, and distribution of Kv3.1b in the cell membrane, and furthermore that decreased occupancy caused by congenital disorders of glycosylation may alter the biological activity of Kv3.1b.  相似文献   

16.
In fast-spiking neurons such as those in the medial nucleus of the trapezoid body (MNTB) in the auditory brainstem, Kv3.1 potassium channels are required for high frequency firing. The Kv3.1b splice variant of this channel predominates in the mature nervous system and is a substrate for phosphorylation by protein kinase C (PKC) at Ser-503. In resting neurons, basal phosphorylation at this site decreases Kv3.1 current, reducing neuronal ability to follow high frequency stimulation. We used a phospho-specific antibody to determine which PKC isozymes control serine 503 phosphorylation in Kv3.1b-tranfected cells and in auditory neurons in brainstem slices. By using isozyme-specific inhibitors, we found that the novel PKC-delta isozyme, together with the novel PKC-epsilon and conventional PKCs, contributed to the basal phosphorylation of Kv3.1b in MNTB neurons. In contrast, only PKC-epsilon and conventional PKCs mediate increases in phosphorylation produced by pharmacological activation of PKC in MNTB neurons or by metabotropic glutamate receptor activation in Kv3.1/mGluR1-cotransfected cells. We also measured the time course of dephosphorylation and recovery of basal phosphorylation of Kv3.1b following brief high frequency electrical stimulation of the trapezoid body, and we determined that the recovery process is mediated by both novel PKC-delta and PKC-epsilon isozymes and by conventional PKCs. The association between Kv3.1b and PKC isozymes was confirmed by reciprocal coimmunoprecipitation of Kv3.1b with multiple PKC isozymes. Our results suggest that the Kv3.1b channel is regulated by both conventional and novel PKC isozymes and that novel PKC-delta contributes specifically to the maintenance of basal phosphorylation in auditory neurons.  相似文献   

17.
Previous studies have shown that central memory T (T(CM)) cells predominantly use the calcium-dependent potassium channel KCa3.1 during acute activation, whereas effector memory T (T(EM)) cells use the voltage-gated potassium channel Kv1.3. Because Kv1.3-specific pharmacological blockade selectively inhibited anti-CD3-mediated proliferation, whereas naive T cells and T(CM) cells escaped inhibition due to up-regulation of KCa3.1, this difference indicated a potential for selective targeting of the T(EM) population. We examined the effects of pharmacological Kv1.3 blockers and a dominant-negative Kv1.x construct on T cell subsets to assess the specific effects of Kv1.3 blockade. Our studies indicated both T(CM) and T(EM) CD4+ T cells stimulated with anti-CD3 were inhibited by charybdotoxin, which can block both KCa3.1 and Kv1.3, whereas margatoxin and Stichodactyla helianthus toxin, which are more selective Kv1.3 inhibitors, inhibited proliferation and IFN-gamma production only in the T(EM) subset. The addition of anti-CD28 enhanced proliferation of freshly isolated cells and rendered them refractory to S. helianthus, whereas chronically activated T(EM) cell lines appeared to be costimulation independent because Kv1.3 blockers effectively inhibited proliferation and IFN-gamma regardless of second signal. Transduction of CD4+ T cells with dominant-negative Kv1.x led to a higher expression of CCR7+ T(CM) phenotype and a corresponding depletion of T(EM). These data provide further support for Kv1.3 as a selective target of chronically activated T(EM) without compromising naive or T(CM) immune functions. Specific Kv1.3 blockers may be beneficial in autoimmune diseases such as multiple sclerosis in which T(EM) are found in the target organ.  相似文献   

18.
Neuronal, cardiac, and skeletal muscle action potentials are produced and conducted through the highly regulated activity of several types of voltage-gated ion channels. Voltage-gated potassium (K(v)) channels are responsible for action potential repolarization. Glycans can be attached to glycoproteins through N- and O-linkages. Previous reports described the impact of N-glycans on voltage-gated ion channel function. Here, we show that sialic acids attached through O-linkages modulate gating of K(v)2.1, K(v)4.2, and K(v)4.3. The conductance-voltage (G-V) relationships for each isoform were shifted uniquely by a depolarizing 8-16 mV under conditions of reduced sialylation. The data indicate that sialic acids modulate K(v) channel activation through apparent electrostatic mechanisms that promote channel activity. Voltage-dependent steady-state inactivation was unaffected by changes in sialylation. N-Linked sialic acids cannot be responsible for the G-V shifts because K(v)4.2 and K(v)4.3 cannot be N-glycosylated, and immunoblot analysis confirmed K(v)2.1 is not N-glycosylated. Glycosidase gel shift analysis suggested that K(v)2.1, K(v)4.2, and K(v)4.3 were O-glycosylated and sialylated. To confirm this, azide-modified sugar residues involved specifically in O-glycan and sialic acid biosynthesis were shown to incorporate into all three K(v) channel isoforms using Cu(I)-catalyzed cycloaddition chemistry. Together, the data indicate that sialic acids attached to O-glycans uniquely modulate gating of three K(v) channel isoforms that are not N-glycosylated. These data provide the first evidence that external O-glycans, with core structures distinct from N-glycans in type and number of sugar residues, can modulate K(v) channel function and thereby contribute to changes in electrical signaling that result from regulated ion channel expression and/or O-glycosylation.  相似文献   

19.
N-Glycosylation is a cotranslational and post-translational process of proteins that may influence protein folding, maturation, stability, trafficking, and consequently cell surface expression of functional channels. Here we have characterized two consensus N-glycosylation sequences of a voltage-gated K+ channel (Kv3.1). Glycosylation of Kv3.1 protein from rat brain and infected Sf9 cells was demonstrated by an electrophoretic mobility shift assay. Digestion of total brain membranes with peptide N glycosidase F (PNGase F) produced a much faster-migrating Kv3.1 immunoband than that of undigested brain membranes. To demonstrate N-glycosylation of wild-type Kv3.1 in Sf9 cells, cells were treated with tunicamycin. Also, partially purified proteins were digested with either PNGase F or endoglycosidase H. Attachment of simple-type oligosaccharides at positions 220 and 229 was directly shown by single (N229Q and N220Q) and double (N220Q/N229Q) Kv3.1 mutants. Functional measurements and membrane fractionation of infected Sf9 cells showed that unglycosylated Kv3.1s were transported to the plasma membrane. Unitary conductance of N220Q/N229Q was similar to that of the wild-type Kv3.1. However, whole cell currents of N220Q/N229Q channels had slower activation rates, and a slight positive shift in voltage dependence compared to wild-type Kv3.1. The voltage dependence of channel activation for N229Q and N220Q was much like that for N220Q/N229Q. These results demonstrate that the S1-S2 linker is topologically extracellular, and that N-glycosylation influences the opening of the voltage-dependent gate of Kv3.1. We suggest that occupancy of the sites is critical for folding and maturation of the functional Kv3.1 at the cell surface.  相似文献   

20.
Scorpion toxin Ctri9577, as a potent Kv1.3 channel blocker, is a new member of the α-KTx15 subfamily which are a group of blockers for Kv4.x potassium channels. However, the pharmacological function of Ctri9577 for Kv4.x channels remains unknown. Scorpion toxin Ctri9577 was found to effectively inhibit Kv4.3 channel currents with IC50 value of 1.34 ± 0.03 μM. Different from the mechanism of scorpion toxins as the blocker recognizing channel extracellular pore entryways, Ctri9577 was a novel gating modifier affecting voltage dependence of activation, steady-state inactivation, and the recovery process from the inactivation of Kv4.3 channel. However, Ctri9755, as a potent Kv1.3 channel blocker, was found not to affect voltage dependence of activation of Kv1.3 channel. Interestingly, pharmacological experiments indicated that 1 μM Ctri9755 showed less inhibition on Kv4.1 and Kv4.2 channel currents. Similar to the classical gating modifier of spider toxins, Ctri9577 was shown to interact with the linker between the transmembrane S3 and S4 helical domains through the mutagenesis experiments. To the best of our knowledge, Ctri9577 was the first gating modifier of potassium channels among scorpion toxin family, and the first scorpion toxin as both gating modifier and blocker for different potassium channels. These findings further highlighted the structural and functional diversity of scorpion toxins specific for the potassium channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号