首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ability to transfer metabolic pathways from the natural producer organisms to the well-characterized cell factory Saccharomyces cerevisiae is well documented. However, as many secondary metabolites are produced by collaborating enzymes assembled in complexes, metabolite production in yeast may be limited by the inability of the heterologous enzymes to collaborate with the native yeast enzymes. This may cause loss of intermediates by diffusion or degradation or due to conversion of the intermediate through competitive pathways. To bypass this problem, we have pursued a strategy in which key enzymes in the pathway are expressed as a physical fusion. As a model system, we have constructed several fusion protein variants in which farnesyl diphosphate synthase (FPPS) of yeast has been coupled to patchoulol synthase (PTS) of plant origin (Pogostemon cablin). Expression of the fusion proteins in S. cerevisiae increased the production of patchoulol, the main sesquiterpene produced by PTS, up to 2-fold. Moreover, we have demonstrated that the fusion strategy can be used in combination with traditional metabolic engineering to further increase the production of patchoulol. This simple test case of synthetic biology demonstrates that engineering the spatial organization of metabolic enzymes around a branch point has great potential for diverting flux toward a desired product.  相似文献   

2.
1,2,4-butanetriol (butanetriol) is a useful precursor for the synthesis of the energetic material butanetriol trinitrate and several pharmaceutical compounds. Bacterial synthesis of butanetriol from xylose or arabinose takes place in a pathway that requires four enzymes. To produce butanetriol in plants by expressing bacterial enzymes, we cloned native bacterial or codon optimized synthetic genes under different promoters into a binary vector and stably transformed Arabidopsis plants. Transgenic lines expressing introduced genes were analyzed for the production of butanetriol using gas chromatography coupled to mass spectrometry (GC–MS). Soil-grown transgenic plants expressing these genes produced up to 20 µg/g of butanetriol. To test if an exogenous supply of pentose sugar precursors would enhance the butanetriol level, transgenic plants were grown in a medium supplemented with either xylose or arabinose and the amount of butanetriol was quantified. Plants expressing synthetic genes in the arabinose pathway showed up to a forty-fold increase in butanetriol levels after arabinose was added to the medium. Transgenic plants expressing either bacterial or synthetic xylose pathways, or the arabinose pathway showed toxicity symptoms when xylose or arabinose was added to the medium, suggesting that a by-product in the pathway or butanetriol affected plant growth. Furthermore, the metabolite profile of plants expressing arabinose and xylose pathways was altered. Our results demonstrate that bacterial pathways that produce butanetriol can be engineered into plants to produce this chemical. This proof-of-concept study for phytoproduction of butanetriol paves the way to further manipulate metabolic pathways in plants to enhance the level of butanetriol production.  相似文献   

3.
Design and construction of biochemical pathways has increased the complexity of biosynthetically-produced compounds when compared to single enzyme biocatalysis. However, the coordination of multiple enzymes can introduce a complicated set of obstacles to overcome in order to achieve a high titer and yield of the desired compound. Metabolic engineering has made great strides in developing tools to optimize the flux through a target pathway, but the inherent characteristics of a particular enzyme within the pathway can still limit the productivity. Thus, judicious protein design is critical for metabolic and pathway engineering. This review will describe various strategies and examples of applying protein design to pathway engineering to optimize the flux through the pathway. The proteins can be engineered for altered substrate specificity/selectivity, increased catalytic activity, reduced mass transfer limitations through specific protein localization, and reduced substrate/product inhibition. Protein engineering can also be expanded to design biosensors to enable high through-put screening and to customize cell signaling networks. These strategies have successfully engineered pathways for significantly increased productivity of the desired product or in the production of novel compounds.  相似文献   

4.
代谢工程作为通过引入外源合成途径或改造优化代谢网络,进行高附加值的天然代谢产物生物合成的技术,已经得到广泛应用。但随着目标合成产物的结构日渐复杂,构建多基因的从头合成途径造成宿主生物代谢失衡与中间产物对宿主细胞产生毒害作用等一系列问题发生的可能性也随之增加。为解决这些问题合成支架策略应运而生,合成支架将途径酶共定位以提高局部酶和代谢物的浓度,来增强代谢通量并限制中间产物与宿主细胞环境间的相互作用,成为生物催化和合成生物学研究的热点之一。尽管由核酸、蛋白质构成的合成支架策略已经应用于多种代谢物的异源合成,并取得了不同程度的成功,但合成支架的精确组装仍然是一项艰巨的任务。文中详细介绍了合成支架技术的研究现状,详细阐述了合成支架技术的原理和实例,并初步探讨了其应用前景。  相似文献   

5.
Synthetic biological pathways could enhance the development of novel processes to produce chemicals from renewable resources. On the basis of models that describe the evolution of metabolic pathways and enzymes in nature, we developed a framework to rationally identify enzymes able to catalyze reactions on new substrates that overcomes one of the major bottlenecks in the assembly of a synthetic biological pathway. We verified the framework by implementing a pathway with two novel enzymatic reactions to convert isopentenyl diphosphate into 3-methyl-3-butenol, 3-methyl-2-butenol, and 3-methylbutanol. To overcome competition with native pathways that share the same substrate, we engineered two bifunctional enzymes that redirect metabolic flux toward the synthetic pathway. Taken together, our work demonstrates a new approach to the engineering of novel synthetic pathways in the cell.  相似文献   

6.
The random diffusion mechanism is usually assumed in analyzing the energetics of specific pathways despite the findings that enzymes associate with each other and (or) with various membranous and contractile elements of the cell. Successive glycolytic enzymes have been shown to associate in the cytosol as enzyme complexes or bind to the thin filaments. Furthermore, the degree of glycolytic enzyme interactions have been shown to change with altered rates of carbon flux through the pathway. In particular, the proportions of aldolase, phosphofructokinase, and glyceraldehyde phosphate dehydrogenase bound to the contractile proteins have been found to increase with increased rates of glycolysis. In addition, decreasing pH and ionic strength are also associated with an increase in glycolytic enzyme interactions. The kinetics displayed by interacting enzymes generally serve to enhance their catalytic efficiencies. The associations of the glycolytic enzymes serve to enhance metabolite transfer rates, increase the local concentrations of intermediates, and provide for regulation of activity via effectors. Therefore these interactions provide an additional mechanism for regulating glycolytic flux in skeletal muscle.  相似文献   

7.
Single enzyme systems or engineered microbial hosts have been used for decades but the notion of assembling multiple enzymes into cell-free synthetic pathways is a relatively new development. The extensive possibilities that stem from this synthetic concept makes it a fast growing and potentially high impact field for biomanufacturing fine and platform chemicals, pharmaceuticals and biofuels. However, the translation of individual single enzymatic reactions into cell-free multi-enzyme pathways is not trivial. In reality, the kinetics of an enzyme pathway can be very inadequate and the production of multiple enzymes can impose a great burden on the economics of the process. We examine here strategies for designing synthetic pathways and draw attention to the requirements of substrates, enzymes and cofactor regeneration systems for improving the effectiveness and sustainability of cell-free biocatalysis. In addition, we comment on methods for the immobilisation of members of a multi-enzyme pathway to enhance the viability of the system. Finally, we focus on the recent development of integrative tools such as in silico pathway modelling and high throughput flux analysis with the aim of reinforcing their indispensable role in the future of cell-free biocatalytic pathways for biomanufacturing.  相似文献   

8.
Logue JS  Scott JD 《The FEBS journal》2010,277(21):4370-4375
A fundamental role for protein-protein interactions in the organization of signal transduction pathways is evident. Anchoring, scaffolding and adapter proteins function to enhance the precision and directionality of these signaling events by bringing enzymes together. The cAMP signaling pathway is organized by A-kinase anchoring proteins. This family of proteins assembles enzyme complexes containing the cAMP-dependent protein kinase, phosphoprotein phosphatases, phosphodiesterases and other signaling effectors to optimize cellular responses to cAMP and other second messengers. Selected A-kinase anchoring protein signaling complexes are highlighted in this minireview.  相似文献   

9.
Metabolic engineering consistently demands to produce the maximum carbon and energy flux to target chemicals. To balance metabolic flux, gene expression levels of artificially synthesized pathways usually fine-tuned using multimodular optimization strategy. However, forward construction is an engineering conundrum because a vast number of possible pathway combinations need to be constructed and analyzed. Here, an iterative high-throughput balancing (IHTB) strategy was established to thoroughly fine-tune the (2S)-naringenin biosynthetic pathway. A series of gradient constitutive promoters from Escherichia coli were randomly cloned upstream of pathway genes, and the resulting library was screened using an ultraviolet spectrophotometry–fluorescence spectrophotometry high-throughput method, which was established based on the interactions between AlCl3 and (2S)-naringenin. The metabolic flux of the screened high-titer strains was analyzed and iterative rounds of screening were performed based on the analysis results. After several rounds, the metabolic flux of the (2S)-naringenin synthetic pathway was balanced, reaching a final titer of 191.9 mg/L with 29.2 mg/L p-coumaric acid accumulation. Chalcone synthase was speculated to be the rate-limiting enzyme because its expression level was closely related to the production of both (2S)-naringenin and p-coumaric acid. The established IHTB strategy can be used to efficiently balance multigene pathways, which will accelerate the development of efficient recombinant strains.  相似文献   

10.
Successful metabolic engineering relies on methodologies that aid assembly and optimization of novel pathways in microbes. Many different factors may contribute to pathway performance, and problems due to mRNA abundance, protein abundance, or enzymatic activity may not be evident by monitoring product titers. To this end, synthetic biologists and metabolic engineers utilize a variety of analytical methods to identify the parts of the pathway that limit production. In this study, targeted proteomics, via selected-reaction monitoring (SRM) mass spectrometry, was used to measure protein levels in Escherichia coli strains engineered to produce the sesquiterpene, amorpha-4,11-diene. From this analysis, two mevalonate pathway proteins, mevalonate kinase (MK) and phosphomevalonate kinase (PMK) from Saccharomyces cerevisiae, were identified as potential bottlenecks. Codon-optimization of the genes encoding MK and PMK and expression from a stronger promoter led to significantly improved MK and PMK protein levels and over three-fold improved final amorpha-4,11-diene titer (>500 mg/L).  相似文献   

11.
Synthetic biology provides a significant platform in creating novel pathways/organisms for producing useful compounds, while it remains a challenge to enhance the production efficiency. Recently we constructed a recombinant Escherichia coli for glutarate production using a synthetic α-ketoacid reduction pathway, in which α-ketoglutarate is reduced to 2-hydroxyglutarate then converted to glutarate. However, the production titer was low, which may be due to 1) oxygen-sensitive nature of 2-hydroxyglutaryl-CoA dehydratase (HgdABC) and 2) limited cell growth in anaerobic cultivation. Therefore, we developed an aerobic-anaerobic two-stage strategy by growing more cells aerobically, then shifting to anaerobic cultivation to ensure the functional HgdABC for glutarate biosynthesis. The two-stage cultivation resulted in higher production of glutarate and other two C5 dicarboxylic acids – glutaconate and 2-hydroxylglutarate than the original anaerobic process. Furthermore, we used an anaerobically-inducible nar promoter to improve the hgdABC expression responding to aerobic-anaerobic shift. Finally, the glutarate, glutaconate and 2-hydroxyglutarate titer was increased about 2, 5 and 3 times, reaching 11.6, 108.8 and 399.5 mg/L, respectively. The work demonstrated an effective strategy for ameliorating α-ketoacid reduction pathway to produce C5 dicarboxylic acids, as well as the potential of integration of bioprocess and metabolic engineering for enhancing chemicals production by an engineered microorganism.  相似文献   

12.
【背景】氨甲酰磷酸是生物合成代谢中精氨酸与嘧啶的重要前体物质,在工业微生物生产精氨酸与嘧啶及其衍生物中发挥关键作用。【目的】在大肠杆菌Escherichia coli BW25113中比较氨甲酰磷酸不同合成途径的催化效率。【方法】在大肠杆菌Escherichia coli BW25113中过表达鸟氨酸氨甲酰基转移酶(OTC)的基础上,分别过表达大肠杆菌自身的氨基甲酸激酶(CK)和氨甲酰磷酸合酶(CPSⅡ)并表征其反应效果。通过优化底物供应(调整底物浓度与引入L-谷氨酰胺合成酶)对CK与CPSⅡ的催化反应进行优化。【结果】在大肠杆菌中过表达OTC,建立细胞水平氨甲酰磷酸检测体系。在此基础上比较不同来源的CK,发现大肠杆菌来源的CK效果最好,50mmol/LNH4HCO3条件下全细胞催化9h得到2.95±0.15mmol/LL-瓜氨酸;过表达CPSⅡ时,50mmol/LL-谷氨酰胺催化9h得到3.16±0.29 mmol/L L-瓜氨酸。通过改变底物NH4HCO3浓度和引入外源L-谷氨酰胺合成酶(GS)等方式对CK与CPSⅡ的催化反应分别进行优化后,100 mmol/L NH4HCO3条件下,L-瓜氨酸浓度分别提高至4.67±0.55mmol/L和6.12±0.38mmol/L,且过表达GS后CPSⅡ途径可以利用NH3,不需要额外添加L-谷氨酰胺。【结论】引入L-谷氨酰胺合成酶后的CPSⅡ途径合成氨甲酰磷酸的能力优于CK途径,为精氨酸、嘧啶及其衍生物的合成提供了一种更加高效的策略。  相似文献   

13.
《Biotechnology advances》2017,35(6):805-814
Intracellular enzymes can be organized into a variety of assemblies, shuttling intermediates from one active site to the next. Eukaryotic compartmentalization within mitochondria and peroxisomes and substrate tunneling within multi-enzyme complexes have been well recognized. Intriguingly, the central pathways in prokaryotes may also form extensive channels, including the heavily branched glycolysis pathway. In vivo channeling through cascade enzymes is difficult to directly measure, but can be inferred from in vitro tests, reaction thermodynamics, transport/reaction modeling, analysis of molecular diffusion and protein interactions, or steady state/dynamic isotopic labeling. Channeling presents challenges but also opportunities for metabolic engineering applications. It rigidifies fluxes in native pathways by trapping or excluding metabolites for bioconversions, causing substrate catabolite repressions or inferior efficiencies in engineered pathways. Channeling is an overlooked regulatory mechanism used to control flux responses under environmental/genetic perturbations. The heterogeneous distribution of intracellular enzymes also confounds kinetic modeling and multiple-omics analyses. Understanding the scope and mechanisms of channeling in central pathways may improve our interpretation of robust fluxomic topology throughout metabolic networks and lead to better design and engineering of heterologous pathways.  相似文献   

14.
Previously we constructed a Bacillus subtilis strain for efficient production of N-acetylglucosamine (GlcNAc) by engineering of GlcNAc synthetic and catabolic pathways. However, the further improvement of GlcNAc titer is limited by the intrinsic inefficiency of GlcNAc synthetic pathway and undesirable cellular properties including sporulation and high maintenance metabolism. In this work, we further improved GlcNAc titer through spatial modulation of key pathway enzymes and by blocking sporulation and decreasing maintenance metabolism. Specifically, a DNA-guided scaffold system was firstly used to modulate the activities of glucosamine-6-phosphate synthase and GlcNAc-6-phosphate N-acetyltransferase, increasing the GlcNAc titer from 1.83 g/L to 4.55 g/L in a shake flask. Next, sporulation was blocked by respectively deleting spo0A (gene encoding the initiation regulon of sporulation) and sigE (gene encoding RNA polymerase sporulation-specific sigma factor). Deletion of sigE more effectively blocked sporulation without altering cell growth or GlcNAc production. The respiration chain was then engineered to decrease the maintenance metabolism of recombinant B. subtilis by deleting cydB and cydC, genes encoding cytochrome bd ubiquinol oxidase (subunit II) and ATP-binding protein for the expression of cytochrome bd, respectively. The respiration-engineered B. subtilis produced 6.15 g/L GlcNAc in a shake flask and 20.58 g/L GlcNAc in a 3-L fed-batch bioreactor. To the best of our knowledge, this report is the first to describe the modulation of pathway enzymes via a DNA-guided scaffold system in B. subtilis. The combination of spatial modulation of key pathway enzymes and optimization of cellular properties may be used to develop B. subtilis as a well-organized cell factory for the production of the other industrially useful chemicals.  相似文献   

15.
Systematic analysis of synthetic lethality (SL) constitutes a critical tool for systems biology to decipher molecular pathways. The most accepted mechanistic explanation of SL is that the two genes function in parallel, mutually compensatory pathways, known as between-pathway SL. However, recent genome-wide analyses in yeast identified a significant number of within-pathway negative genetic interactions. The molecular mechanisms leading to within-pathway SL are not fully understood. Here, we propose a novel mechanism leading to within-pathway SL involving two genes functioning in a single non-essential pathway. This type of SL termed within-reversible-pathway SL involves reversible pathway steps, catalyzed by different enzymes in the forward and backward directions, and kinetic trapping of a potentially toxic intermediate. Experimental data with recombinational DNA repair genes validate the concept. Mathematical modeling recapitulates the possibility of kinetic trapping and revealed the potential contributions of synthetic, dosage-lethal interactions in such a genetic system as well as the possibility of within-pathway positive masking interactions. Analysis of yeast gene interaction and pathway data suggests broad applicability of this novel concept. These observations extend the canonical interpretation of synthetic-lethal or synthetic-sick interactions with direct implications to reconstruct molecular pathways and improve therapeutic approaches to diseases such as cancer.  相似文献   

16.
Protein engineering has for decades been a powerful tool in biotechnology for generating vast numbers of useful enzymes for industrial applications. Today, protein engineering has a crucial role in advancing the emerging field of synthetic biology, where metabolic engineering efforts alone are insufficient to maximize the full potential of synthetic biology. This article reviews the advancements in protein engineering techniques for improving biocatalytic properties to optimize engineered pathways in host systems, which are instrumental to achieve high titer production of target molecules. We also discuss the specific means by which protein engineering has improved metabolic engineering efforts and provide our assessment on its potential to continue to advance biology engineering as a whole.  相似文献   

17.
The field of metabolic engineering has the potential to produce a wide variety of chemicals in both an inexpensive and ecologically-friendly manner. Heterologous expression of novel combinations of enzymes promises to provide new or improved synthetic routes towards a substantially increased diversity of small molecules. Recently, we constructed a synthetic pathway to produce d-glucaric acid, a molecule that has been deemed a “top-value added chemical” from biomass, starting from glucose. Limiting flux through the pathway is the second recombinant step, catalyzed by myo-inositol oxygenase (MIOX), whose activity is strongly influenced by the concentration of the myo-inositol substrate. To synthetically increase the effective concentration of myo-inositol, polypeptide scaffolds were built from protein–protein interaction domains to co-localize all three pathway enzymes in a designable complex as previously described (Dueber et al., 2009). Glucaric acid titer was found to be strongly affected by the number of scaffold interaction domains targeting upstream Ino1 enzymes, whereas the effect of increased numbers of MIOX-targeted domains was much less significant. We determined that the scaffolds directly increased the specific MIOX activity and that glucaric acid titers were strongly correlated with MIOX activity. Overall, we observed an approximately 5-fold improvement in product titers over the non-scaffolded control, and a 50% improvement over the previously reported highest titers. These results further validate the utility of these synthetic scaffolds as a tool for metabolic engineering.  相似文献   

18.
Proteins involved in mitochondrial metabolic pathways engage in functionally relevant multi-enzyme complexes. We previously described an interaction between short-chain 3-hydroxyacyl-coenzyme A dehydrogenase (SCHAD) and glutamate dehydrogenase (GDH) explaining the clinical phenotype of hyperinsulinism in SCHAD-deficient patients and adding SCHAD to the list of mitochondrial proteins capable of forming functional, multi-pathway complexes. In this work, we provide evidence of SCHAD's involvement in additional interactions forming tissue-specific metabolic super complexes involving both membrane-associated and matrix-dwelling enzymes and spanning multiple metabolic pathways. As an example, in murine liver, we find SCHAD interaction with aspartate transaminase (AST) and GDH from amino acid metabolic pathways, carbamoyl phosphate synthase I (CPS-1) from ureagenesis, other fatty acid oxidation and ketogenesis enzymes and fructose-bisphosphate aldolase, an extra-mitochondrial enzyme of the glycolytic pathway. Most of the interactions appear to be independent of SCHAD's role in the penultimate step of fatty acid oxidation suggesting an organizational, structural or non-enzymatic role for the SCHAD protein.  相似文献   

19.
Growing concerns of environmental pollution and fossil resource shortage are major driving forces for bio‐based production of chemicals traditionally from petrochemical industry. Dicarboxylic acids (DCAs) are important platform chemicals with large market and wide applications, and here the recent advances in bio‐based production of straight‐chain DCAs longer than C4 from biological approaches, especially by synthetic biology, are reviewed. A couple of pathways were recently designed and demonstrated for producing DCAs, even those ranging from C5 to C15, by employing respective starting units, extending units, and appropriate enzymes. Furthermore, in order to achieve higher production of DCAs, enormous efforts were made in engineering microbial hosts that harbored the biosynthetic pathways and in improving properties of biocatalytic elements to enhance metabolic fluxes toward target DCAs. Here we summarize and discuss the current advantages and limitations of related pathways, and also provide perspectives on synthetic pathway design and optimization for hyper‐production of DCAs.  相似文献   

20.
Rats on a protein-free diet synthesized less DNA after partial hepatectomy than rats on a normal diet. In regenerating livers of animals on the protein-free diet, induction of several enzymes involved in the DNA precursor synthetic pathway, and especially ribonucleotide reductase, were depressed. When young rats were maintained solely by parenteral nutrition after partial hepatectomy, exogenous amino acids were more important than the exogenous energy source for induction of enzymes involved in synthesis of DNA and its pyrimidine nucleotide precursors. In particular, induction of ribonucleotide reductase appeared to be controlled by exogenous amino acids. Tryptophan, methionine, phenylalanine, leucine, valine, isoleucine and threonine seemed to stimulate the induction of this enzyme most after partial hepatectomy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号