首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
《Process Biochemistry》2014,49(1):69-76
Alkaline pectate lyases (PLs) play an important role in mild and eco-friendly bioscouring pretreatment processes in the textile industry. However, to date, only a few PLs can be applied in industrial-scale production, and many of them exhibit high production cost, low activity, and/or do not meet the treatment requirements. In this study, an alkaline PL gene was cloned from the metagenomic DNA of alkaline environment soils. The gene pelB consisted of 1263 nucleotides and encoded a mature protein (PelB) of 399 amino acids, which was expressed in Escherichia coli. The maximum catalytic activity of the enzyme exhibited a bimodal distribution at pH 8.1 and 9.8 and an optimal temperature of 55 °C. The Km and Vmax values of PelB were 1.78 g/L and 1084.8 μmol/(L min) at 45 °C, respectively. Substrate specificity analysis demonstrated the high cleavage capability of PelB on a broad range of substrates of natural methylated pectin. Based on the degradation products, PelB was considered to be an endo-acting lyase. Using high-cell-density cultivation in 7-L bioreactor, the highest PL activity (1816.2 U/mL) was achieved. Thus, the recombinant PelB, with promising properties for use in bioscouring in the textile pretreatment process, should be a potential enzyme for industrial applications.  相似文献   

2.
3.
以下综述了碱性果胶酶的生物制造及其在纺织工业清洁生产中的应用研究进展。微生物发酵法是目前生产碱性果胶酶的主要方式,枯草芽孢杆菌是碱性果胶酶工业发酵生产中效果较好的野生菌株。影响发酵法生产碱性果胶酶的主要因素有:底物浓度及其流加方式、细胞浓度、搅拌转速、通气速率、pH、温度等。构建基因工程菌为碱性果胶酶的发酵生产开辟了一条有效途径,其中重组毕赤酵母的产酶水平最高,在10吨发酵罐上酶活达1305U/mL。碱性果胶酶可用于棉织物前处理的精练工艺,与传统高温碱煮相比,具有保护纤维、提高精练效率、降低能耗和污染的优势。通过分子定向进化技术对碱性果胶酶进行分子改造,使其催化特性更加适合于纺织精练工艺,进而实现纺织工业的清洁生产是未来的研究重点和热点。  相似文献   

4.
为了提高重组毕赤酵母生产碱性果胶酶(Alkaline polygalacturonate lyase,PGL)的比速率,开发了一种新的恒细胞密度发酵策略。通过不同的甲醇流加方式,实现发酵过程细胞密度的合理控制。实验结果表明:控制细胞密度为75 g/L的策略为最优,最终单位发酵液体积生产强度和单位菌体生产强度为6.11 U/(mL.h)和81.5 U/(g.h),分别比传统高密度发酵提高了42.1%和191.2%,最终PGL酶活为441.9 U/mL。此外,该策略还具有提高细胞活性和降低蛋白酶降解作用等优势。  相似文献   

5.
Conotoxin PrIIIE is a 22-amino acid peptide containing three disulfide bonds isolated from the venom of Conus parius Reeve. It is a non-competitive antagonist of the mammalian muscle nicotinic acetylcholine receptor (nAChR). We fused the PrIIIE to small ubiquitin-like modifier (SUMO) and expressed the fusion protein in an Escherichia coli strain with an oxidizing cytoplasm. We purified the fusion protein by immobilized metal affinity chromatography and further purified PrIIIE from cleaved SUMO using cation exchange chromatography. The yield of peptide was 1.5 mg/L of culture. The recombinant peptide is functional, as demonstrated by two-electrode voltage clamp experiments. This system may prove valuable for future structure-function studies.  相似文献   

6.
A mannanase was purified from a cell-free extract of the recombinant Escherichia coli carrying a Bacillus subtilis WL-3 mannanase gene. The molecular mass of the purified mannanase was 38 kDa as estimated by SDS-PAGE. Optimal conditions for the purified enzyme occurred at pH 6.0 and 60 degrees C. The specific activity of the purified mannanase was 5,900 U/mg on locust bean gum (LBG) galactomannan at pH 6.0 and 50 degrees C. The activity of the enzyme was slightly inhibited by Mg(2+), Ca(2+), EDTA and SDS, and noticeably enhanced by Fe(2+). When the enzyme was incubated at 4 degrees C for one day in the presence of 3 mM Fe(2+), no residual activity of the mannanase was observed. The enzyme showed higher activity on LBG and konjac glucomannan than on guar gum galactomannan. Furthermore, it could hydrolyze xylans such as arabinoxylan, birchwood xylan and oat spelt xylan, while it did not exhibit any activities towards carboxymethylcellulose and para-nitrophenyl-beta-mannopyranoside. The predominant products resulting from the mannanase hydrolysis were mannose, mannobiose and mannotriose for LBG or mannooligosaccharides including mannotriose, mannotetraose, mannopentaose and mannohexaose. The enzyme could hydrolyze mannooligosaccharides larger than mannobiose.  相似文献   

7.
Human secreted proteins play a very important role in signal transduction. In order to study all potential secreted proteins identified from the human genome sequence, systematic production of large amounts of biologically active secreted proteins is a prerequisite. We selected 25 novel genes as a trial case for establishing a reliable expression system to produce active human secreted proteins in Escherichia coli. Expression of proteins with or without signal peptides was examined and compared in E. coli strains. The results indicated that deletion of signal peptides, to a certain extent, can improve the expression of these proteins and their solubilities. More importantly, under expression conditions such as induction temperature, N-terminus fusion peptides need to be optimized in order to express adequate amounts of soluble proteins. These recombinant proteins were characterized as well-folded proteins. This system enables us to rapidly obtain soluble and highly purified human secreted proteins for further functional studies.  相似文献   

8.
Alkaline pectate lyases are favorable for the textile industry. Here we report the cloning of a pectate lyase gene (pl A), from Klebsiella sp. Y1, and its heterologous expression in Escherichia coli. The full-length pl A consists of 1710 bp and encodes for a 569-amino acid polypeptide including a putative 22-residue signal peptide and a catalytic domain belonging to pectate lyase family 2. The recombinant enzyme (r-PL A) was purified to electrophoretic homogeneity by single-step Ni2+-NTA affinity chromatography and showed an apparent molecular weight of ∼60 kDa. The pH and temperature optima of r-PL A were found to be 9.0 and 30–50 °C, respectively. r-PL A was highly active at low temperatures, exhibiting >60% of the maximal activity at 20 °C and >20% activity even at 0 °C. The enzyme was stable in a broad alkaline pH range of 7.0–12.0 for 1 h at 37 °C. The values of Km(app) and Vmax(app) of r-PL A for polygalacturonic acid were 2.47 mg/ml and 11.94 μmol/min/mg, respectively. Compared with the commercial compound pectinase from Novozymes, purified r-PL A showed similar efficacy in reducing the intrinsic viscosity of polygalacturonic acid (68.8% vs. 67.1%) and in bioscouring of jute (7.38% vs. 7.58%). Thus r-PL A is a valuable material for the textile industry.  相似文献   

9.
Hepcidin is a low-molecular-weight, highly disulfide bonded peptide relevant to small intestine iron absorption and body iron homeostasis. In this work, hepcidin was expressed in Escherichia coli as a 10.5 kDa fusion protein (His-hepcidin) with a N-terminal hexahistidine tag. The expressed His-hepcidin existed in the form of inclusion bodies and was purified by IMAC under denaturation condition. Since the fusion partner for hepcidin did not contain other cysteine residues, the formation of disulfide bonds was performed before the His-tag was removed. Then, the oxidized His-hepcidin monomer was separated from protein multimers through gel filtration. Following monomer refolding, hepcidin was cleaved from fusion protein by enterokinase and purified with reverse-phase chromatography. The recombinant hepcidin exhibited obvious antibacterial activity against Bacillus subtilis.  相似文献   

10.
Vibriolysin, an extracellular protease of Vibrio proteolyticus, is synthesized as a preproenzyme. The N-terminal propeptide functions as an intramolecular chaperone and an inhibitor of the mature enzyme. Extracellular production of recombinant vibriolysin has been achieved in Bacillus subtilis, but not in Escherichia coli, which is widely used as a host for the production of recombinant proteins. Vibriolysin is expressed as an inactive form in E. coli possibly due to the inhibitory effect of the N-terminal propeptide. In this study, we isolated the novel vibriolysin engineered by in vivo random mutagenesis, which is expressed as active mature vibriolysin in E. coli. The Western blot analysis showed that the N-terminal propeptide of the engineered enzyme was processed and degraded, confirming that the propeptide inhibits the mature enzyme. Two mutations located within the engineered vibriolysin resulted in the substitution of stop codon for Trp at position 11 in the signal peptide and of Val for Ala at position 183 in the N-terminal propeptide (where position 1 is defined as the first methionine). It was found that the individual mutations are related to the enzyme activity. The novel vibriolysin was extracellularly overproduced in BL21(DE3) and purified from the culture supernatant by ion-exchange chromatography followed by hydrophobic-interaction chromatography, resulting in an overall yield of 2.2 mg/L of purified protein. This suggests that the novel engineered vibriolysin is useful for overproduction in an E. coli expression system.  相似文献   

11.
The Tat system mediates the transport of folded proteins across the bacterial cytoplasmic membrane. To study the properties of the Escherichia coli Tat-system, we used green fluorescent protein (GFP) fused to the twin-arginine signal peptide of TMAO reductase (TorA). In the presence of arabinose, low levels of this protein rapidly saturate the translocase and cause the accumulation of inactive, membrane-bound TorA-GFP; fluorescence microscopy also showed active TorA-GFP to be distributed throughout the cytoplasm. However, the efficiency of export can be massively increased by alteration of the growth conditions, and further increased by overexpression of the tatABC genes. Under these conditions, the levels of GFP in the periplasm are raised over 20-fold and the export efficiency nears 100%. These results show that the Tat-system is relatively inactive under some growth conditions and the data suggest that the system may be applicable for the larger-scale export of heterologous proteins.  相似文献   

12.
The aim of this study is to achieve high-level extracellular production of d-Psicose-3-epimerase (DPE) with recombinant Escherichia coli. High-level production of DPE is one of the key factors in d-Psicose production. In the present study, the gene AAL45544.1 from Agrobacterium tumefaciens str. C58 was modified by artificial synthesis for overexpression in E. coli. The total DPE activity reached 3.96 U mL?1 after optimization of the media composition, induction temperature, and concentration of inducer. Furthermore, it was found that addition of glycine had a positive effect on the extracellular production of DPE, which reached 3.5 U mL?1. Finally, a two-stage glycerol feeding strategy based on both the specific growth rate before induction and the amount of glycerol residues after induction was applied in a 3-L fermenter. After a series of optimal strategies in the 3-L fermenter, the total and extracellular DPE activity were 5.08- and 3.11-fold higher than that noted in the shake flask. The extracellular and intracellular DPE activity reached 10.9 and 13.2 U mL?1, achieving 25.5 and 31.1 % conversion of d-fructose to d-psicose, respectively. The systemic strategies presented in this study provide valuable novel information for the industrial application of DPE.  相似文献   

13.
An alginate lyase named ALYII was purified to homogeneity from Escherichia coli JM109 carrying a recombinant plasmid, pJK26 harbouring the alyII gene from Pseudomonas sp. OS-ALG-9 by column chromatography with DEAE-cellulose, CM-Sephadex C-50, butyl-Toyopearl 650 M and isoelectric focusing. The molecular size of the purified ALYII was estimated to be 79 kDa by SDS-PAGE and its pI was 8.3. The enzyme was most active at pH 7.0 and 30 °C. Its activity was completely inhibited by Hg2+. The enzyme was poly -D-1, 4-mannuronate-specific rather than -D-1, 4-guluronate-specific and it showed a promotion effect in alginate degradation by combination with ALY, an another poly -D-1, 4-mannuronate-specific alginate lyase from the same strain.  相似文献   

14.
Hyper-expression of a secretory exoglucanase, Exg, encoded by the cex gene of Cellulomonas fimi was previously shown to saturate the SecYEG pathway and result in dramatic cell death of recombinant Escherichia coli (Z.B. Fu, K.L. Ng, T.L. Lam, W.K.R. Wong, Cell death caused by hyper-expression of a secretory exoglucanase in Esherichia coli, Protein Expr. Purif. 42 (2005) 67-77). We propose here that the cell lysate ratio (Pre/Mat RQ) of the unprocessed precursor Exg protein (Pre-Exg) and its processed mature product (Mat-Exg) reflects the capacity of E. coli to secrete Exg. A Pre/Mat RQ of 20/80, designated the "Critical Value," was an important threshold measurement. A rise in the Pre/Mat RQ triggered a mass killing effect. The use of various secretion signal peptides did not improve the viability of cells expressing high levels of Pre-Exg under strong tac promoter control. However, use of the weaker vegG promoter in conjunction with a change in start codon of the spa leader sequence from ATG to TTG in a pM1vegGcexL plasmid construct resulted in a high level (0.9 U ml(-1)) of excreted Exg in shake-flask cultures. This was 50% higher than the best result obtained from plasmid construct lacUV5par8cex, using the lacUV5 promoter and the ompA leader sequence. Variations in the excreted Exg activities were attributable to differences in the Pre/Mat RQ values of the induced cultures harboring pM1vegGcexL and lacUV5par8cex. These values were 18/82 and 10/90, respectively. Employing fed-batch cultivation in two-liter fermentors, an induced JM101(pM1vegGcexL) culture yielded 4.5 U ml(-1) of excreted Exg, which was over six fold greater that previously reported. Our results illustrate the successful application of the Pre/Mat RQ ratio as a guide to the attainment of a maximum level of secreted/excreted Exg.  相似文献   

15.
Adenylosuccinate lyase (ADL) catalyzes the breakdown of 5-aminoimidazole- (N-succinylocarboxamide) ribotide (SAICAR) to 5-aminoimidazole-4-carboxamide ribotide (AICAR) and fumarate, and of adenylosuccinate (ADS) to adenosine monophosphate (AMP) and fumarate in the de novo purine biosynthetic pathway. ADL belongs to the argininosuccinate lyase (ASL)/fumarase C superfamily of enzymes. Members of this family share several common features including: a mainly alpha-helical, homotetrameric structure; three regions of highly conserved amino acid residues; and a general acid-base catalytic mechanism with the overall beta-elimination of fumarate as a product. The crystal structures of wild-type Escherichia coli ADL (ec-ADL), and mutant-substrate (H171A-ADS) and -product (H171N-AMP.FUM) complexes have been determined to 2.0, 1.85, and 2.0 A resolution, respectively. The H171A-ADS and H171N-AMP.FUM structures provide the first detailed picture of the ADL active site, and have enabled the precise identification of substrate binding and putative catalytic residues. Contrary to previous suggestions, the ec-ADL structures implicate S295 and H171 in base and acid catalysis, respectively. Furthermore, structural alignments of ec-ADL with other superfamily members suggest for the first time a large conformational movement of the flexible C3 loop (residues 287-303) in ec-ADL upon substrate binding and catalysis, resulting in its closure over the active site. This loop movement has been observed in other superfamily enzymes, and has been proposed to be essential for catalysis. The ADL catalytic mechanism is re-examined in light of the results presented here.  相似文献   

16.
混合碳源流加对重组毕赤酵母生产碱性果胶酶的影响   总被引:1,自引:1,他引:1  
为提高重组毕赤酵母生产碱性果胶酶(PGL)的产量和生产强度,在诱导期采用多种碳源与甲醇混合添加的模式。实验结果发现:甘油、山梨醇、乳酸与甲醇的混合添加均可以提高PGL的产量,其中山梨醇与甲醇的混合流加效果最为显著。研究表明,通过双碳源混合流加可以提高细胞活力,增强醇氧化酶活力,提高毕赤酵母表达外源蛋白效率。当山梨醇的流速为3.6g/(h·L)时,PGL酶活可达1593U/mL,生产强度为16.7U/(mL·h),比对照分别提高了84.6%和45.2%,实现了碱性果胶酶的高效生产。  相似文献   

17.
The structure of the O-antigenic polysaccharide (PS) from the enteroaggregative Escherichia coli strain 522/C1 has been determined. Component analysis and (1)H and (13)C NMR spectroscopy techniques were used to elucidate the structure. Inter-residue correlations were determined by (1)H,(1)H-NOESY and (1)H,(13)C-heteronuclear multiple-bond correlation experiments. The PS is composed of pentasaccharide repeating units with the following structure: [ structure: see text]. Analysis of NMR data reveals that on average the PS consists of four repeating units and indicates that the biological repeating unit contains an N-acetylgalactosamine residue at its reducing end. Serotyping of the E. coli strain 522/C1 showed it to be E. coli O 178:H7. Determination of the structure of the O-antigen PS of the international type strain from E. coli O 178:H7 showed that the two polysaccharides have identical repeating units. In addition, this pentasaccharide repeating unit is identical to that of the capsular polysaccharide from E. coli O9:K 38, which also contains O-acetyl groups.  相似文献   

18.
Previously, we described the production of N-acetylneuraminic acid (NeuAc) from N-acetylglucosamine (GlcNAc) in a system combining recombinant Escherichia coli expressing GlcNAc 2-epimerase (slr1975), E. coli expressing NeuAc synthetase (neuB), and Corynebacterium ammoniagenes. However, this system was unsuitable for large-scale production because of its complexity and low productivity. To overcome these problems, we constructed a recombinant E. coli simultaneously overexpressing slr1975 and neuB. This recombinant E. coli produced 81 mM (25 g/L) NeuAc in 22 h without the addition of C. ammoniagenes cells. For manufacturing on an industrial scale, it is preferable to use unconcentrated culture broth as the source of enzymes, and therefore, a high-density cell culture is required. An acetate-resistant mutant strain of E. coli (HN0074) was selected as the host strain because of its ability to grow to a high cell density. The NeuAc aldolase gene of E. coli HN0074 was disrupted by homologous recombination yielding E. coli N18-14, which cannot degrade NeuAc. After a 22 h reaction with 540 mM (120 g/L) GlcNAc in a 5 L jar fermenter, the culture broth of E. coli N18-14 overexpressing slr1975 and neuB contained 172 mM (53 g/L) NeuAc.  相似文献   

19.
Kang Z  Du L  Kang J  Wang Y  Wang Q  Liang Q  Qi Q 《Bioresource technology》2011,102(11):6600-6604
The strategic design of this study aimed at producing succinate and polyhydroxyalkanoate (PHA) from substrate mixture of glycerol/glucose and fatty acid in Escherichia coli. To accomplish this, an E. coli KNSP1 strain derived from E. coli LR1110 was constructed by deletions of ptsG, sdhA and pta genes and overexpression of phaC1 from Pseudomonas aeruginosa. Cultivation of E. coli KNSP1 showed that this strain was able to produce 21.07 g/L succinate and 0.54 g/L PHA (5.62 wt.% of cell dry weight) from glycerol and fatty acid mixture. The generated PHA composed of 58.7 mol% 3-hydroxyoctanoate (3HO) and 41.3 mol% 3-hydroxydecanoate (3HD). This strain would be useful for complete utilization of byproducts glycerol and fatty acid of biodiesel production process.  相似文献   

20.
Bacterial pathogens have evolved a sophisticated arsenal of virulence factors to modulate host cell biology. Enteropathogenic and enterohemorrhagic Escherichia coli (EPEC and EHEC) use a type III protein secretion system (T3SS) to inject microbial proteins into host cells. The T3SS effector cycle inhibiting factor (Cif) produced by EPEC and EHEC is able to block host eukaryotic cell-cycle progression. We present here a crystal structure of Cif, revealing it to be a divergent member of the superfamily of enzymes including cysteine proteases and acetyltransferases that share a common catalytic triad. Mutation of these conserved active site residues abolishes the ability of Cif to block cell-cycle progression. Finally, we demonstrate that irreversible cysteine protease inhibitors do not abolish the Cif cytopathic effect, suggesting that another enzymatic activity may underlie the biological activity of this virulence factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号