首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gastroesophageal reflux is associated with adenocarcinoma in Barrett's esophagus, but the incidence of this tumor is rising, despite widespread use of acid-suppressing medications. This suggests that refluxed material other than acid might contribute to carcinogenesis. We looked for potentially carcinogenetic effects of two bile acids, deoxycholic acid (DCA) and ursodeoxycholic acid (UDCA), on Barrett's epithelial cells in vitro and in vivo. We exposed Barrett's (BAR-T) cells to DCA or UDCA and studied the generation of reactive oxygen/nitrogen species (ROS/RNS); expression of phosphorylated H2AX (a marker of DNA damage), phosphorylated IkBα, and phosphorylated p65 (activated NF-κB pathway proteins); and apoptosis. During endoscopy in patients, we took biopsy specimens of Barrett's mucosa before and after esophageal perfusion with DCA or UDCA and assessed DNA damage and NF-κB activation. Exposure to DCA, but not UDCA, resulted in ROS/RNS production, DNA damage, and NF-κB activation but did not increase the rate of apoptosis in BAR-T cells. Pretreatment with N-acetyl-l-cysteine (a ROS scavenger) prevented DNA damage after DCA exposure, and DCA did induce apoptosis in cells treated with NF-κB inhibitors (BAY 11-7085 or AdIκB superrepressor). DNA damage and NF-κB activation were detected in biopsy specimens of Barrett's mucosa taken after esophageal perfusion with DCA, but not UDCA. These data show that, in Barrett's epithelial cells, DCA induces ROS/RNS production, which causes genotoxic injury, and simultaneously induces activation of the NF-κB pathway, which enables cells with DNA damage to resist apoptosis. We have demonstrated molecular mechanisms whereby bile reflux might contribute to carcinogenesis in Barrett's esophagus.  相似文献   

2.
Neutrophil extracellular traps (NETs) are composed of extracellular DNA fibers with antimicrobial peptides that capture and kill microbes. NETs play a critical role in innate host defense and in autoimmune and inflammatory diseases. While the mechanism of NET formation remains unclear, reactive oxygen species (ROS) produced via activation of NADPH oxidase (Nox) are known to be an important requirement. In this study, we investigated the effect of uric acid (UA) on NET formation. UA, a well-known ROS scavenger, was found to suppress Nox-dependent ROS release in a dose-dependent manner. Low concentrations of UA significantly inhibited Nox-dependent NET formation. However, high concentrations of UA unexpectedly induced, rather than inhibited, NET formation. NETs were directly induced by UA alone in a Nox-independent manner, as revealed by experiments using control neutrophils treated with ROS inhibitors or neutrophils of patients with chronic granulomatous disease who have a congenital defect in ROS production. Furthermore, we found that UA-induced NET formation was partially mediated by NF-κB activation. Our study is the first to demonstrate the novel function of UA in NET formation and may provide insight into the management of patients with hyperuricemia.  相似文献   

3.
4.
5.
6.
We have investigated the impact of persistent intravascular hemolysis on liver dysfunction using the mouse malaria model. Intravascular hemolysis showed a positive correlation with liver damage along with the increased accumulation of free heme and reactive oxidants in liver. Hepatocytes overinduced heme oxygenase-1 (HO-1) to catabolize free heme in building up defense against this pro-oxidant milieu. However, in a condition of persistent free heme overload in malaria, the overactivity of HO-1 resulted in continuous transient generation of free iron to favor production of reactive oxidants as evident from 2',7'-dichlorofluorescein fluorescence studies. Electrophoretic mobility shift assay documented the activation of NF-κB, which in turn up-regulated intercellular adhesion molecule 1 as evident from chromatin immunoprecipitation studies. NF-κB activation also induced vascular cell adhesion molecule 1, keratinocyte chemoattractant, and macrophage inflammatory protein 2, which favored neutrophil extravasation and adhesion in liver. The infiltration of neutrophils correlated positively with the severity of hemolysis, and neutrophil depletion significantly prevented liver damage. The data further documented the elevation of serum TNFα in infected mice, and the treatment of anti-TNFα antibodies also significantly prevented neutrophil infiltration and liver injury. Deferoxamine, which chelates iron, interacts with free heme and bears antioxidant properties that prevented oxidative stress, NF-κB activation, neutrophil infiltration, hepatocyte apoptosis, and liver damage. Furthermore, the administration of N-acetylcysteine also prevented NF-κB activation, neutrophil infiltration, hepatocyte apoptosis, and liver damage. Thus, hepatic free heme accumulation, TNFα release, oxidative stress, and NF-κB activation established a link to favor neutrophil infiltration in inducing liver damage during hemolytic conditions in malaria.  相似文献   

7.
Hyperhomocysteinemia is a cardiovascular risk factor and may contribute to the pathogenesis of atherosclerosis by altering endothelial functions. The mechanism of homocysteine-induced cell adhesion has been here investigated using EA.hy 926 cells. Homocysteine induces a stereospecific, time- and dose-dependent cell adhesion which is prevented by adenosine. The dramatic increase of S-adenosylhomocysteine induced by adenosine-2',3'-dialdehyde does not cause cell adhesion, indicating that no apparent relationship exists between this process and intracellular S-adenosylhomocysteine content. Homocysteine-induced cell adhesion is abolished by pre-treatment with adenosine-2',3'-dialdehyde, demonstrating that the adenosine depletion caused by reversal of S-adenosylhomocysteine hydrolase reaction is responsible for homocysteine-induced cell damage.  相似文献   

8.
A decrease in zinc (Zn) levels increases the production of cell oxidants, affects the oxidant defense system and triggers oxidant sensitive signals in neuronal cells. However, the underlying mechanisms are still unclear. This work tested the hypothesis that the increase in neuronal oxidants that occurs when cellular Zn decreases is mediated by the activation of the NMDA receptor. Differentiated PC12 cells were cultured in control, Zn-deficient or Zn-repleted media. The incubation in Zn deficient media led to a rapid increase in cellular calcium levels, which was prevented by a NMDA receptor antagonist (MK-801). Cellular calcium accumulation was associated with NADPH oxidase and nitric oxide synthase (NOS) activation, an increase in cell oxidant levels, and an associated activation of a redox-sensitive signal (AP-1). In cells incubated in the Zn deficient medium, NADPH oxidase activation was prevented by MK-801 and by a protein kinase C inhibitor. The rise in cell oxidants was prevented by inhibitors of NADPH oxidase, of the NOS and by MK-801. A similar pattern of inhibitor action was observed for zinc deficiency-induced AP-1 activation. Results demonstrate that a decrease in extracellular Zn leads to an increase in neuronal oxidants through the activation of the NMDAR that leads to calcium influx and to a calcium-mediated activation of protein kinase C/NADPH oxidase and NOS. Changes in extracellular Zn concentrations can be sensed by neurons, which using reactive oxygen and nitrogen species as second messengers, can regulate signaling involved in neuronal development and function.  相似文献   

9.
10.
11.
Lys63-linked polyubiquitination of transforming growth factor-β-activated kinase 1 (TAK1) has an important role in tumor necrosis factor-α (TNFα)-induced NF-κB activation. Using a functional genomic approach, we have identified ubiquitin-specific peptidase 4 (USP4) as a deubiquitinase for TAK1. USP4 deubiquitinates TAK1 in vitro and in vivo. TNFα induces association of USP4 with TAK1 to deubiquitinate TAK1 and downregulate TAK1-mediated NF-κB activation. Overexpression of USP4 wild type, but not deuibiquitinase-deficient C311A mutant, inhibits both TNFα- and TAK1/TAB1 co-overexpression-induced TAK1 polyubiquitination and NF-κB activation. Notably, knockdown of USP4 in HeLa cells enhances TNFα-induced TAK1 polyubiquitination, IκB kinase phosphorylation, IκBα phosphorylation and ubiquitination, as well as NF-κB-dependent gene expression. Moreover, USP4 negatively regulates IL-1β-, LPS- and TGFβ-induced NF-κB activation. Together, our results demonstrate that USP4 serves as a critical control to downregulate TNFα-induced NF-κB activation through deubiquitinating TAK1.  相似文献   

12.
Epidemiological studies found an increased kidney cancer risk in hypertensive patients. These patients frequently present an increase in the mineralocorticoid aldosterone (Ald) due to a stimulated renin angiotensin aldosterone system (RAAS). Recently, we showed pro-oxidative and genotoxic effects of Ald in vitro. Here, we investigated the influence of blood pressure on aldosterone-induced oxidative damage. To distinguish whether effects in Sprague–Dawley rats treated with Ald were caused by Ald or by increased blood pressure, the mineralocorticoid receptor (MR) antagonist spironolactone was administered in a subtherapeutical dose, not lowering the blood pressure, and hydralazine, a RAAS-independent vasodilator, was given to normalize the pressure. With the antioxidant tempol, oxidative stress-dependent effects were demonstrated. Ald treatment caused kidney damage and oxidative and nitrative stress. Structural DNA damage and the mutagenic oxidative base modification 7,8-dihydro-8-oxoguanine were increased, as well as DNA repair activity and nuclear NF-κB translocation. Spironolactone and tempol decreased all markers significantly, whereas hydralazine had just slight effects. These data comprise the first report of essentially blood pressure-independent tissue- and DNA-damaging effects of Ald. A fully activated MR and the production of reactive oxygen and nitrogen species were crucial for these effects.  相似文献   

13.
Renal hypertrophy and extracellular matrix accumulation are early features of diabetic nephropathy. Hyperglycemia-induced oxidative stress is implicated in the etiology of diabetic nephropathy. Resveratrol has potent antioxidative and protective effects on diabetic nephropathy. We aimed to examine whether high glucose (HG)-induced NADPH oxidase activation and reactive oxygen species (ROS) production contribute to glomerular mesangial cell proliferation and fibronectin expression and the effect of resveratrol on HG action in mesangial cells. By using rat mesangial cell line and primary mesangial cells, we found that NADPH oxidase inhibitor (apocynin) and ROS inhibitor (N-acetyl cysteine) both inhibited HG-induced mesangial cell proliferation and fibronectin expression. HG-induced elevation of NADPH oxidase activity and production of ROS in mesangial cells was inhibited by apocynin. These results suggest that HG induces mesangial cell proliferation and fibronectin expression through NADPH oxidase-mediated ROS production. Mechanistic studies revealed that HG upregulated NADPH oxidase subunits p22(phox) and p47(phox) expression through JNK/NF-κB pathway, which resulted in elevation of NADPH oxidase activity and consequent ROS production. Resveratrol prevented HG-induced mesangial cell proliferation and fibronectin expression through inhibiting HG-induced JNK and NF-κB activation, NADPH oxidase activity elevation and ROS production. These results demonstrate that HG enhances mesangial cell proliferation and fibronectin expression through JNK/NF-κB/NADPH oxidase/ROS pathway, which was inhibited by resveratrol. Our findings provide novel therapeutic targets for diabetic nephropathy.  相似文献   

14.
Nitrosative stress has become a usual term in the physiology of nitric oxide in mammalian systems. However, in plants there is much less information on this type of stress. Using olive leaves as experimental model, the effect of salinity on the potential induction of nitrosative stress was studied. The enzymatic l-arginine-dependent production of nitric oxide (NOS activity) was measured by ozone chemiluminiscence. The specific activity of NOS in olive leaves was 0.280nmol NOmg(-1) proteinmin(-1), and was dependent on l-arginine, NADPH and calcium. Salt stress (200mM NaCl) caused an increase of the l-arginine-dependent production of nitric oxide (NO), total S-nitrosothiols (RSNO) and number of proteins that underwent tyrosine nitration. Confocal laser scanning microscopy analysis using either specific fluorescent probes for NO and RSNO or antibodies to S-nitrosoglutathione and 3-nitrotyrosine, showed also a general increase of these reactive nitrogen species (RNS) mainly in the vascular tissue. Taken together, these findings show that in olive leaves salinity induces nitrosative stress, and vascular tissues could play an important role in the redistribution of NO-derived molecules during nitrosative stress.  相似文献   

15.
Renal cell carcinoma (RCC) is common renal malignancy within poor prognosis. TGF-β-activated kinase 1 (TAK1) plays vital roles in cell survival, apoptosis-resistance and carcinogenesis through regulating nuclear factor-κB (NF-κB) and other cancer-related pathways. Here we found that TAK1 inhibitors (LYTAK1, 5Z-7-oxozeanol (5Z) and NG-25) suppressed NF-κB activation and RCC cell (786-O and A489 lines) survival. TAK1 inhibitors induced apoptotic cytotoxicity against RCC cells, which was largely inhibited by the broad or specific caspase inhibitors. Further, shRNA-mediated partial depletion of TAK1 reduced 786-O cell viability whiling activating apoptosis. Significantly, TAK1 was over-expressed in human RCC tissues, and its level was correlated with phosphorylated NF-κB. Finally, kinase inhibition or genetic depletion of TAK1 enhanced the activity of vinblastine sulfate (VLB) in RCC cells. Together, these results suggest that TAK1 may be an important oncogene or an effective target for RCC intervention.  相似文献   

16.
《Free radical research》2013,47(12):1426-1442
Abstract

Herein we have demonstrated that both superoxide dismutase (SOD) mimic, cationic Mn(III) meso-tetrakis(N-n-hexylpyridinium-2-yl)porphyrin (MnTnHex-2-PyP5+), and non-SOD mimic, anionic Mn(III) meso-tetrakis(4-carboxylatophenyl)porphyrin (MnTBAP3?), protect against oxidative stress caused by spinal cord ischemia/reperfusion via suppression of nuclear factor kappa B (NF-κB) pro-inflammatory pathways. Earlier reports showed that Mn(III) N-alkylpyridylporphyrins were able to prevent the DNA binding of NF-κB in an aqueous system, whereas MnTBAP3? was not. Here, for the first time, in a complex in vivo system—animal model of spinal cord injury—a similar impact of MnTBAP3?, at a dose identical to that of MnTnHex-2-PyP5+, was demonstrated in NF-κB downregulation. Rats were treated subcutaneously at 1.5 mg/kg starting at 30 min before ischemia/reperfusion, and then every 12 h afterward for either 48 h or 7 days. The anti-inflammatory effects of both Mn porphyrins (MnPs) were demonstrated in the spinal cord tissue at both 48 h and 7 days. The downregulation of NF-κB, a major pro-inflammatory signaling protein regulating astrocyte activation, was detected and found to correlate well with the suppression of astrogliosis (as glial fibrillary acidic protein) by both MnPs. The markers of oxidative stress, lipid peroxidation and protein carbonyl formation, were significantly reduced by MnPs. The favorable impact of both MnPs on motor neurons (Tarlov score and inclined plane test) was assessed. No major changes in glutathione peroxidase- and SOD-like activities were demonstrated, which implies that none of the MnPs acted as SOD mimic. Increasing amount of data on the reactivity of MnTBAP3? with reactive nitrogen species (RNS) (.NO/HNO/ONOO?) suggests that RNS/MnTBAP3?-driven modification of NF-κB protein cysteines may be involved in its therapeutic effects. This differs from the therapeutic efficacy of MnTnHex-2-PyP5+ which presumably occurs via reactive oxygen species and relates to NF-κB thiol oxidation; the role of RNS cannot be excluded.  相似文献   

17.
Development of hepatocellular carcinoma (HCC) is accompanied by a continuous increase in reactive oxygen species (ROS) levels. To investigate the primary source of ROS in liver cells, we used tumor necrosis factor-alpha (TNF-α) as stimulus. Applying inhibitors against the respiratory chain complexes, we identified mitochondria as primary source of ROS production. TNF-α altered mitochondrial integrity by mimicking a mild uncoupling effect in liver cells, as indicated by a 40% reduction in membrane potential and ATP depletion (35%). TNF-α-induced ROS production activated NF-κB 3.5-fold and subsequently enhanced migration up to 12.7-fold. This study identifies complex I and complex III of the mitochondrial respiratory chain as point of release of ROS upon TNF-α stimulation of liver cells, which enhances cell migration by activating NF-κB signalling.  相似文献   

18.
S100A8/A9 promotes NADPH oxidase in HaCaT keratinocytes and subsequently increases NFκB activation, which plays important roles in the balance between epidermal growth and differentiation. S100A8/A9-positive HaCaT cells present with a significantly reduced rate of cell division and greater expression of two keratinocyte differentiation markers, involucrin and filaggrin, than control cells. S100A8/A9 mutants fail to enhance NFκB activation, TNFα-induced IL-8 gene expression and NFκB p65 phosphorylation, and S100A8/A9-positive cells demonstrate better cell survival in forced suspension culture than mutant cells. S100A8/A9 is induced in epithelial cells in response to stress. Therefore, S100A8/A9-mediated growth arrest could have implications for tissue remodeling and repair.  相似文献   

19.
20.
Nephrotoxicity remains a serious adverse effect of cisplatin chemotherapy, limiting its clinical usage. Numerous studies show that oxidative stress and inflammation are closely associated with cisplatin-induced renal damage. Astragaloside IV (AS-IV) has been found to possess antioxidant and anti-inflammation functions. Therefore, we investigated the potential curative effects of AS-IV against cisplatin-induced renal injury and the possible cellular mechanism for activity, both in vitro and in vivo. We found that pretreatment of HK-2 cells with AS-IV could mitigate cisplatin-induced cell damage caused by oxygen-free radicals and the inflammatory response, as evidenced by reduced formation of reactive oxygen species (ROS) and inflammatory cytokines. AS-IV improved cisplatin-induced renal dysfunction and histopathological injury in mice. Additionally, AS-IV enhanced the activities of total superoxide dismutase (T-SOD), glutathione peroxidase (GSH-Px), and catalase (CAT). It also inhibited cisplatin-induced overproduction of kidney injury molecule-1 (KIM-1), malondialdehyde (MDA), tumour necrosis factor-α (TNF???α), and interleukin-1β (IL-1β) in kidney tissues. We found that the protective effects of AS-IV occurred via activation of the nuclear factor-erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) proteins and inhibition of nuclear factor-κappaB (NF-κB) activation. Further, small interfering RNA (siRNA) knockdown of Nrf2 abrogated the protective effects of AS-IV against cisplatin-induced oxidative stress and blocked the inhibitory effects of AS-IV on cisplatin-induced NF-κB activation and inflammatory cytokine production. In conclusion, our data suggested that AS-IV attenuated cisplatin-mediated renal injury, and these protective effects might be due to inhibition of both oxidative damage and inflammatory response via activation of Nrf2 system and suppression of NF-κB activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号