首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Developmental studies support a common origin for blood and endothelial cells, while studies of adult angiogenic responses suggest that the hematopoietic system can be a source of endothelial cells later in life. Whether hematopoietic tissue is a source of endothelial cells during normal vascular development is unknown. Mouse embryos lacking the signaling proteins Syk and Slp-76 develop abnormal blood-lymphatic endothelial connections. Here we demonstrate that expression of GFPSlp-76 in a subset of hematopoietic cells rescues this phenotype, and that deficient cells confer focal vascular phenotypes in chimeric embryos consistent with a cell-autonomous mechanism. Endogenous Syk and Slp-76, as well as transgenic GFPSlp-76, are expressed in circulating cells previously proposed to be endothelial precursors, supporting a causal role for these cells. These studies provide genetic evidence for hematopoietic contribution to vascular development and suggest that hematopoietic tissue can provide a source of vascular endothelial progenitor cells throughout life.  相似文献   

2.
3.
4.
5.
6.
Yue R  Li H  Liu H  Li Y  Wei B  Gao G  Jin Y  Liu T  Wei L  Du J  Pei G 《Developmental cell》2012,22(5):1092-1100
Hematopoietic development and vascular development are closely related physiological processes during vertebrate embryogenesis. Recently, endothelial-to-hematopoietic transition (EHT) was demonstrated to be critical for hematopoietic stem and progenitor cell induction, but its underlying regulatory mechanisms remain poorly understood. Here we show that thrombin receptor (F2r), a protease-activated G protein-coupled receptor required for vascular development, functions as a negative regulator during hematopoietic development. F2r is significantly upregulated during hematopoietic differentiation of mouse embryonic stem cells (mESCs) and zebrafish hematopoietic development. Pharmacological or genetic inhibition of F2r promotes hematopoietic differentiation, whereas F2r overexpression shows opposite effects. Further mechanistic studies reveal that F2r-RhoA/ROCK pathway inhibits EHT in vitro and negatively regulates zebrafish EHT and hematopoietic stem cell induction in vivo. Taken together, this study demonstrates a fundamental role of F2r-RhoA/ROCK pathway in vertebrate hematopoiesis and EHT, as well as an important molecular mechanism coordinating hematopoietic and vascular development.  相似文献   

7.
During the last decades of the 20th century, studies on the vertebrate hematopoietic and immune systems have largely been performed, on mammalian models. The mouse has been the preferred material for several cogent reasons: (i) numerous well defined genetic strains are available; (ii) this species has been and still is instrumental in the study of gene activity through transgenesis; and (iii) in vitro culture techniques and in vivo assays for blood cells together with a wide array of antibodies and nucleic acid probes have been developed to investigate the cellular interactions occurring during hematopoiesis and immune reactivity. However, important and fundamental notions have emerged from using another higher vertebrate model, the avian embryo. The distinction among small lymphocytes of two populations, the T and B lymphocytes, endowed with different roles in adaptive immunity and dependant on different environments for their specification, has relied on experiments carried out in birds. The avian model has been critical for the analysis of the origin and traffic of hematopoietic precursor cells. It allowed the demonstration that both hematopoietic and angioblastic lineages arise from a common precursor, a cell whose existence had been proposed but never undoubtedly proven, the hemangioblast. Finally a form of thymus-dependant 'dominant' tolerance was demonstrated on the basis of experiments in the avian embryo, which initiated a large current of studies on 'regulatory T-cells'. Work in this model during the last decades has relied strongly on the construction of chimeras between quail and chick embryos that allowed a refined analysis of cell behaviour during embryogenesis. The novel perception of developmental neuropoiesis and immunopoiesis that followed proved to be largely applicable to lower and higher vertebrates, notably mammals.  相似文献   

8.
Angiogenesis defects and mesenchymal apoptosis in mice lacking SMAD5   总被引:32,自引:0,他引:32  
The transforming growth factor-beta (TGF-beta) signals are mediated by a family of at least nine SMAD proteins, of which SMAD5 is thought to relay signals of the bone morphogenetic protein (BMP) pathway. To investigate the role of SMAD5 during vertebrate development and tumorigenesis, we disrupted the Smad5 gene by homologous recombination. We showed that Smad5 was expressed predominantly in mesenchyme and somites during embryogenesis, and in many tissues of the adult. Mice homozygous for the mutation died between days 10.5 and 11.5 of gestation due to defects in angiogenesis. The mutant yolk sacs lacked normal vasculature and had irregularly distributed blood cells, although they contained hematopoietic precursors capable of erythroid differentiation. Smad5 mutant embryos had enlarged blood vessels surrounded by decreased numbers of vascular smooth muscle cells, suffered massive apoptosis of mesenchymal cells, and were unable to direct angiogenesis in vitro. These data suggest that SMAD5 may regulate endothelium-mesenchyme interactions during angiogenesis and that it is essential for mesenchymal survival.  相似文献   

9.
Ma N  Huang Z  Chen X  He F  Wang K  Liu W  Zhao L  Xu X  Liao W  Ruan H  Luo S  Zhang W 《PloS one》2011,6(11):e27540
Hematopoiesis is a complicated and dynamic process about which the molecular mechanisms remain poorly understood. Danio rerio (zebrafish) is an excellent vertebrate system for studying hematopoiesis and developmental mechanisms. In the previous study, we isolated and identified a cloche(172) (clo(172)) mutant, a novel allele compared to the original cloche (clo) mutant, through using complementation test and initial mapping. Here, according to whole mount in-situ hybridization, we report that the endothelial cells in clo(172) mutant embryos, although initially developed, failed to form the functional vascular system eventually. In addition, further characterization indicates that the clo(172) mutant exhibited weaker defects instead of completely lost in primitive erythroid cells and definitive hematopoietic cells compared with the clo(s5) mutant. In contrast, primitive myeloid cells were totally lost in clo(172) mutant. Furthermore, these reappeared definitive myeloid cells were demonstrated to initiate from the remaining hematopoietic stem cells (HSCs) in clo(172) mutant, confirmed by the dramatic decrease of lyc in clo(172)runx1(w84x) double mutant. Collectively, the clo(172) mutant is a weak allele compared to the clo(s5) mutant, therefore providing a model for studying the early development of hematopoietic and vascular system, as well as an opportunity to further understand the function of the cloche gene.  相似文献   

10.
Shifting sites of blood cell production during development is common across widely divergent phyla. In zebrafish, like other vertebrates, hematopoietic development has been roughly divided into two waves, termed primitive and definitive. Primitive hematopoiesis is characterized by the generation of embryonic erythrocytes in the intermediate cell mass and a distinct population of macrophages that arises from cephalic mesoderm. Based on previous gene expression studies, definitive hematopoiesis has been suggested to begin with the generation of presumptive hematopoietic stem cells (HSCs) along the dorsal aorta that express c-myb and runx1. Here we show, using a combination of gene expression analyses, prospective isolation approaches, transplantation, and in vivo lineage-tracing experiments, that definitive hematopoiesis initiates through committed erythromyeloid progenitors (EMPs) in the posterior blood island (PBI) that arise independently of HSCs. EMPs isolated by coexpression of fluorescent transgenes driven by the lmo2 and gata1 promoters exhibit an immature, blastic morphology and express only erythroid and myeloid genes. Transplanted EMPs home to the PBI, show limited proliferative potential, and do not seed subsequent hematopoietic sites such as the thymus or pronephros. In vivo fate-mapping studies similarly demonstrate that EMPs possess only transient proliferative potential, with differentiated progeny remaining largely within caudal hematopoietic tissue. Additional fate mapping of mesodermal derivatives in mid-somitogenesis embryos suggests that EMPs are born directly in the PBI. These studies provide phenotypic and functional analyses of the first hematopoietic progenitors in the zebrafish embryo and demonstrate that definitive hematopoiesis proceeds through two distinct waves during embryonic development.  相似文献   

11.
The Mixed-Lineage Leukemia (MLL) gene encodes a Trithorax-related chromatin-modifying protooncogene that positively regulates Hox genes. In addition to their well-characterized roles in axial patterning, Trithorax and Polycomb family proteins perform less-understood functions in vertebrate hematopoiesis. To define the role of MLL in the development of the hematopoietic system, we examined the potential of cells lacking MLL. Mll-deficient cells could not develop into lymphocytes in adult RAG-2 chimeric animals. Similarly, in vitro differentiation of B cells required MLL. In chimeric embryos, Mll-deficient cells failed to contribute to fetal liver hematopoietic stem cell/progenitor populations. Moreover, we show that aorta-gonad-mesonephros (AGM) cells from Mll-deficient embryos lacked hematopoietic stem cell (HSC) activity despite their ability to generate hematopoietic progeny in vitro. These results demonstrate an intrinsic requirement for MLL in definitive hematopoiesis, where it is essential for the generation of HSCs in the embryo.  相似文献   

12.
Data obtained from studies on the origin and development of hemopoietic cells in several classes of vertebrate embryos argue for two distinct sources of hemopoietic cells, the intraembryonic dorsal lateral plate and the extraembryonic ventral blood island/yolk sac. In the present study, a stage by stage comparison of the hemopoietic potential of both of these regions was made during development of the frog, Rana pipiens. Either dorsal lateral plate or ventral blood island mesoderm was reciprocally transplanted between cytogenetically labeled triploid and diploid embryos. The ratio of donor-derived cells to host-derived cells (labeling index) was determined from Feulgen-stained DNA measurements of cells harvested from hemopoietic organs of young larvae. Blood island transplants consistently resulted in larvae with positive labeling of the circulating blood. Transplanted dorsal mesoderm supplied mesonephric granulocytes and thymocytes, but not circulating erythrocytes to larvae. However, the contribution of dorsal mesoderm to larval hemopoiesis fluctuated with respect to embryonic stage at transplantation.  相似文献   

13.
14.
Zebrafish (Danio rerio) embryos have proven to be a powerful model for studying a variety of developmental and disease processes. External development and optical transparency make these embryos especially amenable to microscopy, and numerous transgenic lines that label specific cell types with fluorescent proteins are available, making the zebrafish embryo an ideal system for visualizing the interaction of vascular, hematopoietic, and other cell types during injury and repair in vivo. Forward and reverse genetics in zebrafish are well developed, and pharmacological manipulation is possible. We describe a mechanical vascular injury model using micromanipulation techniques that exploits several of these features to study responses to vascular injury including hemostasis and blood vessel repair. Using a combination of video and timelapse microscopy, we demonstrate that this method of vascular injury results in measurable and reproducible responses during hemostasis and wound repair. This method provides a system for studying vascular injury and repair in detail in a whole animal model.  相似文献   

15.
16.
Peripheral nerve and vascular patterns are congruent in the adult vertebrate, but this has been disputed in vertebrate embryos. The most detailed of these studies have used the avian forelimb as a model system, yet neurovascular anatomical relationships and critical vascular remodeling events remain inadequately characterized in this model. To address this, we have used a combination of intravascular marker injection, multilabel fluorescent stereomicroscopy, and confocal microscopy to analyze the spatiotemporal relationships between peripheral nerves and blood vessels in the forelimb of 818 quail embryos from E2 (HH13) to E15 (HH41). We find that the neurovascular anatomical relationships established during development are highly stereotypic and congruent. Blood vessels typically arise before their corresponding nerves, but there are several critical exceptions to this rule. The vascular pattern is extensively remodeled from the earliest stage examined (E2; HH13), whereas the peripheral nerves, the first of which enter the forelimb at E3.5-E4 (HH21-HH24), have a progressively unfolding pattern that, once formed, remains essentially unchanged. The adult neurovascular pattern is not established until E8 (HH34). Peripheral nerves are always found to track close and parallel to the vasculature. As they track distally, peripheral nerves always lie on the side of the vasculature away from the center of the forelimb. Neurovascular patterns have a hierarchy of congruence that is highest in the dorsoventral plane, followed by the anteroposterior, and lastly the proximodistal planes.  相似文献   

17.
In vertebrate definitive hematopoiesis, nascent hematopoietic stem/progenitor cells (HSPCs) migrate to and reside in proliferative hematopoietic microenvironment for transitory expansion. In this process, well-established DNA damage response pathways are vital to resolve the replication stress, which is deleterious for genome stability and cell survival. However, the detailed mechanism on the response and repair of the replication stress-induced DNA damage during hematopoietic progenitor expansion remains elusive. Here we report that a novel zebrafish mutantcas003 with nonsense mutation in topbp1 gene encoding topoisomerase II β binding protein 1 (TopBP1) exhibits severe definitive hematopoiesis failure. Homozygous topbp1cas003 mutants manifest reduced number of HSPCs during definitive hematopoietic cell expansion, without affecting the formation and migration of HSPCs. Moreover, HSPCs in the caudal hematopoietic tissue (an equivalent of the fetal liver in mammals) in topbp1cas003 mutant embryos are more sensitive to hydroxyurea (HU) treatment. Mechanistically, subcellular mislocalization of TopBP1cas003 protein results in ATR/Chk1 activation failure and DNA damage accumulation in HSPCs, and eventually induces the p53-dependent apoptosis of HSPCs. Collectively, this study demonstrates a novel and vital role of TopBP1 in the maintenance of HSPCs genome integrity and survival during hematopoietic progenitor expansion.  相似文献   

18.
The c-myc proto-oncogene, which is crucial for the progression of many human cancers, has been implicated in key cellular processes in diverse cell types, including endothelial cells that line the blood vessels and are critical for angiogenesis. The de novo differentiation of endothelial cells is known as vasculogenesis, whereas the growth of new blood vessels from pre-existing vessels is known as angiogenesis. To ascertain the function of c-myc in vascular development, we deleted c-myc in selected cell lineages. Embryos lacking c-myc in endothelial and hematopoietic lineages phenocopied those lacking c-myc in the entire embryo proper. At embryonic day (E) 10.5, both mutant embryos were grossly normal, had initiated primitive hematopoiesis, and both survived until E11.5-12.5, longer than the complete null. However, they progressively developed defective hematopoiesis and angiogenesis. The majority of embryos lacking c-myc specifically in hematopoietic cells phenocopied those lacking c-myc in endothelial and hematopoietic lineages, with impaired definitive hematopoiesis as well as angiogenic remodeling. c-myc is required for embryonic hematopoietic stem cell differentiation, through a cell-autonomous mechanism. Surprisingly, c-myc is not required for vasculogenesis in the embryo. c-myc deletion in endothelial cells does not abrogate endothelial proliferation, survival, migration or capillary formation. Embryos lacking c-myc in a majority of endothelial cells can survive beyond E12.5. Our findings reveal that hematopoiesis is a major function of c-myc in embryos and support the notion that c-myc functions in selected cell lineages rather than in a ubiquitous manner in mammalian development.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号