首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In gait analysis, the concepts of Euler and helical (screw) angles are used to define the three-dimensional relative joint angular motion of lower extremities. Reliable estimation of joint angular motion depends on the accurate definition and construction of embedded axes within each body segment. In this paper, using sensitivity analysis, we quantify the effects of uncertainties in the definition and construction of embedded axes on the estimation of joint angular motion during gait. Using representative hip and knee motion data from normal subjects and cerebral palsy patients, the flexion-extension axis is analytically perturbed +/- 15 degrees in 5 degrees steps from a reference position, and the joint angles are recomputed for both Euler and helical angle definitions. For the Euler model, hip and knee flexion angles are relatively unaffected while the ab/adduction and rotation angles are significantly affected throughout the gait cycle. An error of 15 degrees in the definition of flexion-extension axis gives rise to maximum errors of 8 and 12 degrees for the ab/adduction angle, and 10-15 degrees for the rotation angles at the hip and knee, respectively. Furthermore, the magnitude of errors in ab/adduction and rotation angles are a function of the flexion angle. The errors for the ab/adduction angles increase with increasing flexion angle and for the rotation angle, decrease with increasing flexion angle. In cerebral palsy patients with flexed knee pattern of gait, this will result in distorted estimation of ab/adduction and rotation. For the helical model, similar results are obtained for the helical angle and associated direction cosines.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The purpose of this study was to investigate the force-frequency relationships and the post-tetanic twitch potentiation as a function of joint angle (i.e. muscle length) in human skeletal muscles under isometric conditions. The dorsiflexor muscles of healthy subjects were stimulated at different ankle joint angles by means of constant frequency bursts at seven submaximal frequencies (50, 33, 25, 20, 16, 12, 8 Hz) with a duration of two seconds. Particular attention has been focused on the stability of recruitment in the range of joint angles examined. The results show that moment-frequency curves of human dorsiflexors change as a function of ankle angle: especially for the lower stimulation frequency range (8, 12, 16, 20 Hz), the normalized moment increases from dorsiflexion to plantar flexion (i.e. with increasing muscle length) resulting in a leftward shift of the normalized moment-frequency curves. Post-tetanic twitch potentiation is shown to be ankle joint dependent as well.  相似文献   

3.
The maize mutant lilliputian is characterized by miniature seedling stature, reduced cell elongation, and aberrant root anatomy. Here, we document that root cells of this mutant show several defects in the organization of actin filaments (AFs). Specifically, cells within the meristem lack dense perinuclear AF baskets and fail to redistribute AFs during mitosis. In contrast, mitotic cells of wild-type roots accumulate AFs at plasma membrane-associated domains that face the mitotic spindle poles. Both mitotic and early postmitotic mutant cells fail to assemble transverse arrays of cortical AFs, which are characteristic for wild-type root cells. In addition, early postmitotic cells show aberrant distribution of endoplasmic AF bundles that are normally organized through anchorage sites at cross-walls and nuclear surfaces. In wild-type root apices, these latter AF bundles are organized in the form of symmetrically arranged conical arrays and appear to be essential for the onset of rapid cell elongation. Exposure of wild-type and cv. Alarik maize root apices to the F-actin drugs cytochalasin D and latrunculin B mimics the phenotype of lilliputian root apices. In contrast to AFs, microtubules are more or less normally organized in root cells of lilliputian mutant. Collectively, these data suggest that the LILLIPUTIAN protein, the nature of which is still unknown, impinges on plant development via its action on the actin cytoskeleton.  相似文献   

4.
Quantifying angular joint kinematics of the upper body is a useful method for assessing upper limb function. Joint angles are commonly obtained via motion capture, tracking markers placed on anatomical landmarks. This method is associated with limitations including administrative burden, soft tissue artifacts, and intra- and inter-tester variability. An alternative method involves the tracking of rigid marker clusters affixed to body segments, calibrated relative to anatomical landmarks or known joint angles. The accuracy and reliability of applying this cluster method to the upper body has, however, not been comprehensively explored. Our objective was to compare three different upper body cluster models with an anatomical model, with respect to joint angles and reliability. Non-disabled participants performed two standardized functional upper limb tasks with anatomical and cluster markers applied concurrently. Joint angle curves obtained via the marker clusters with three different calibration methods were compared to those from an anatomical model, and between-session reliability was assessed for all models. The cluster models produced joint angle curves which were comparable to and highly correlated with those from the anatomical model, but exhibited notable offsets and differences in sensitivity for some degrees of freedom. Between-session reliability was comparable between all models, and good for most degrees of freedom. Overall, the cluster models produced reliable joint angles that, however, cannot be used interchangeably with anatomical model outputs to calculate kinematic metrics. Cluster models appear to be an adequate, and possibly advantageous alternative to anatomical models when the objective is to assess trends in movement behavior.  相似文献   

5.
6.
Actin filament (AF) organization was studied during the plasmolytic cycle in leaf cells of Chlorophyton comosum Thunb. In most cells the hyperosmotic treatment induced convex or concave plasmolysis and intense reorganization of the AF cytoskeleton. Thin cortical AFs disappeared and numerous cortical, subcortical and endoplasmic AFs arranged in thick and well-organized bundles were formed. Plasmolysed cells displayed a significant increase in the overall AF content compared with the control cells. Cortical AF bundles were preferentially localized in the shrunken protoplast areas, lining the detached plasmalemma regions. The endoplasmic AF bundles were mainly found in the perinuclear cytoplasm and on the tonoplast surface. AFs also traversed some of the Hechtian strands. AF disorganization after cytochalasin B (CB) treatment induced dramatic changes in the pattern of plasmolysis, which lasted for a longer time and led to a greater decrease of the protoplast volume compared to the untreated cells. In many of the above cells the protoplasts assumed an 'amoeboid' form and were often subdivided into sub-protoplasts. Soon after the removal of the plasmolytic solution both CB-treated and untreated cells were deplasmolysed, while the AF cytoskeleton gradually reassumed the organization observed in the control cells. The findings of this study revealed for the first time in angiosperm cells that plasmolysis triggers an extensive reorganization of the AF cytoskeleton, which is involved in the regulation of protoplast shape and volume. The probable mechanism(s) leading to AF reorganization as well as the function(s) of the atypical AF arrays in plasmolysed cells are discussed.  相似文献   

7.
In eukaryotic cells, the actin and microtubule (MT) cytoskeletal networks are dynamic structures that organize intracellular processes and facilitate their rapid reorganization. In plant cells, actin filaments (AFs) and MTs are essential for cell growth and morphogenesis. However, dynamic interactions between these two essential components in live cells have not been explored. Here, we use spinning-disc confocal microscopy to dissect interaction and cooperation between cortical AFs and MTs in Arabidopsis thaliana, utilizing fluorescent reporter constructs for both components. Quantitative analyses revealed altered AF dynamics associated with the positions and orientations of cortical MTs. Reorganization and reassembly of the AF array was dependent on the MTs following drug-induced depolymerization, whereby short AFs initially appeared colocalized with MTs, and displayed motility along MTs. We also observed that light-induced reorganization of MTs occurred in concert with changes in AF behavior. Our results indicate dynamic interaction between the cortical actin and MT cytoskeletons in interphase plant cells.  相似文献   

8.
Reaggregation of dissociated cells of marine sponges, resulting in reformation of functional sponges, is a calcium-dependent process mediated by large, proteoglycan-like molecules termed aggregation factors (AF). During aggregation, species-specific sorting of cells is often observed. We purified and characterized AFs from three different sponge species and investigated their role in species-specific aggregation using novel approaches. The calcium-dependent association between purified AFs is species-specific in most combinations, as was shown in overlay assays and bead-sorting assays with AFs immobilized onto colored beads. Species-specific interactions of living cells and AF-beads resulted in incorporation of only homospecific AF-beads into reforming cell aggregates. Sequences from peptides obtained from the AF core proteins could all be aligned to the sequence of one species, the Microciona prolifera AFp3 core protein. In contrast to this similarity, major species-specific differences were seen in carbohydrate composition and in the response of AFs to specific carbohydrate-recognizing antibodies. In summary, our data point to a prominent role for the calcium-dependent association of AFs in recognition processes during aggregation. As this association of AFs occurs via carbohydrate-carbohydrate interactions, we speculate that the specificity of those interactions may be fundamental to recognition mechanisms required for regeneration of individuals from dissociated cells and for rejection of foreign material by sponge individuals.  相似文献   

9.
10.
Reaggrcgation of dissociated cells of marine sponges, resulting in reformation of functional sponges, is a calcium-dependent process mediated by large, proteoglycan-like molecules termed aggregation factors (AF). During aggregation, species-specific sorting of cells is often observed. We purified and characterized AFs from three different sponge species and investigated their role in species-specific aggregation using novel approaches. The calcium-dependent association between purified AFs is species-specific in most combinations, as was shown in overlay assays and bead-sorting assays with AFs immobilized onto colored beads. Species-specific interactions of living cells and AF-beads resulted in incorporation of only homospecific AF-beads into reforming cell aggregates. Sequences from peptides obtained from the AF core proteins could all be aligned to the sequence of one species, the Microciona prolifera AFp3 core protein. In contrast to this similarity, major species-specific differences were seen in carbohydrate composition and in the response of AFs to specific carbohydrate-recognizing antibodies. In summary, our data point to a prominent role for the calcium-dependent association of AFs in recognition processes during aggregation. As this association of AFs occurs via carbohydrate -carbohydrate interactions, we speculate that the specificity of those interactions may be fundamental to recognition mechanisms required for regeneration of individuals from dissociated cells and for rejection of foreign material by sponge individuals.  相似文献   

11.
To estimate hip joint angles during selected motor tasks using stereophotogrammetric data, it is necessary to determine the hip joint centre position. The question is whether the errors affecting that determination propagate less to the angles estimates when a three degrees of freedom (DOFs) constraint (spherical hinge) is used between femur and pelvis, rather than when the two bones are assumed to be unconstrained (six DOFs). An analytical relationship between the hip joint centre location error and the joint angle error was obtained limited to the planar case. In the 3-D case, a similar relationship was obtained using a simulation approach based on experimental data. The joint angle patterns resulted in a larger distortion using a constrained approach, especially when wider rotations occur. The range of motion of the hip flexion-extension, obtained simulating different location errors and without taking into account soft tissue artefacts, varied approximately 7 deg using a constrained approach and up to 1 deg when calculated with an unconstrained approach. Thus, the unconstrained approach should be preferred even though its estimated three linear DOFs most unlikely carry meaningful information.  相似文献   

12.
Muscle strength (or muscular moment) generated during dynamic contractions varies with joint angle. This raises the question about the choice of a representative angle in the evaluation of strength capacity. To assess this angle dependency in strength measurements, dynamic moment-angle curves for plantar flexor muscles were obtained in 43 healthy subjects (28 men and 15 women) with a controlled acceleration dynamometer at 0.52 rad s-1 (30 degrees s-1) and using maximal static preloading before the beginning of movement to attenuate the force development phase. Differences between gender and correlations between strength and anthropometric measures were calculated at each 0.087 rad (5 degrees). The plantar flexion moment was larger in men, in general, but this difference was largest when the ankle was most dorsiflexed. The correlations between moment and anthropometric measures were also higher in the first half of the plantar flexion movement. These results stress the importance of reporting joint angles at which moment of force measures were made. Furthermore, they show that the maximal strength capacity of the plantar flexors is best represented by the moment measured in dorsiflexion angles when the muscles are lengthened.  相似文献   

13.
In many types of plant cell, bundles of actin filaments (AFs) are generally involved in cytoplasmic streaming and the organization of transvacuolar strands. Actin cross-linking proteins are believed to arrange AFs into the bundles. In root hair cells of Hydrocharis dubia (Blume) Baker, a 135-kDa polypeptide cross-reacted with an antiserum against a 135-kDa actin-bundling protein (135-ABP), a villin homologue, isolated from lily pollen tubes. Immunofluorescence microscopy revealed that the 135-kDa polypeptide co-localized with AF bundles in the transvacuolar strand and in the sub-cortical region of the cells. Microinjection of antiserum against 135-ABP into living root hair cells induced the disappearance of the transvacuolar strand. Concomitantly, thick AF bundles in the transvacuolar strand dispersed into thin bundles. In the root hair cells, AFs showed uniform polarity in the bundles, which is consistent with the in-vitro activity of 135-ABP. These results suggest that villin is a factor responsible for bundling AFs in root hair cells as well as in pollen tubes, and that it plays a key role in determining the direction of cytoplasmic streaming in these cells. Received: 16 September 1999 / Accepted: 3 December 1999  相似文献   

14.
Clinical gait analysis usually describes joint kinematics using Euler angles, which depend on the sequence of rotation. Studies have shown that pelvic obliquity angles from the traditional tilt-obliquity-rotation (TOR) Euler angle sequence can deviate considerably from clinical expectations and have suggested that a rotation-obliquity-tilt (ROT) Euler angle sequence be used instead. We propose a simple alternate approach in which clinical joint angles are defined and exactly calculated in terms of Euler angles from any rotation sequence. Equations were derived to calculate clinical pelvic elevation, progression, and lean angles from TOR and ROT Euler angles. For the ROT Euler angles, obliquity was exactly the same as the clinical elevation angle, rotation was similar to the clinical progression angle, and tilt was similar to the clinical lean angle. Greater differences were observed for TOR. These results support previous findings that ROT is preferable to TOR for calculating pelvic Euler angles for clinical interpretation. However, we suggest that exact clinical angles can and should be obtained through a few extra calculations as demonstrated in this technical note.  相似文献   

15.
The present study was undertaken to evaluate the effects of whole amniotic fluid (AF) and fractions of AF on amnion cell prostaglandin E2 (PGE2) production. Amnion cells were grown to confluence and then incubated in the presence of AF, or fractions thereof, obtained at 17-19 weeks gestation (MID), at term prior to the onset of labor (NIL), and at term after spontaneous onset of labor (LABOR). All whole AFs were stimulatory to amnion cell PGE2 production (p less than 0.001) but the stimulation by NIL and LABOR AFs was significantly greater (p less than 0.001) than stimulation by the MID AF. Fractionation of the AFs from the three groups (n = 9-10 per group) revealed multiple discernable peaks of stimulatory activity in each group. The majority of peaks had retention times that were similar among the three groups, and peak stimulatory activities were greater in NIL and LABOR samples than in MID samples.  相似文献   

16.
Predicting the hand and fingers posture during grasping tasks is an important issue in the frame of biomechanics. In this paper, a technique based on neural networks is proposed to learn the inverse kinematics mapping between the fingertip 3D position and the corresponding joint angles. Finger movements are obtained by an instrumented glove and are mapped to a multichain model of the hand. From the fingertip desired position, the neural networks allow predicting the corresponding finger joint angles keeping the specific subject coordination patterns. Two sets of movements are considered in this study. The first one, the training set, consisting of free fingers movements is used to construct the mapping between fingertip position and joint angles. The second one, constructed for testing purposes, is composed of a sequence of grasping tasks of everyday-life objects. The maximal mean error between fingertip measured position and fingertip position obtained from simulated joint angles and forward kinematics is 0.99+/-0.76mm for the training set and 1.49+/-1.62mm for the test set. Also, the maximal RMS error of joint angles prediction is 2.85 degrees and 5.10 degrees for the training and test sets respectively, while the maximal mean joint angles prediction error is -0.11+/-4.34 degrees and -2.52+/-6.71 degrees for the training and test sets, respectively. Results relative to the learning and generalization capabilities of this architecture are also presented and discussed.  相似文献   

17.
The role of actin filaments in rhizoid morphogenesis was studied in Spirogyra . When the algal filaments were severed, new terminal cells started tip growth and finally formed rhizoids. Actin inhibitors, latrunculin B and cytochalasin D, reversibly inhibited the process. A mesh-like structure of actin filaments (AFs) was formed at the tip region. Gd3+ inhibited tip growth and decreased AFs in the tip region. Either a decrease in turgor pressure or lowering of the external Ca2+ concentration also induced similar results. It was suggested that the mesh-like AF structure is indispensable for the elongation of rhizoids. A possible organization mechanism of the mesh-like AF structure was discussed.  相似文献   

18.
The influence of elbow joint angle on elbow flexor isometric evoked twitch contractile properties was assessed in 15 young women (F), 18 young men (M) and 11 male bodybuilders (BB). Measurements were made at elbow joint angles of 1.31, 1.57, 1.83, 2.09, 2.36, 2.62 and 2.88 rad (3.14 rad =180° =full extension). The largest peak twitch torque values [mean (SE) N · m] in F [3.77 (0.20)], M [10.38 (0.68)] and BB [11.38 (1.05)] occurred at 2.88 rad. Peak torque was progressively smaller at smaller joint angles, but the decline from 2.88 to 1.31 rad was greater in M (68%) and BB (76%) than F (59%). Thus, the magnitude of intergroup differences in peak twitch torque (PT) was joint angle dependent. Twitch time to peak torque (TPT) was influenced in a complex way by joint angle in the three groups; BB had the lowest values at small joint angles but the highest values at the largest angles. Half-relaxation time (HRT) generally increased from the smallest to largest joint angles in a pattern that did not differ significantly among the three groups. Maximum rates of twitch torque development and relaxation showed the same pattern of results as PT; indicating that these time-related measures were more sensitive to joint angle effects on PT than on TPT or HRT. The results of this study indicate that careful consideration should be given to the selection of joint angles in the measurement of evoked twitch contractile properties for the purpose of making group comparisons or investigating the effects of interventions such as training.  相似文献   

19.
An inertial and magnetic sensor based technique for joint angle measurement   总被引:1,自引:0,他引:1  
This paper describes the design and evaluation of a miniature kinematic sensor based three dimensional (3D) joint angle measurement technique. The technique uses a combination of rate gyroscope, accelerometer and magnetometer sensor signals. The technique enables 3D inter-segment joint angle measurement and could be of benefit in a variety of applications which require monitoring of joint angles. The technique is not dependent on a fixed reference coordinate system and thus may be suitable for use in a dynamic system such as a moving vehicle. The technique was evaluated by applying it to joint angle measurement of the ankle joint. Experimental results show that accurate measurement of ankle joint angles is achieved by the technique during a variety of lower leg exercises including walking.  相似文献   

20.
As a first step towards developing a dynamic model of the rat hindlimb, we measured muscle attachment and joint center coordinates relative to bony landmarks using stereophotogrammetry. Using these measurements, we analyzed muscle moment arms as functions of joint angle for most hindlimb muscles, and tested the hypothesis that postural change alone is sufficient to alter the function of selected muscles of the leg. We described muscle attachment sites as second-order curves. The length of the fit parabola and residual errors in the orthogonal directions give an estimate of muscle attachment sizes, which are consistent with observations made during dissection. We modeled each joint as a moving point dependent on joint angle; relative endpoint errors less than 7% indicate this method as accurate. Most muscles have moment arms with a large range across the physiological domain of joint angles, but their moment arms peak and vary little within the locomotion domain. The small variation in moment arms during locomotion potentially simplifies the neural control requirements during this phase. The moment arms of a number of muscles cross zero as angle varies within the quadrupedal locomotion domain, indicating they are intrinsically stabilizing. However, in the bipedal locomotion domain, the moment arms of these muscles do not cross zero and thus are no longer intrinsically stabilizing. We found that muscle function is largely determined by the change in moment arm with joint angle, particularly the transition from quadrupedal to bipedal posture, which may alter an intrinsically stabilizing arrangement or change the control burden.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号