首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Disturbance may generate population bottlenecks by reducing population size and the number of founders establishing a new colony. We tested the hypothesis that the scale of disturbance affects the levels of genetic diversity and the spatial distribution of genotypes in naturally regenerating stands of Nothofagus dombeyi, an evergreen angiosperm tree, in northwestern Patagonia. At similar spatial scales, we predicted that old-growth stands characterized by fine-scale gap phase dynamics would be genetically diverse due to restricted gene flow among temporal and spatially isolated gaps. In contrast, young massively regenerated postfire cohorts resulting from coarse-scale disturbances would be genetically more homogeneous. At each of three paired old-growth and postfire stands a minimum of 50 trees were mapped and sampled within 1 ha. Fresh tissue was collected for isozyme analysis from a total of 361 trees along with tree cores and diameters. Tree age distributions reflected the dominant modes of regeneration. Six out of nine analysed loci were polymorphic. Mean genetic diversity parameters were greater but not significant in mature stands. Fixation indices suggested significant heterozygous deficit at two-thirds of possible tests indicating a Wahlund effect due to local recruitment of related seeds. F(ST) indicated moderate between-stand divergence. Mature stands concentrated half of positively like joins and yielded significant (P < 0.05) autocorrelation coefficients at small distance classes (< 20 m). Fine-scale patch dynamics within mature stands favours the maintenance of fine-scale genetic structure as a result of shade intolerance and local seed dispersal. Conversely, postfire stands suffer the effects of genetic drift given that a few reproductive trees produce a somewhat impoverished and genetically uniform progeny. Bottleneck effects will depend upon the density of remnant trees which could also be a function of the severity of fire.  相似文献   

2.
Forest-management practices relying on natural and/or artificial regeneration and domestication can significantly affect genetic diversity. The aim of the present study was to determine and compare the genetic diversity of the pristine old-growth, naturally and artificially regenerated and phenotypically selected white spruce, and to determine the genetic-diversity impacts of silvicultural practices. Genetic diversity was determined and compared for 51 random amplified polymorphic DNA (RAPD) loci for the adjacent natural old-growth, naturally regenerated and planted white spruce stands at each of four sites, one oldest plantation and open-pollinated progeny of 30 phenotypic tree-improvement selections of white spruce from Saskatchewan. Each of the 420 white spruce individuals sampled was genetically unique. The old-growth stands had the highest, and the phenotypic selections the lowest, genetic diversity. The genetic diversity of the natural regeneration was comparable to that of the old-growth, whereas the genetic diversity of the plantations was comparable to that of the selections. On average, the genetic diversity of the old-growth and natural regeneration was significantly higher than that of the plantations and selections. The mean percent of loci polymorphic, the number of alleles per locus, the effective number of alleles per locus, heterozygosity, and Shannon’s index was 88.7, 83.8, 72.2 and 66.7; 1.89, 1.84, 1.72 and 1.67; 1.69, 1.62, 1.53 and 1.46; 0.381, 0.349, 0.297 and 0.259; and 0.548, 0.506, 0.431 and 0.381 for the old-growth stands; natural regeneration; plantations; and open-pollinated progeny of selections; respectively. Reduced genetic diversity in the plantations and selections suggest that their genetic base is relatively narrow, and should therefore be broadened in order to maintain genetic diversity, and sustainably manage and conserve white spruce genetic resources. Received: 12 March 1999 / Accepted: 17 March 1999  相似文献   

3.
Remnant trees, spared from cutting when tropical forests are cleared for agriculture or grazing, act as nuclei of forest regeneration following field abandonment. Previous studies on remnant trees were primarily conducted in active pasture or old fields abandoned in the previous 2–3 years, and focused on structure and species richness of regenerating forest, but not species composition. Our study is among the first to investigate the effects of remnant trees on neighborhood forest structure, biodiversity, and species composition 20 years post-abandonment. We compared the woody vegetation around individual remnant trees to nearby plots without remnant trees in the same second-growth forests (“control plots”). Forest structure beneath remnant trees did not differ significantly from control plots. Species richness and species diversity were significantly higher around remnant trees. The species composition around remnant trees differed significantly from control plots and more closely resembled the species composition of nearby old-growth forest. The proportion of old-growth specialists and generalists around remnant trees was significantly greater than in control plots. Although previous studies show that remnant trees may initially accelerate secondary forest growth, we found no evidence that they locally affect stem density, basal area, and seedling density at later stages of regrowth. Remnant trees do, however, have a clear effect on the species diversity, composition, and ecological groups of the surrounding woody vegetation, even after 20 years of forest regeneration. To accelerate the return of diversity and old-growth forest species into regrowing forest on abandoned land, landowners should be encouraged to retain remnant trees in agricultural or pastoral fields.  相似文献   

4.
Problems with oak regeneration have been documented in the last 50 years at numerous sites in the Midwestern United States. We applied nuclear microsatellites to examine the demographic and fine-scale spatial genetic structure of red oaks in two old-growth stands in Indiana. Oaks in one stand have declined in numbers over the past several decades whereas oaks in the other, smaller stand have increased. Large amounts of genetic variation were maintained within stands, and there was slight but significant differentiation among stands. There was significant but weak isolation by distance genetic structure within the large stand, likely reflecting family structure. No significant differences exist in allele frequencies or in levels of genetic diversity between cohorts that remain well represented within each stand, even between medium-sized adults and those antedating European settlement of the area. However, a virtual absence of smaller size classes in the forest interior of the large stand represents the early stages of a genetic bottleneck in what had been the core habitat of this stand. Whether future generations of this old-growth stand will retain the present genetic character depends on the oaks regenerating at the forest margins, absent any major changes in disturbance regimes. Similar demographic and genetic dynamics are likely occurring in a large number of remnant oak forests across the Midwest.  相似文献   

5.
濒危植物大果木莲种群格局及濒危原因分析   总被引:1,自引:0,他引:1  
采用径级结构代替年龄结构以及方差均值比率法对木兰科(Magnoliaceae)木莲属(Manglietia Bl.)濒危植物大果木莲(Manglietia grandis Hu et Cheng)种群的年龄结构和种群格局进行了研究,并编制了大果木莲种群的特定时间生命表和存活曲线;结合生殖生物学特征以及遗传多样性研究结果,分析了导致大果木莲濒危的主要原因.根据株高和胸径可分别将大果木莲种群的年龄结构分为5级、高度结构分为6级;在大果木莲的5个年龄结构分级中,成年个体较多,幼年个体较少;其高度结构完整,个体高度主要在20 m以下.种群的方差均值比率为0.838 3,其空间分布格局属于随机分布.根据特定时间生命表可将大果木莲种群的发育分为3个阶段:幼树阶段(年龄级为Ⅱ~Ⅲ级)、成树阶段(年龄级为Ⅲ~Ⅳ级)、老树阶段(年龄级为Ⅳ~Ⅴ级),其中成树阶段个体死亡率最低.大果木莲种群存活曲线接近Deevey Ⅰ型,属于衰退型种群.种群自我更新能力差、种子生产力低下、有性生殖困难、生境片断化导致的基因流受限以及人为干扰是大果木莲濒危的主要原因.针对大果木莲濒危现状和致危原因,提出了相应的保护对策和建议.  相似文献   

6.
In hyper fragmented biomes, conservation of extant biota relies on preservation and proper management of remnants. The maintenance of genetic diversity and functional connectivity in a landscape context is probably key to long-term conservation of remnant populations. We measured the genetic diversity in seedlings and adults of tree Copaifera langsdorffii and evaluated whether edge and density-dependent effects drive natural regeneration in a set of very small and degraded Brazilian Atlantic forest fragments. We evaluated the role of small remnants in the conservation of genetic diversity in a hyper fragmented landscape and discuss the challenge of long-term population sustainability of such altered habitats. High genetic diversity in adults indicated these fragments are valuable targets for C. langsdorffii in situ conservation, but both genetic diversity and divergence among patches decreased in seedlings. In our landscape, regeneration increased as it neared edges and adults; suggesting this population is resilient to fragmentation. However, at a broader scale, current levels of gene flow have not been sufficient to prevent the loss of genetic diversity across generations. Restoration plans, even at a small scale, are necessary to promote fragment connectivity and spatially expand opportunities for the fairly restricted gene flow observed in this severely fragmented Brazilian Atlantic forest region.  相似文献   

7.
Distributions of lucidophyllous species are limited due to the fragmentation of laurel forest. On Komayama Hill in central Japan, we evaluated the colonization of typical lucidophyllous vascular plants from a 350-year-old laurel forest into adjacent abandoned secondary forest for conservation and restoration purposes. A total of 14 consecutive subplots were established along the vegetation border between the two forests (length, 30 m; width, 5 m), extending 70 m into the secondary forest; 18 quadrats of old-growth forest were surveyed. Edge effects of old-growth forest were found to play an important role in re-establishing lucidophyllous saplings and seedlings in the secondary forest. In particular, the abundances of the four dominant canopy species of the old-growth forest significantly decreased with increasing distance. Hence, they are expected to colonize further into the secondary forest and, ultimately, to dominate the canopy. However, the number of lucidophyllous species did not change with distance. Species such as Ficus nipponica, Damnacanthus indicus, Ilex integra, and Lemmaphyllum microphyllum were near-completely or completely limited to the old-growth forest. They are known to be negatively affected by forest fragmentation and were observed to be struggling to colonize the exterior of the old-growth forest even after 60 years of abandonment. Their absence highlighted the limited colonization capacities of some old-growth forest species and underlined the time required for habitat restoration following human disturbance. We conclude that it is important to consider the population dynamics of dominant canopy species and the colonization of these interior species when assessing the habitat expansion of lucidophyllous species and hence the restoration of degraded lands.  相似文献   

8.
研究群落构建机制是群落生态学的一个重要目标, 群落动态过程中的构建规律对于了解群落演替机理有重要的作用。该文以海南岛刀耕火种干扰后自然恢复的10 hm 2热带低地雨林为研究对象, 通过比较不同恢复阶段的次生林(15年、30年和60年)和老龄林在幼苗、幼树和成年树群落的物种组成, 揭示次生演替过程中的群落构建规律。研究结果表明, 老龄林中不同径级群落的物种多样性及不同径级间的物种相似度显著高于各恢复阶段的次生林, 但优势种在群落中的比例低于各恢复阶段的次生林。随着自然恢复过程的进行, 次生林群落物种组成与老龄林的相似性也逐渐增大, 支持演替平衡理论。所有恢复阶段样地中幼苗的个体、物种丰富度和基于多度涵盖估计量(ACE)都低于幼树和成年树群落, 幼苗层物种组成与幼树、成年树也有较大差异, 说明新增到幼苗群落可能是一个难于预测的过程。研究结果说明了确定过程和随机过程共同决定了次生演替的群落构建。  相似文献   

9.
Changes in the forest management practices have strongly influenced the distribution of species inhabiting old-growth forests. The epiphytic woodland lichen Lobaria pulmonaria is frequently used as a model species to study the factors affecting the population biology of lichens. We sampled 252 L. pulmonaria individuals from 12 populations representing three woodland types differing in their ecological continuity and management intensity in Estonia. We used eight mycobiont-specific microsatellite loci to quantify genetic diversity among the populations. We calculated the Sørensen distance to estimate genetic dissimilarity among individuals within populations. We revealed that L. pulmonaria populations have significantly higher genetic diversity in old-growth forests than in managed forests and wooded meadows. We detected a significant woodland-type-specific pattern of genetic dissimilarity among neighbouring L. pulmonaria individuals, which suggests that in wooded meadows and managed forests dominating is vegetative reproduction. The vegetative dispersal distance between the host trees of L. pulmonaria was found to be only 15–30 m. Genetic dissimilarity among individuals was also dependent on tree species and trunk diameter. Lobaria pulmonaria populations in managed forests included less juveniles compared to old-growth forests and wooded meadows, indicating that forest management influences life stage structure within populations. We conclude that as intensive stand management reduces the genetic diversity of threatened species in woodland habitats, particular attention should be paid to the preservation of remnant populations in old-growth habitats. Within managed habitats, conservation management should target on maintenance of the stand’s structural diversity and availability of potential host trees.  相似文献   

10.
Dysoxylum malabaricum (white cedar) is an economically important tree species, endemic to the Western Ghats, India, which is the world’s most densely populated biodiversity hotspot. In this study, we used variation at ten nuclear simple sequence repeat loci to investigate genetic diversity and fine scale spatial genetic structure (FSGS) in seedlings and adults of D. malabaricum from four forest patches in the northern part of the Western Ghats. When genetic variation was compared between seedlings and adults across locations, significant differences were detected in allelic richness, observed heterozygosity, fixation index (F IS), and relatedness (P < 0.05). Reduced genetic diversity and increased relatedness at the seedling stage might be due to fragmentation and disturbance. There was no FSGS at the adult stage and FSGS was limited to shorter distance classes at the seedling stage. However, there was clear spatial genetic structure at the landscape level (<50 km), regardless of age class, due to limited gene flow between forest patches. A comparison of the distributions of size classes in the four locations with published data from a more southern area, showed that large trees (diameter at breast height, DBH, >130 cm) are present in the southern sacred forests but not in the northern forest reserves. This pattern is likely due to stronger harvesting pressure in the north compared to the south, because in the north there are no cultural taboos regulating the extraction of natural resources. The implications for forest conservation in this biodiversity hotspot are discussed.  相似文献   

11.
Genetic variation of teak (Tectona grandis Linn. f.) in 16 populations in Myanmar was investigated using ten nuclear microsatellite markers. Eight population pairs from two main regions in the north and the south of Myanmar were sampled. Each population pair consisted of an unlogged and a recently logged forest, each represented by 50 adult trees and 50 seedlings from the natural regeneration. For comparison, two land races from Benin (West Africa) were included. The major objectives of the study are to characterize the patterns of genetic variation of teak in natural populations, to examine genetic differentiation between adult trees and natural regeneration, and to investigate the impact of selective logging on genetic structures of teak. Genetic variation was high in all investigated populations. Slightly elevated levels of inbreeding were observed in the regeneration in comparison to the adults. Populations from the northern and the southern regions were strongly differentiated, but the differentiation between adults and natural regeneration and between unlogged and logged forests was low and not significant. Mantel tests indicated an isolation by distance (IBD) within the northern and the southern regions. High genetic diversity was also observed within the land races from Benin, which grouped to the southern populations. We failed to detect effects of logging on genetic diversity patterns or inbreeding in adults and regeneration, suggesting that high genetic diversity can even be sampled and maintained in disturbed forests. The observation of significant IBD and high differentiation between the populations of the north and the south of Myanmar suggests to include populations from widely separated forests in conservation programs, and to delineate provenance regions for the harvest and transfer of teak seeds and seedlings.  相似文献   

12.
关帝山华北落叶松天然更新种群结构与空间格局研究   总被引:3,自引:0,他引:3  
华北落叶松(Larix principis—rupprechtii)是分布于华北山地半湿润地区针叶林的主要建群种之一。从种群的大小级结构、空间分布格局及动态等方面,研究了关帝山采伐迹地上华北落叶松天然更新种群的数量特征与空间格局。结果表明:(1)华北落叶松幼苗幼树缺乏,2.5cm〈DBH≤17.5cm的个体数量丰富,DBH〉17.5cm个体数量稀少,种群表现为衰退型,但华北落叶松较长的生命周期、数量丰富的中小径级个体和客观存在的林冠干扰,使得其依然可发展成为稳定的种群;(2)采伐迹地上华北落叶松幼苗幼树多为集群分布;2.5cm〈DBH≤7.5cm的林木在2m×2m的尺度下呈显著的集群分布,而随取样尺度增大,聚集性减弱,趋于随机分布;7.5cm〈DBH≤17.5cm的林木在各个取样尺度基本上呈随机分布,这与其自身的生物学特性和环境光照条件密切相关。  相似文献   

13.
Aim To assess the effects of altitude and historic and recent forest fragmentation on the genetic diversity and structure of the wind‐pollinated tropical tree line species Polylepis incana. Location One of the highest mountain forest regions of the world, located in the Eastern Cordillera of the Ecuadorian Andes. Methods We compared genetic diversity and structure of adult trees with those of seedlings (n= 118 in both cases) in nine forest stands spanning an altitudinal gradient from 3500 to 4100 m a.s.l. using amplified fragment length polymorphisms (AFLPs). Genetic diversity was calculated as percentage of polymorphic bands (P) and Nei's expected heterozygosity (He); genetic differentiation was assessed using analysis of molecular variance, ΦST statistics and Bayesian cluster analysis. Results Estimates of genetic diversity at the population level were significantly lower in seedlings than in adults. Genetic diversity (He‐value) was, in both cases, negatively correlated to altitude and positively correlated to population size in the seedlings. Genetic differentiation of the seedlings was approximately as high (φST= 0.298) as that of the adults (φST= 0.307), and geographical differentiation was clearly reflected in both AFLP profiles, with mountain ridges acting as barriers to gene flow. Main conclusions Our study provides evidence of a historic upslope migration of P. incana in central Ecuador. In addition, it highlights the detrimental effects of unexpectedly strong genetic isolation, both recent and historical, particularly for our wind‐pollinated species where the distance between forest stands was less than 25 km. We therefore additionally propose that in habitats with pronounced high‐mountain landscape structures, gene flow may be hampered to such an extent that species have a more pronounced sensitivity to habitat fragmentation, even among populations of wind‐pollinated trees.  相似文献   

14.
Arctomecon humilis is a critically endangered species endemic to the Moenkopi shale of Washington County, Utah. Recovery plans for the species would be improved by an understanding of genetic diversity and gene flow among its remaining populations. Ten variable isozyme loci were used to calculate genetic diversity statistics for study populations. Westerly populations possessed higher levels of genetic variability than other populations at the same isozyme loci. Three of the populations exhibited significant deviations from Hardy-Weinberg expectations. No correlation existed between genetic distance and geographic distance. Most of the genetic diversity was distributed among populations with little gene flow between populations, suggesting that observed genetic differences may arise from genetic drift. For the westerly populations, similar genotypes were observed in the seedling and old age classes, while intermediate age classes typically possessed an alternate set of genotypes at Pgi-2. Mean heterozygosity increased with age class across populations. Westerly populations of A. humilis shared more alleles with the nearest geographic population of A. californica than other populations. Since the westerly populations contained more genetic variability and more alleles in common with a near relative, they may be relictual. Other populations may contain less genetic diversity due to founder effects and/or genetic drift.  相似文献   

15.
Jones FA  Hubbell SP 《Molecular ecology》2006,15(11):3205-3217
We used genotypes from six microsatellite loci and demographic data from a large mapped forest plot to study changes in spatial genetic structure across demographic stages, from seed rain to seedlings, juveniles, and adult diameter classes in the Neotropical tree, Jacaranda copaia. In pairwise comparisons of genetic differentiation among demographic classes, only seedlings were significantly differentiated from the other diameter classes; F(ST) values ranged from 0.006 to 0.009. Furthermore, only seedlings showed homozygote excess suggesting biparental inbreeding in the large diameter reproductive adults. We found very low levels of relatedness in the first distance class of trees, 1-26 cm diameter (F(ij) = 0.011). However, there was a 5- to 10-fold rise in relatedness in the smallest distance class, from the smallest to the largest tree diameter classes (F(ij) = 0.110 for individuals > 56 cm diameter). A variety of non-mutually exclusive mechanisms have been invoked perviously to explain such a pattern, including natural selection, history, or nonequilibrium population dynamics. The long-term demographic data available for this species allow us to evaluate these mechanisms. Jacaranda is a fast-growing, light-demanding species with low recruitment rates and high mortality rates in the smaller diameter classes. It successfully regenerates only in large light gaps, which occur infrequently and stochastically in space and time. These factors contribute to the nonequilibrium population dynamics and observed low genetic structure in the small size classes. We conclude that the pattern of spatial genetic transitions in Jacaranda is consistent with overlapping related generations and strong but infrequent periods of high recruitment, followed by long periods of population decline.  相似文献   

16.
The impact of fragmentation by human activities on genetic diversity of forest trees is an important concern in forest conservation, especially in tropical forests. Dysoxylum malabaricum (white cedar) is an economically important tree species, endemic to the Western Ghats, India, one of the world's eight most important biodiversity hotspots. As D. malabaricum is under pressure of disturbance and fragmentation together with overharvesting, conservation efforts are required in this species. In this study, range‐wide genetic structure of twelve D. malabaricum populations was evaluated to assess the impact of human activities on genetic diversity and infer the species’ evolutionary history, using both nuclear and chloroplast (cp) DNA simple sequence repeats (SSR). As genetic diversity and population structure did not differ among seedling, juvenile and adult age classes, reproductive success among the old‐growth trees and long distance seed dispersal by hornbills were suggested to contribute to maintain genetic diversity. The fixation index (FIS) was significantly correlated with latitude, with a higher level of inbreeding in the northern populations, possibly reflecting a more severe ecosystem disturbance in those populations. Both nuclear and cpSSRs revealed northern and southern genetic groups with some discordance of their distributions; however, they did not correlate with any of the two geographic gaps known as genetic barriers to animals. Approximate Bayesian computation‐based inference from nuclear SSRs suggested that population divergence occurred before the last glacial maximum. Finally we discussed the implications of these results, in particular the presence of a clear pattern of historical genetic subdivision, on conservation policies.  相似文献   

17.
濒危物种--巴东木莲等位酶遗传变异的空间自相关分析   总被引:3,自引:0,他引:3  
采用空间自相关分析方法对巴东木莲目前残留的两个最大居群, 小溪居群的40个个体和桑植居群的28个个体等位酶遗传变异的空间结构进行了研究, 以揭示两居群遗传变异的空间模式, 并探讨其形成机制及与巴东木莲致濒原因、过程之间的关系。根据检测出来的8个酶系统的19个酶位点, 选择基因频率大于0 1小于0 9的等位基因, 运用等样本频率和等地理距离间隔两种方法分别计算两居群不同距离等级下的Moran’sI空间自相关系数。结果表明: 小尺度的小溪居群等位基因的遗传变异缺乏空间结构, 为随机分布模式。巴东木莲生境片断化的桑植居群则是相反的结果, 遗传变异存在明显的空间结构, 遗传变异空间分布为斑块状。造成这种差别的原因可能是桑植居群片断化和地理隔离造成的基因流的限制。上述结果为进一步制定有效的巴东木莲的保育措施提供科学的理论依据。  相似文献   

18.

Premise

Habitat fragmentation negatively affects population size and mating patterns that directly affect progeny fitness and genetic diversity; however, little is known about the effects of habitat fragmentation on dioecious, wind pollinated trees. We assessed the effects of habitat fragmentation on population sex ratios, genetic diversity, gene flow, mating patterns, and early progeny vigor in the tropical dioecious tree, Brosimum alicastrum.

Methods

We conducted our study in three continuous and three fragmented forest sites in a Mexican tropical dry forest. We used eight microsatellite loci to characterize the genetic diversity, gene flow via pollen distances, and mean relatedness of progeny. We compared early progeny vigor parameters of seedlings growing under greenhouse conditions.

Results

Sex ratios did not deviate from 1:1 between habitat conditions except for one population in a fragmented habitat, which was female biased. The genetic diversity of adult trees and their offspring was similar in both habitat conditions. Pollen gene flow distances were similar across habitat types; however, paternity correlations were greater in fragmented than in continuous habitats. Germination rates did not differ between habitat conditions; however, progeny from fragmented habitats produced fewer leaves and had a lower foliar area, total height, and total dry biomass than progeny from continuous habitats.

Conclusions

Changes in mating patterns because of habitat fragmentation have negative effects on early progeny vigor. We conclude that negative habitat fragmentation effects on mating patterns and early progeny vigor may be a serious threat to the long-term persistence of tropical dioecious trees.
  相似文献   

19.
Tree species composition and structure of a 40-year chronosequence of secondary forests was compared with old-growth forests in southern Bahia, Brazil. Twelve stands were randomly selected that represented three age classes: 10, 25, and 40 year old with four replications in each class. All stands selected had been established after abandonment from swidden cultivation and were surrounded by old-growth forests. In every stand, ten 0.01-ha transects were established and all stems (≥5 cm diameter at breast height) were measured and identified. Results were compared with the dataset of two neighboring old-growth sites. Mean diameter, total height, and stand basal area increased with age. Number of trees/ha peaked in 40 year old stands. The results showed that secondary forests in this region take much more than 40 years to recover the structure of old-growth forests. In contrast, species richness recovery was rapid with a continuous accumulation of species with age in secondary forests. Species richness and diversity increased with age as did similarity between secondary stands and old-growth stands. More than half of the species found in the 40 year old stands were shared with the neighboring old-growth forests. However, species richness and diversity were higher in old growth sites.  相似文献   

20.
Examining the fine-scale spatial structure of fungal populations can tell us much about how individual species reproduce and disperse throughout natural landscapes. Here we study the fine-scale genetic structure of Tricholoma matsutake, a prized edible and medicinal mushroom, by systematic sampling of mycorrhizas within fairy rings in 50-y-old and old-growth forests in two villages. Using single nucleotide polymorphism DNA markers we show that mycorrhizas in both forest age classes in both villages showed high levels of genotypic diversity, consistent with a reproductive life history predominated by outcrossing via basidiospore dispersal. Both the percentage of polymorphic loci within fairy rings, as well as genotype diversity were higher in old-growth compared to 50-y-old forests. Fifty-year-old forests showed significant spatial autocorrelation between pairs of mycorrhizas up to 42 m, and a pattern consistent isolation-by-distance structure. Spatial patterns in old-growth forests were random. Furthermore, AMOVA analysis indicates that 11 % of molecular variance in 50-y-old forests is partitioned between villages, whereas no significant variance is partitioned between villages in old-growth forests. We conclude that populations of T. matsutake in 50-y-old forests are the result of a founder effect maintained by local inoculation sources. This pattern attenuates as forests age and accumulate inocula from more distance sources. We speculate on how genetic mosaicism within T. matsutake fairy rings may structure populations within a chronosequence. Finally, we discuss how population spatial dynamics and dispersal strategy in T. matsutake contrast with other ectomycorrhizal species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号