首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of carbohydrates in the immunogenicity of human immunodeficiency virus type 1 (HIV-1) glycoproteins (gp160 and gp120) remains poorly understood. We have analyzed the specificity and neutralizing capacity of antibodies raised against native gp160 or against gp160 deglycosylated by either endo F-N glycanase, neuraminidase, or alpha-mannosidase. Rabbits immunized with these immunogens produced antibodies that recognized recombinant gp160 (rgp160) from HIV-1 in a radioimmunoassay and in an enzyme-linked immunosorbent assay. Antibodies elicited by the different forms of deglycosylated gp160 were analyzed for their reactivity against a panel of synthetic peptides. Compared with anti-native gp160 antisera, serum reactivity to most peptides remained unchanged, or it could increase (peptide P41) or decrease. Only antibodies raised against mannosidase-treated gp160 failed to react with a synthetic peptide (peptide P29) within the V3 loop of gp120. Rabbits immunized with desialylated rgp160 generated antibodies which recognized not only rgp160 from HIV-1 but also rgp140 from HIV-2 at high titers. Although all antisera produced against glycosylated or deglycosylated rgp160 could prevent HIV-1 binding to CD4-positive cells in vitro, only antibodies raised against native or desialylated gp160 neutralized HIV-1 infectivity and inhibited syncytium formation between HIV-1-infected cells and noninfected CD4-positive cells, whereas antibodies raised against alpha-mannosidase-treated gp160 inhibited neither virus replication nor syncytium formation. These findings indicate that the carbohydrate moieties of gp160 can modulate the specificity and the protective efficiency of the antibody response to the molecule.  相似文献   

2.
A total of 70 human immunodeficiency virus type 1 (HIV-1) and 42 HIV-2 antibody-positive serum samples, collected from groups of individuals in which only one type of HIV prevails, were tested for cross-reactivity against HIV-2 and HIV-1 proteins by Western blot (WB) (immunoblot), radioimmunoprecipitation assay (RIPA), neutralization analysis, and enzyme-linked immunosorbent assay with as antigen synthetic peptides representing selected parts of the envelope (env) glycoproteins. Cross-reactions against the env glycoproteins were observed by WB in 10% (7 of 70) and by RIPA in 40% (28 of 70) of the HIV-1 antibody-positive serum samples and by WB in 29% (12 of 42) and by RIPA in 48% (20 of 42) of the HIV-2 antibody-positive serum samples. Testing by enzyme-linked immunosorbent assay against a 36-amino-acid peptide (Cys-301-Cys-336) of the external glycoprotein of strain HTLV-IIIB of HIV-1 (HIV-1HTLV-IIIB) (known to represent a dominating, linear neutralizing site) showed type-specific reactions in 67% (38 of 57) of HIV-1 antibody-positive serum samples. Type-specific reactions against a homologous 35-amino-acid peptide of strain SBL-6669 of HIV-2 (HIV-2SBL-6669) were found in 75% (30 of 40) of HIV-2 antibody-positive serum samples, and these reactions were correlated to neutralization against HIV-2SBL-6669. Cross-reactions against these peptides were seen in 23% (13 of 57) and 33% (13 of 40) of the HIV-1 and HIV-2 antibody-positive serum samples, respectively. These cross-reactions were correlated to cross-neutralization against HIV-1HTLV-IIIB and HIV-2SBL-6669. Cross-neutralization against one heterotypic virus strain was demonstrated in 16% (9 of 57) of HIV-1 antibody-positive serum samples and in 22% (5 of 22) of HIV-2 antibody-positive serum samples, but no correlation was found between cross-neutralization and env cross-reactivity in WB or RIPA.  相似文献   

3.
The protection of individuals from human immunodeficiency virus type 1 (HIV-1) infection with an envelope subunit derived from a single isolate will require the presentation of conserved epitopes in gp120. The objective of the studies presented here was to test whether a native recombinant gp120 (rgp120) immunogen would elicit responses to conserved neutralization epitopes that are not present in a denatured recombinant gp120 antigen from the same virus isolate. In a large study of 51 baboons, we have generated heterologous neutralizing activity with native, glycosylated rgp120SF2 but not with denatured, nonglycosylated env 2-3SF2. After repeated exposure to rgp120SF2 formulated with one of several adjuvants, virus isolates from the United States, the Caribbean, and Africa were neutralized. The timing of the immunization regimen and the choice of adjuvant affected the virus neutralization titers both quantitatively and qualitatively. These results suggest that vaccination with native, glycosylated rgp120 from a single virus isolate, HIV-SF2, may elicit a protective immune response effective against geographically and sequentially distinct HIV-1 isolates.  相似文献   

4.
Zhang H  Huang Y  Fayad R  Spear GT  Qiao L 《Journal of virology》2004,78(15):8342-8348
Human immunodeficiency virus type 1 (HIV-1) envelope-specific neutralizing antibodies are generated late after initial infection, and the neutralizing antibody response is weak in the infected individuals. Administration of neutralizing antibodies such as 2F5 to HIV-1-infected individuals resulted in reductions in viral loads. Because HIV-1 is transmitted mainly via mucosa and because HIV-specific neutralizing antibodies reduce HIV-1 in infected individuals, a vaccine that can induce both mucosal and systemic HIV-1-specific neutralizing antibodies may be used to prevent and to treat HIV-1 infection. In this study, we made a bovine papillomavirus (BPV) L1-HIV-1 gp41 fusion protein in which ELDKWA of gp41 was inserted into the N terminus of BPV L1 (amino acids 130 to 136). Expression of the fusion protein in insect cells led to the assembly of chimeric virus-like particles (CVLPs). The CVLPs had sizes similar to those of BPV particles and were able to bind to the cell surface and penetrate the cell membrane. Oral immunization of mice with CVLPs induced gp41-specific serum immunoglobulin G (IgG) and intestinal secretory IgA. However, intramuscular immunization with the CVLPs resulted in similar amounts of gp41-specific IgG but low levels of secretory IgA. The antibodies specifically recognized the fixed HIV-1 gp41 on the cell surface. Importantly, the sera and fecal extracts from mice orally immunized with the CVLPs neutralized HIV-1(MN) in vitro. Thus, BPV-HIV-1 gp41 CVLPs may be used to prevent and to treat HIV-1 infection.  相似文献   

5.
Human immunodeficiency virus (HIV)-specific IgA can be detected in cervical secretions, saliva, and sera of HIV-infected and HIV-uninfected individuals with a known exposure to the virus. IgA from HIV-uninfected exposed seronegative individuals (ESN) neutralize in vitro primary strains of HIV-1. We analyzed the epitopes of HIV recognized by serum HIV-specific IgA of ESN individuals to identify the antigenic correlates of HIV neutralization in exposed-uninfected subjects, and to verify whether different epitopes would be recognized by HIV-specific IgA of ESN and of HIV-infected patients. Results confirmed that HIV-neutralizing IgA are detected in sera of ESN and showed that neutralization of primary HIV strains is mediated by the recognition of different epitopes in HIV-infected patients and ESN. Thus, whereas IgA of HIV+ individuals recognize epitopes expressed both within gp120 and gp41, IgA of ESN exclusively bind to gp41-expressed epitopes. Epitope mapping revealed that the epitope recognized by serum IgA of ESN on gp41 is restricted to aa 581-584 (LQAR) and corresponds to coiled coil pocket in the alpha helic region. In contrast, the epitope seen by IgA of HIV-infected patients on gp41 is identified by two regions; the first is contained within the cystein loop (aa 589-618), the second correspond to C terminal region in the extra membrane region of gp 41 (aa 642-673). Thus, we have identified and characterized the epitopes that mediate neutralization of HIV in individuals in whom infection does not occur despite multiple exposures to the virus. These results have important implications for the development of a new therapy against HIV infection.  相似文献   

6.

Background

Many participants in microbicide trials remain uninfected despite ongoing exposure to HIV-1. Determining the emergence and nature of mucosal HIV-specific immune responses in such women is important, since these responses may contribute to protection and could provide insight for the rational design of HIV-1 vaccines.

Methods and Findings

We first conducted a pilot study to compare three sampling devices (Dacron swabs, flocked nylon swabs and Merocel sponges) for detection of HIV-1-specific IgG and IgA antibodies in vaginal secretions. IgG antibodies from HIV-1-positive women reacted broadly across the full panel of eight HIV-1 envelope (Env) antigens tested, whereas IgA antibodies only reacted to the gp41 subunit. No Env-reactive antibodies were detected in the HIV-negative women. The three sampling devices yielded equal HIV-1-specific antibody titers, as well as total IgG and IgA concentrations. We then tested vaginal Dacron swabs archived from 57 HIV seronegative women who participated in a microbicide efficacy trial in Southern Africa (HPTN 035). We detected vaginal IgA antibodies directed at HIV-1 Env gp120/gp140 in six of these women, and at gp41 in another three women, but did not detect Env-specific IgG antibodies in any women.

Conclusion

Vaginal secretions of HIV-1 infected women contained IgG reactivity to a broad range of Env antigens and IgA reactivity to gp41. In contrast, Env-binding antibodies in the vaginal secretions of HIV-1 uninfected women participating in the microbicide trial were restricted to the IgA subtype and were mostly directed at HIV-1 gp120/gp140.  相似文献   

7.
We have characterized sera from healthy volunteers immunized with a monomeric recombinant gp120 (rgp120) derived from a CCR5/CXCR4 (R5X4)-using subtype B isolate of human immunodeficiency virus type (HIV-1), HIV-1W61D, in comparison to sera from long-term HIV-1-infected individuals, using homologous reagents. Sera from vaccinees and HIV-1 positive subjects had similar binding titers to native monomeric rgp120W61D and showed a similar titer of antibodies inhibiting the binding of soluble CD4 (sCD4) to rgp120W61D. However, extensive peptide binding studies showed that the overall pattern of recognition of vaccinee and HIV-1-positive sera is different, with vaccinee sera displaying a wider and more potent recognition of linear V1/V2 and V3 domain epitopes. Neutralization of homologous HIV-1W61D or heterologous HIV-1M2424/4 peripheral blood mononuclear cell (PBMC)-derived virus lines by vaccinee sera could be achieved, but only after adaptation of the viruses to T-cell lines and was quickly lost on readaptation to growth in PBMC. Sera from HIV-positive individuals were able to neutralize both PBMC-grown and T-cell line-adapted viruses. Interestingly, rgp120W61D was recognized by monoclonal antibodies previously shown to neutralize primary HIV-1 isolates. The use of very potent adjuvants and R5X4 rgp120 led to an antibody response equivalent in binding activity and inhibition of binding of sCD4 to gp120 to that of HIV-positive individuals but did not lead to the induction of antibodies capable of neutralizing PBMC-grown virus.  相似文献   

8.
Several different strains of simian-human immunodeficiency virus (SHIV) that contain the envelope glycoproteins of either T-cell-line-adapted (TCLA) strains or primary isolates of human immunodeficiency virus type 1 (HIV-1) are now available. One of the advantages of these chimeric viruses is their application to studies of HIV-1-specific neutralizing antibodies in preclinical AIDS vaccine studies in nonhuman primates. In this regard, an important consideration is the spectrum of antigenic properties exhibited by the different envelope glycoproteins used for SHIV construction. The antigenic properties of six SHIV variants were characterized here in neutralization assays with recombinant soluble CD4 (rsCD4), monoclonal antibodies, and serum samples from SHIV-infected macaques and HIV-1-infected individuals. Neutralization of SHIV variants HXBc2, KU2, 89.6, and 89.6P by autologous and heterologous sera from SHIV-infected macaques was restricted to an extent that these viruses may be considered heterologous to one another in their major neutralization determinants. Little or no variation was seen in the neutralization determinants on SHIV variants 89.6P, 89.6PD, and SHIV-KB9. Neutralization of SHIV HXBc2 by sera from HXBc2-infected macaques could be blocked with autologous V3-loop peptide; this was less true in the case of SHIV 89.6 and sera from SHIV 89.6-infected macaques. The poorly immunogenic but highly conserved epitope for monoclonal antibody IgG1b12 was a target for neutralization on SHIV variants HXBc2, KU2, and 89.6 but not on 89.6P and KB9. The 2G12 epitope was a target for neutralization on all five SHIV variants. SHIV variants KU2, 89.6, 89.6P, 89.6PD, and KB9 exhibited antigenic properties characteristic of primary isolates by being relatively insensitive to neutralization in peripheral blood mononuclear cells with serum samples from HIV-1-infected individuals and 12-fold to 38-fold less sensitive to inhibition with recombinant soluble CD4 than TCLA strains of HIV-1. The utility of nonhuman primate models in AIDS vaccine development is strengthened by the availability of SHIV variants that are heterologous in their neutralization determinants and exhibit antigenic properties shared with primary isolates.  相似文献   

9.
Lymphokine-activated killer (LAK) activity was analyzed in 31 human immune deficiency virus 1 (HIV-1)-infected patients. It was found to be reduced in all groups of patients, being more pronounced in those with acquired immune deficiency syndrome (AIDS) and AIDS-related complex compared to HIV-1-seropositive, asymptomatic individuals. Only high doses of interleukin-2 were able to restore LAK activity comparable to that of normal controls. In addition, HIV-1 gp41 synthetic peptide sequences 735-752 and 846-860 were able to significantly inhibit normal LAK activity at all the effector:target ratios tested. HIV-1-positive serum and the supernatant fluids from cultured peripheral-blood mononuclear cells from HIV-1-infected patients had the same inhibitory effect on normal LAK activity. These data provide evidence that (1) LAK activity appears to be impaired during the course of HIV-1 infection and (2) HIV-1-positive serum and HIV-1 components could exert a profound inhibition of this functional activity.  相似文献   

10.
To date, only a small number of anti-human immunodeficiency virus type 1 (HIV-1) monoclonal antibodies (MAbs) with relatively broad neutralizing activity have been isolated from infected individuals. Adequate techniques for defining how frequently antibodies of these specificities arise in HIV-infected people have been lacking, although it is generally assumed that such antibodies are rare. In order to create an epitope-specific neutralization assay, we introduced well-characterized HIV-1 epitopes into the heterologous context of simian immunodeficiency virus (SIV). Specifically, epitope recognition sequences for the 2F5, 4E10, and 447-52D anti-HIV-1 neutralizing monoclonal antibodies were introduced into the corresponding regions of SIVmac239 by site-directed mutagenesis. Variants with 2F5 or 4E10 recognition sequences in gp41 retained replication competence and were used for neutralization assays. The parental SIVmac239 and the neutralization-sensitive SIVmac316 were not neutralized by the 2F5 and 4E10 MAbs, nor were they neutralized significantly by any of the 96 HIV-1-positive human plasma samples that were tested. The SIV239-2F5 and SIV239-4E10 variants were specifically neutralized by the 2F5 and 4E10 MAbs, respectively, at concentrations within the range of what has been reported previously for HIV-1 primary isolates (J. M. Binley et al., J. Virol. 78:13232-13252, 2004). The SIV239-2F5 and SIV239-4E10 epitope-engrafted variants were used as biological screens for the presence of neutralizing activity of these specificities. None of the 92 HIV-1-positive human plasma samples that were tested exhibited significant neutralization of SIV239-2F5. One plasma sample exhibited >90% neutralization of SIV239-4E10, but this activity was not competed by a 4E10 target peptide and was not present in concentrated immunoglobulin G (IgG) or IgA fractions. We thus confirm by direct analysis that neutralizing activities of the 2F5 and 4E10 specificities are either rare among HIV-1-positive individuals or, if present, represent only a very small fraction of the total neutralizing activity in any given plasma sample. We further conclude that the structures of gp41 from SIVmac239 and HIV-1 are sufficiently similar such that epitopes engrafted into SIVmac239 can be readily recognized by the cognate anti-HIV-1 monoclonal antibodies.  相似文献   

11.
The aim of the present study was to determine the frequency of IgG, IgA, and IgM antibodies to Mycoplasma penetrans in HIV-1-infected patients and in patients with sexually transmitted diseases. We tested serum samples from 106 HIV-1-positive patients and 110 individuals with clinical symptoms of urethritis. ELISA and the immunoblot test were performed using M. penetrans lipid associated membrane proteins as antigen. By ELISA, we found a higher frequency (P < 0.05) of IgG against M. penetrans in HIV-1-infected and STD patients (25.5 and 17.3%) than in controls (1.2%), as well as a higher frequency of IgA (P < 0.05) (15.1 and 17.3% compared to 1.2%). For IgM, no differences were observed (P >/= 0.05) (3.8, 9.1, and 5. 8%, respectively). When the frequencies of IgG, IgM, and IgA antibodies of the HIV-1-infected patients were compared taking into account the CD4/CD8 cell ratios < 0.3 and >/= 0.3, no significant differences were observed between the two groups (13.3, 10, and 20%, compared to 20, 0, and 5%, respectively) (P > 0.05), possibly due to the low number of samples on which we could perform T-cell counts (53/106). The M. penetrans peptide of 38 kDa, considered immunodominant, was recognized in immunoblot by 51.8% of positive sera by ELISA for IgG, 50.0% for IgM, and 75% for IgA in the AIDS patients group, and by 47.4, 60.0, and 75.0%, respectively, in the sexually transmitted disease group. Cross-reactions in immunoblot for IgG were observed in sera from individuals infected with Mycoplasma pneumoniae and Mycoplasma hominis, and cross-reactions in immunoblot for IgA were observed in sera from individuals infected with M. hominis; all of them were ELISA negative to M. penetrans.  相似文献   

12.
HIV is not usually transmitted by saliva from HIV-1-infected individuals. Antiviral substances in saliva responsible for this may include HIV-1-specific antibody-dependent cell-mediated cytotoxicity (ADCC). We evaluated saliva ADCC titers of 62 HIV-1-infected women from the Women's Interagency HIV Study (WIHS) and 55 uninfected individuals. HIV-1-infected women were less likely to have ADCC activity in saliva than in serum or cervical lavage fluid (CVL). 24% of HIV-1-positive women and a similar percentage of uninfected women had HIV-1-specific saliva ADCC activity. A significant amount of saliva ADCC activity in infected women was HIV-gp120-specific. These studies demonstrate that HIV-specific ADCC activity can be present in saliva. This activity may contribute to host defence against initial infection with HIV.  相似文献   

13.
A steady increase in knowledge of the molecular and antigenic structure of the gp120 and gp41 HIV-1 envelope glycoproteins (Env) is yielding important new insights for vaccine design, but it has been difficult to translate this information to an immunogen that elicits broadly neutralizing antibodies. To help bridge this gap, we used phylogenetically corrected statistical methods to identify amino acid signature patterns in Envs derived from people who have made potently neutralizing antibodies, with the hypothesis that these Envs may share common features that would be useful for incorporation in a vaccine immunogen. Before attempting this, essentially as a control, we explored the utility of our computational methods for defining signatures of complex neutralization phenotypes by analyzing Env sequences from 251 clonal viruses that were differentially sensitive to neutralization by the well-characterized gp120-specific monoclonal antibody, b12. We identified ten b12-neutralization signatures, including seven either in the b12-binding surface of gp120 or in the V2 region of gp120 that have been previously shown to impact b12 sensitivity. A simple algorithm based on the b12 signature pattern was predictive of b12 sensitivity/resistance in an additional blinded panel of 57 viruses. Upon obtaining these reassuring outcomes, we went on to apply these same computational methods to define signature patterns in Env from HIV-1 infected individuals who had potent, broadly neutralizing responses. We analyzed a checkerboard-style neutralization dataset with sera from 69 HIV-1-infected individuals tested against a panel of 25 different Envs. Distinct clusters of sera with high and low neutralization potencies were identified. Six signature positions in Env sequences obtained from the 69 samples were found to be strongly associated with either the high or low potency responses. Five sites were in the CD4-induced coreceptor binding site of gp120, suggesting an important role for this region in the elicitation of broadly neutralizing antibody responses against HIV-1.  相似文献   

14.
An intranasal DNA vaccine prime followed by a gp41 peptide booster immunization was compared with gp41 peptide and control immunizations. Serum HIV-1-specific IgG and IgA as well as IgA in feces and vaginal and lung secretions were detected after immunizations. Long-term humoral immunity was studied for up to 12 mo after the booster immunization by testing the presence of HIV-1 gp41- and CCR5-specific Abs and IgG/IgA-secreting B lymphocytes in spleen and regional lymph nodes in immunized mice. A long-term IgA-specific response in the intestines, vagina, and lungs was obtained in addition to a systemic immune response. Mice immunized only with gp41 peptides and L3 adjuvant developed a long-term gp41-specific serum IgG response systemically, although over a shorter period (1-9 mo), and long-term mucosal gp41-specific IgA immunity. HIV-1-neutralizing serum Abs were induced that were still present 12 mo after booster immunization. HIV-1 SF2-neutralizing fecal and lung IgA was detectable only in the DNA-primed mouse groups. Intranasal DNA prime followed by one peptide/L3 adjuvant booster immunization, but not a peptide prime followed by a DNA booster, was able to induce B cell memory and HIV-1-neutralizing Abs for at least half of a mouse's life span.  相似文献   

15.
The antibody molecule comprises a variable domain conferring antigen specificity and affinity distinct from the heavy chain constant (CH) domains dictating effector functions. We here interrogate this paradigm by evaluating the unique influence of the CH1α domain on epitope specificity and functions using two mucosal gp41-specific Fab-IgAs (FabA) derived from HIV-1 highly-exposed but persistently seronegative individuals (HESN). These HESN develop selectively affinity-matured HIV-1-specific mucosal IgA that target the gp41 viral envelope and might provide protection although by unclear mechanisms. Isotype-switching FabAs into Fab-IgGs (FabGs) results in a >10-fold loss in affinity for HIV-1 clade A, B, and C gp41, together with reduced neutralization of HIV-1 cross-clade. The FabA conformational epitopes map selectively on gp41 in 6-Helix bundle and pre-fusion conformations cross-clade, unlike FabGs. Finally, we designed in silico, a 12 amino-acid peptide recapitulating one FabA conformational epitope that inhibits the FabA binding to gp41 cross-clade and its neutralizing activity. Altogether, our results reveal that the CH1α domain shapes the antibody paratope through an allosteric effect, thereby strengthening the antibody specificity and functional activities. Further, they clarify the mechanisms by which these HESN IgAs might confer protection against HIV-1-sexual acquisition. The IgA-specific epitope we characterized by reverse vaccinology could help designing a mucosal HIV-1 vaccine.  相似文献   

16.
Global human immunodeficiency virus type 1 (HIV-1) diversity may require engineering vaccines to express antigens representing strains prevalent in the target population of vaccine testing. The majority (90%) of incident infections in Thailand are genetic subtype E, with a small percentage of subtype B infections in the intravenous drug user populations. We have evaluated and compared the binding and HIV-1 neutralizing properties of serum antibodies induced in baboons by CHO cell-expressed monomeric gp120 derived from a CCR5-using (R5) subtype E primary HIV-1CM235 or a CXCR4-using (X4) subtype B T-cell line-adapted (TCLA) HIV-1SF2 isolate. In contrast to the subtype-specific HIV-1 neutralizing antibodies induced with recombinant HIV-1SF2 gp120 (rgp120SF2), rgp120CM235 immunization induced antibodies capable of neutralizing both subtype E and subtype B TCLA HIV-1 isolates. However, neither immunogen induced antibodies capable of neutralizing primary HIV-1 isolates. Antibody induced by rgp120CM235 preferentially bound natively folded gp120 and retained strong cross-reactivity against multiple gp120 strains within subtype E as well as subtype B. In contrast, antibody responses to rgp120SF2 were directed predominantly to linear epitopes poorly exposed on native gp120 and had more limited cross-recognition of divergent gp120. Fine epitope mapping revealed differences in antibody specificities. While both rgp120CM235 and rgp120SF2 induced antibodies to regions within C1, V1/V2, V3, and C5, unique responses were induced by rgp120CM235 to multiple epitopes within C2 and by rgp120SF2 to multiple epitopes within C3, V4, and C4. These data demonstrate that strain and/or phenotypic differences of HIV-1 subunit gp120 immunogens can substantially alter antibody binding specificities and subsequent HIV-1 neutralizing capacity.  相似文献   

17.
Individuals infected with human T-cell lymphotropic virus type 1 (HTLV-1) develop a robust immune response to the surface envelope glycoprotein gp46 that is partially protective. The relative contribution of antibodies to conformation-dependent epitopes, including those mediating virus neutralization as part of the humoral immune response, is not well defined. We assess in this report the relationship between defined linear and conformational epitopes and the antibodies elicited to these domains. First, five monoclonal antibodies to linear epitopes within gp46 were evaluated for their ability to abrogate binding of three human monoclonal antibodies that inhibit HTLV-1-mediated syncytia formation and recognize conformational epitopes. Binding of antibodies to conformational epitopes was unaffected by antibodies to linear epitopes throughout the carboxy-terminal half and central domain of HTLV-1 gp46. Second, an enzyme-linked immunoadsorbent assay was developed and used to measure serum antibodies to native and denatured gp46 from HTLV-1-infected individuals. In sera from infected individuals, reactivity to denatured gp46 had an average of 15% of the reactivity observed to native gp46. Third, serum antibodies from 24 of 25 of HTLV-1-infected individuals inhibited binding of a neutralizing human monoclonal antibody, PRH-7A, to a conformational epitope on gp46 that is common to HTLV-1 and -2. Thus, antibodies to conformational epitopes comprise the majority of the immune response to HTLV-1 gp46, and the epitopes recognized by these antibodies do not appear to involve sequences in previously described immunodominant linear epitopes.  相似文献   

18.
We have used an indirect-capture enzyme-linked immunosorbent assay to quantitate the reactivity of sera from human immunodeficiency virus type 1 (HIV-1)-infected humans with native recombinant gp120 (HIV-1 IIIB or SF-2) or with the gp120 molecule (IIIB or SF-2) denatured by being boiled in the presence of dithiothreitol with or without sodium dodecyl sulfate. Denaturation of IIIB gp120 reduced the titers of sera from randomly selected donors by at least 100-fold, suggesting that the majority of cross-reactive anti-gp120 antibodies present are directed against discontinuous or otherwise conformationally sensitive epitopes. When SF-2 gp120 was used, four of eight serum samples reacted significantly with the denatured protein, albeit with ca. 3- to 50-fold reductions in titer. Only those sera reacting with denatured SF-2 gp120 bound significantly to solid-phase-adsorbed SF-2 V3 loop peptide, and none bound to IIIB V3 loop peptide. Almost all antibody binding to reduced SF-2 gp120 was blocked by preincubation with the SF-2 V3 loop peptide, as was about 50% of the binding to native SF-2 gp120. When sera from a laboratory worker or a chimpanzee infected with IIIB were tested, the pattern of reactivity was reversed, i.e., there was significant binding to reduced IIIB gp120, but not to reduced SF-2 gp120. Binding of these sera to reduced IIIB gp120 was 1 to 10% that to native IIIB gp120 and was substantially decreased by preincubation with IIIB (but not SF-2) V3 loop peptide. To analyze which discontinuous or conformational epitopes were predominant in HIV-1-positive sera, we prebound monoclonal antibodies (MAbs) to IIIB gp120 and then added alkaline phosphatase-labelled HIV-1-positive sera. MAbs (such as 15e) that recognize discontinuous epitopes and compete directly with CD4 reduced HIV-1-positive sera binding by about 50%, whereas neutralizing MAbs to the C4, V2, and V3 domains of gp120 were either not inhibitory or only weakly so. Thus, antibodies to the discontinuous CD4-binding site on gp120 are prevalent in HIV-1-positive sera, antibodies to linear epitopes are less common, most of the antibodies to linear epitopes are directed against the V3 region, and most cross-reactive antibodies are directed against discontinuous epitopes, including regions involved in CD4 binding.  相似文献   

19.
The objective of this study was to extend our previous research and to further characterize the humoral immune responses against HIV-1 p24, gp41 and the specific peptides carrying the immunodominant epitopes (IDEs) that react with human serum samples from HIV-1-infected individuals in China. We found that the majority (90.45%, 180/199) of the samples did not react with any of the three HIV-1 p24 peptides carrying IDEs, but did react with the recombinant full-length p24, suggesting that these samples tested in China were primarily directed against the conformational epitopes of HIV-1 p24. In contrast, 84.54% (164/194) of the samples reacted with at least one HIV-1 linear gp41 peptide, in particular the gp41-p1 peptide (amino acids 560–616). Both recently and long-term HIV-1-infected individuals displayed similar humoral immune responses against the recombinant gp41. However, samples from long-term HIV-1-infected subjects but not from recently infected subjects, showed a very strong reaction against the gp41-p1 peptide. The different response patterns observed for the two groups against the gp41 and the peptide gp41-p1 were statistically significant (P<0.01, Chi-square test). These results have direct relevance and importance for design of improved HIV-1 p24 detection assays and the gp41- based immunoassay that can be used to reliably distinguish recent and long-term HIV-1 infection.  相似文献   

20.
Sera from human immunodeficiency virus type 1 (HIV-1)-infected individuals from the United States and Tanzania were examined for antibody reactivity to four synthetic peptides which corresponded to the principal neutralizing determinant from the V3 region of HIV-1 gp120. We observed that the majority of sera from both countries contained antibodies reactive with a V3 peptide whose sequence is based on that of the HIV-1 MN isolate. We were unable to establish a relationship between the presence of V3-reactive antibodies, as measured by enzyme-linked immunosorbent assay and neutralization of homologous HIV-1 isolates, in sera from either the United States or Tanzania. We observed that some sera which contained high antibody titers to the V3 peptides failed to neutralize HIV-1, while others with no antibody reactivity to the panel of V3 peptides exhibited in vitro neutralizing activity. These results suggest that neutralizing epitopes exist outside the V3 loop and that the presence of V3-reactive antibodies in sera does not imply in vitro neutralization of the homologous HIV-1 isolate. In addition, it appears that the V3 loop may consist of both neutralizing and nonneutralizing epitopes. The identification of neutralizing as well as nonneutralizing epitopes will be important for the design of potential HIV-1 vaccines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号