首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The vertebrate olfactory epithelium provides an excellent model system to study the regulatory mechanisms of neurogenesis and neuronal differentiation due to its unique ability to generate new sensory neurons throughout life. The replacement of olfactory sensory neurons is stimulated when damage occurs in the olfactory epithelium. In this study, transgenic mice, with a transgene containing human diphtheria toxin receptor under the control of the olfactory marker protein promoter (OMP-DTR), were generated in which the mature olfactory sensory neurons could be specifically ablated when exposed to diphtheria toxin. Following diphtheria toxin induced neuronal ablation, we observed increased numbers of newly generated growth associated protein 43 (GAP43)-positive immature olfactory sensory neurons. OMP-positive neurons were continuously produced from the newly generated GAP43-positive cells. The expression of the signal transduction components adenylyl cyclase type III and the G-protein α subunit Gα olf was sensitive to diphtheria toxin exposure and their levels decreased dramatically preceding the disappearance of the OMP-positive sensory neurons. These data validate the hypothesis that OMP-DTR mice can be used as a tool to ablate the mature olfactory sensory neurons in a controlled fashion and to study the regulatory mechanisms of the neuronal replacement.  相似文献   

2.
The main olfactory and the accessory olfactory systems are both anatomically and functionally distinct chemosensory systems. The primary sensory neurones of the accessory olfactory system are sequestered in the vomeronasal organ (VNO), where they express pheromone receptors, which are unrelated to the odorant receptors expressed in the principal nasal cavity. We have identified a 240 kDa glycoprotein (VNO(240)) that is selectively expressed by sensory neurones in the VNO but not in the main olfactory neuroepithelium of mouse. VNO(240) is first expressed at embryonic day 20.5 by a small subpopulation of sensory neurones residing within the central region of the crescent-shaped VNO. Although VNO(240) was detected in neuronal perikarya at this age, it was not observed in the axons in the accessory olfactory bulb until postnatal day 3.5. This delayed appearance in the accessory olfactory bulb suggests that VNO(240) is involved in the functional maturation of VNO neurones rather than in axon growth and targeting to the bulb. During the first 2 postnatal weeks, the population of neurones expressing VNO(240) spread peripherally, and by adulthood all primary sensory neurones in the VNO appeared to be expressing this molecule. Similar patterns of expression were also observed for NOC-1, a previously characterized glycoform of the neural cell adhesion molecule NCAM. To date, differential expression of VNO-specific molecules has only been reported along the rostrocaudal axis or at different apical-basal levels in the neuroepithelium. This is the first demonstration of a centroperipheral wave of expression of molecules in the VNO. These results indicate that mechanisms controlling the molecular differentiation of VNO neurones must involve spatial cues organised, not only about orthogonal axes, but also about a centroperipheral axis. Moreover, expression about this centroperipheral axis also involves a temporal component because the subpopulation of neurones expressing VNO(240) and NOC-1 increases during postnatal maturation.  相似文献   

3.
The Grueneberg ganglion (GG) is a cluster of neurones present in the vestibule of the anterior nasal cavity. Although its function is still elusive, recent studies have shown that cells of the GG transcribe the gene encoding the olfactory marker protein (OMP) and project their axons to glomeruli of the olfactory bulb, suggesting that they may have a chemosensory function. Chemosensory responsiveness of olfactory neurones in the main olfactory epithelium (MOE) and the vomeronasal organ (VNO) is based on the expression of either odorant receptors or vomeronasal putative pheromone receptors. To scrutinize its presumptive olfactory nature, the GG was assessed for receptor expression by extensive RT-PCR analyses, leading to the identification of a distinct vomeronasal receptor which was expressed in the majority of OMP-positive GG neurones. Along with this receptor, these cells expressed the G proteins Go and Gi, both of which are also present in sensory neurones of the vomeronasal organ. Odorant receptors were expressed by very few cells during prenatal and perinatal stages; a similar number of cells expressed adenylyl cyclase type III and G(olf/s), characteristic signalling elements of the main olfactory system. The findings of the study support the notion that the GG is in fact a subunit of the complex olfactory system, comprising cells with either a VNO-like or a MOE-like phenotype. Moreover, expression of a vomeronasal receptor indicates that the GG might serve to detect pheromones.  相似文献   

4.
1Escherichia coli gene nfsB encodes a nitroreductase (NTR) enzyme that converts prodrugs like metronidazole (Met) and CB 1954 to cytotoxic metabolites. My coworkers and I have validated this prodrug-enzyme system in zebrafish (Danio rerio) by ubiquitously expressing NTR-EGFP fusion protein and exposing these embyos to CB 1954 and Met. These embryos showed extensive gross pathologic changes and death by 24 h of incubation in the prodrugs. They also exhibited widespread and marked apoptotic changes by 8 h of incubation in Met. Neither the prodrugs themselves nor the NTR-EGFP fusion protein were toxic to the developing zebrafish embryos. Thus the NTR-CB 1954 and NTR-Met systems can be used to ablate a wide variety of cells and tissues in zebrafish embryos.  相似文献   

5.
Genetic ablation experiments are used to resolve problems regarding cell lineages and the in vivo function of certain groups of cells. We describe a two-component conditional ablation technology using a mouse carrying an X-linked puDeltatk transgene, which is only activated in cells expressing Cre. Ablation of the Cre-expressing cells can be temporally regulated by the time of ganciclovir (GCV) administration. This strategy was demonstrated using a Col2Cre transgenic line. Differentiating chondrocytes in bigenic animals could be ablated at different developmental stages resulting in disorganized growth plates and dwarfism. Macrocephaly, macroglossia and umbilical hernia were also observed in ablated 18.5 dpc embryos. Crosses between the puDeltatk selector transgenic line and existing cre lines will facilitate numerous temporally regulated tissue-specific ablation experiments.  相似文献   

6.
7.
A map of pheromone receptor activation in the mammalian brain   总被引:10,自引:0,他引:10  
Belluscio L  Koentges G  Axel R  Dulac C 《Cell》1999,97(2):209-220
In mammals, the detection of pheromones is mediated by the vomeronasal system. We have employed gene targeting to visualize the pattern of projections of axons from vomeronasal sensory neurons in the accessory olfactory bulb. Neurons expressing a specific receptor project to multiple glomeruli that reside within spatially restricted domains. The formation of this sensory map in the accessory olfactory bulb and the survival of vomeronasal organ sensory neurons require the expression of pheromone receptors. In addition, we observe individual glomeruli in the accessory olfactory bulb that receive input from more than one type of sensory neuron. These observations indicate that the organization of the vomeronasal sensory afferents is dramatically different from that of the main olfactory system, and these differences have important implications for the logic of olfactory coding in the vomeronasal organ.  相似文献   

8.
Wagner S  Gresser AL  Torello AT  Dulac C 《Neuron》2006,50(5):697-709
Pheromone detection by the vomeronasal organ (VNO) is thought to rely on activation of specific receptors from the V1R and V2R gene families, but the central representation of pheromone receptor activation remains poorly understood. We generated transgenic mouse lines in which projections from multiple populations of VNO neurons, each expressing a distinct V1R, are differentially labeled with fluorescent proteins. This approach revealed that inputs from neurons expressing closely related V1Rs intermingle within shared, spatially conserved domains of the accessory olfactory bulb (AOB). Mitral cell-glomerular connectivity was examined by injecting intracellular dyes into AOB mitral cells and monitoring dendritic contacts with genetically labeled glomeruli. We show that individual mitral cells extend dendrites to glomeruli associated with different, but likely closely related, V1Rs. This organization differs from the labeled line of OR signaling in the main olfactory system and suggests that integration of information may already occur at the level of the AOB.  相似文献   

9.
In mouse, sexual, aggressive, and social behaviors are influenced by G protein-coupled vomeronasal receptor signaling in two distinct subsets of vomeronasal sensory neurons (VSNs): apical and basal VSNs. In addition, G protein-signaling by these receptors inhibits developmental death of VSNs. We show that cells of the vomeronasal nerve express the retinoic acid (RA) synthesizing enzyme retinal dehydrogenase 2. Analyses of transgenic mice with VSNs expressing a dominant-negative RA receptor indicate that basal VSNs differ from apical VSNs with regard to a transient wave of RA-regulated and caspase 3-mediated cell death during the first postnatal week. Analyses of G-protein subunit deficient mice indicate that RA and vomeronasal receptor signaling combine to regulate postnatal expression of Kirrel-2 (Kin of IRRE-like), a cell adhesion molecule regulating neural activity-dependent formation of precise axonal projections in the main olfactory system. Collectively, the results indicate a novel connection between pre-synaptic RA receptor signaling and neural activity-dependent events that together regulate neuronal survival and maintenance of synaptic contacts.  相似文献   

10.
Primary sensory neurons in the vertebrate olfactory systems are characterised by the differential expression of distinct cell surface carbohydrates. We show here that the histo-blood group H carbohydrate is expressed by primary sensory neurons in both the main and accessory olfactory systems while the blood group A carbohydrate is expressed by a subset of vomeronasal neurons in the developing accessory olfactory system. We have used both loss-of-function and gain-of-function approaches to manipulate expression of these carbohydrates in the olfactory system. In null mutant mice lacking the alpha(1,2)fucosyltransferase FUT1, the absence of blood group H carbohydrate resulted in the delayed maturation of the glomerular layer of the main olfactory bulb. In addition, ubiquitous expression of blood group A on olfactory axons in gain-of-function transgenic mice caused mis-routing of axons in the glomerular layer of the main olfactory bulb and led to exuberant growth of vomeronasal axons in the accessory olfactory bulb. These results provide in vivo evidence for a role of specific cell surface carbohydrates during development of the olfactory nerve pathways.  相似文献   

11.
哺乳动物主要嗅觉系统和犁鼻系统信息识别的编码模式   总被引:4,自引:0,他引:4  
哺乳动物具有两套嗅觉系统, 即主要嗅觉系统和犁鼻系统。前者对环境中的大多数挥发性化学物质进行识别, 后者对同种个体释放的信息素进行识别。本文从嗅觉感受器、嗅球、嗅球以上脑区三个水平综述了这两种嗅觉系统对化学信息识别的编码模式。犁鼻器用较窄的调谐识别信息素成分, 不同于嗅上皮用分类性合并受体的方式识别气味; 副嗅球以接受相同受体输入的肾丝球所在区域为单位整合信息, 而主嗅球通过对肾丝球模块的特异性合并编码信息; 在犁鼻系统, 信息素的信号更多地作用于下丘脑区域, 引起特定的行为和神经内分泌反应。而在主要嗅觉系统, 嗅皮层可能采用时间模式编码神经元群, 对气味的最终感受与脑的不同区域有关。犁鼻系统较主要嗅觉系统的编码简单, 可能与其执行的功能较少有关。  相似文献   

12.
The mammalian vomeronasal system is specialized in pheromone detection. The neural circuitry of the accessory olfactory bulb (AOB) provides an anatomical substrate for the coding of pheromone information. Here, we describe the axonal projection pattern of vomeronasal sensory neurons to the AOB and the dendritic connectivity pattern of second-order neurons. Genetically traced sensory neurons expressing a given gene of the V2R class of vomeronasal receptors project their axons to six to ten glomeruli distributed in globally conserved areas of the AOB, a theme similar to V1R-expressing neurons. Surprisingly, second-order neurons tend to project their dendrites to glomeruli innervated by axons of sensory neurons expressing the same V1R or the same V2R gene. Convergence of receptor type information in the olfactory bulb may represent a common design in olfactory systems.  相似文献   

13.
5-Aziridinyl-2,4-Dinitrobenzamide (CB 1954) has been reported to be a highly selective inhibitor of the Walker tumour, with a therapeutic index of 60 (refs. 1 and 2). This compound, however, differs from other tumour inhibitory alkylating agents in that it is monofunctional and fails to inhibit the growth of several animal tumours which respond to difunctional alkylating agents. Compounds closely related in structure to CB 1954 are either much less active or inactive against the Walker tumour3. The structural specificity and biological properties of CB 1954 indicate that its mechanism of action is different from that of the tumour inhibitory difunctional alkylating agents. Whereas the latter are thought to be cytotoxic primarily as a result of their reaction with DNA, CB 1954 may interfere with a specific stage of purine biosynthesis2. We have shown by cell hybridization that, unlike resistance to a difunctional alkylating agent, cellular resistance to CB 1954 is lost on fusion with a sensitive cell.  相似文献   

14.
The unique functional properties and molecular identity of neuronal cell populations rely on cell type–specific gene expression programs. Alternative splicing represents a powerful mechanism for expanding the capacity of genomes to generate molecular diversity. Neuronal cells exhibit particularly extensive alternative splicing regulation. We report a highly selective expression of the KH domain–containing splicing regulators SLM1 and SLM2 in the mouse brain. Conditional ablation of SLM1 resulted in a severe defect in the neuronal isoform content of the polymorphic synaptic receptors neurexin-1, -2, and -3. Thus, cell type–specific expression of SLM1 provides a mechanism for shaping the molecular repertoires of synaptic adhesion molecules in neuronal populations in vivo.  相似文献   

15.
Gamma‐aminobutyric acid (GABA) has a dual role as an inhibitory neurotransmitter in the adult central nervous system (CNS) and as a signaling molecule exerting largely excitatory actions during development. The rate‐limiting step of GABA synthesis is catalyzed by two glutamic acid decarboxylase isoforms GAD65 and GAD67 coexpressed in the GABAergic neurons of the CNS. Here we report that the two GADs show virtually nonoverlapping expression patterns consistent with distinct roles in the developing peripheral olfactory system. GAD65 is expressed exclusively in undifferentiated neuronal progenitors confined to the proliferative zones of the sensory vomeronasal and olfactory epithelia In contrast GAD67 is expressed in a subregion of the nonsensory epithelium/vomeronasal organ epithelium containing the putative Gonadotropin‐releasing hormone (GnRH) progenitors and GnRH neurons migrating from this region through the frontonasal mesenchyme into the basal forebrain. Only GAD67+, but not GAD65+ cells accumulate detectable GABA. We further demonstrate that GAD67 and its embryonic splice variant embryonic GAD (EGAD) concomitant with GnRH are dynamically regulated during GnRH neuronal migration in vivo and in two immortalized cell lines representing migratory (GN11) and postmigratory (GT1–7) stage GnRH neurons, respectively. Analysis of GAD65/67 single and double knock‐out embryos revealed that the two GADs play complementary (inhibitory) roles in GnRH migration ultimately modulating the speed and/or direction of GnRH migration. Our results also suggest that GAD65 and GAD67/EGAD characterized by distinct subcellular localization and kinetics have disparate functions during olfactory system development mediating proliferative and migratory responses putatively through specific subcellular GABA pools. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 75: 249–270, 2015  相似文献   

16.
Transgenic mice carrying the diphtheria toxin A gene driven by mouse gamma 2-crystallin promoter sequences manifest microphthalmia due to ablation of fiber cells in the ocular lens. Here we map ablation events in the lens by crossing animals hemizygous for the ablation construct with transgenic mice homozygous for the in situ lacZ reporter gene driven by identical gamma 2-crystallin promoter sequences. By comparing the spatial distribution of lacZ-expressing cells and the profile of gamma-crystallin gene expression in the lenses of normal and microphthalmic offspring, the contributions of specific cell types to lens development were examined. The results suggest that phenotypically and developmentally distinct populations of lens fiber cells are able to contribute to the lens nucleus during organogenesis. We also show that dosage of the transgene and its site of integration influence the extent of ablation. In those mice homozygous for the transgene and completely lacking cells of the lens lineage, we show that the sclera, cornea, and ciliary epithelium are reduced in size but, otherwise, reasonably well formed. In contrast, the anterior chamber, iris, and vitreous body are not discernible while the sensory retina is highly convoluted and extensively fills the vitreous chamber.  相似文献   

17.
The establishment of neuronal circuits depends on the guidance of axons both along and in between axonal populations of different identity; however, the molecular principles controlling axon–axon interactions in vivo remain largely elusive. We demonstrate that the Drosophila melanogaster L1CAM homologue Neuroglian mediates adhesion between functionally distinct mushroom body axon populations to enforce and control appropriate projections into distinct axonal layers and lobes essential for olfactory learning and memory. We addressed the regulatory mechanisms controlling homophilic Neuroglian-mediated cell adhesion by analyzing targeted mutations of extra- and intracellular Neuroglian domains in combination with cell type–specific rescue assays in vivo. We demonstrate independent and cooperative domain requirements: intercalating growth depends on homophilic adhesion mediated by extracellular Ig domains. For functional cluster formation, intracellular Ankyrin2 association is sufficient on one side of the trans-axonal complex whereas Moesin association is likely required simultaneously in both interacting axonal populations. Together, our results provide novel mechanistic insights into cell adhesion molecule–mediated axon–axon interactions that enable precise assembly of complex neuronal circuits.  相似文献   

18.
The jumonji (jmj) gene plays important roles in multiple organ development in mouse, including cardiovascular development. Since JMJ is expressed widely during mouse development, it is essential that conditional knockout approaches be employed to ablate JMJ in a tissue-specific manner to identify the cell lineage specific roles of JMJ. In this report, we describe the establishment of a jmj conditional null allele in mice by generating a loxP-flanked (floxed) jmj allele, which allows the in vivo ablation of jmj via Cre recombinase-mediated deletion. Gene targeting was used to introduce loxP sites flanking exon 3 of the jmj allele to mouse embryonic stem cells. Our results indicate that the jmj floxed allele converts to a null allele in a heart-specific manner when embryos homozygous for the floxed jmj allele and carrying the alpha-myosin heavy chain promoter-Cre transgene were analyzed by Southern and Northern blot analyses. Therefore, this mouse line harboring the conditional jmj null allele will provide a valuable tool for deciphering the tissue and cell lineage specific roles of JMJ.  相似文献   

19.
20.
The feasibility of ablating differentiated adipocytes and the mechanism of cell ablation with a suitable prodrug activating system is described. The system is based on the use of E. coli nitroreductase (NTR) enzyme that activates certain nitro compounds, such as the antitumor drug CB1954, into cytotoxic DNA interstrand cross-linking agents. Differentiated preadipocyte cells (3T3L1) transfected with an aP2 driven nitroreductase construct were efficiently killed after incubation with medium containing the prodrug CB1954, while untransfected cells were not affected. It was demonstrated that the mechanism of cell ablation is apoptosis and that the system has a bystander effect mediated by a toxic metabolite of the prodrug. The described system should provide a good alternative approach for gene therapy studies and a new inducible approach to manipulating the number of cells in tissues of transgenic animals and the ability to study the recovery of the tissue from cell damage or loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号