首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study presents the design and validation of a pulsatile flow perfusion bioreactor able to provide a suitable environment for 3D high cell density cultures for tissue engineering applications. Our bioreactor system is mobile, does not require the use of traditional cell culture incubators and is easy to sterilize. It provides real‐time monitoring and stable control of pH, dissolved oxygen concentration, temperature, pressure, pulsation frequency, and flow rate. In this bioreactor system, cells are cultured in a gel within a chamber perfused by a culture medium fed by hollow fibers. Human umbilical vein endothelial cells (HUVEC) suspended in fibrin were found to be living, making connections and proliferating up to five to six times their initial seeding number after a 48‐h culture period. Cells were uniformly dispersed within the 14.40 mm × 17.46 mm × 6.35 mm chamber. Cells suspended in 6.35‐mm thick gels and cultured in a traditional CO2 incubator were found to be round and dead. In control experiments carried out in a traditional cell culture incubator, the scarcely found living cells were mostly on top of the gels, while cells cultured under perfusion bioreactor conditions were found to be alive and uniformly distributed across the gel. Biotechnol. Bioeng. 2009; 104: 1215–1223. © 2009 Wiley Periodicals, Inc.  相似文献   

2.
Microfluidics could provide suitable environments for cell culture because of the larger surface-to-volume ratio and fluidic behavior similar to the environments in vivo. Such microfluidic environments are now used to investigate cell-to-cell interactions and behaviors in vitro, emulating situations observed in vivo, for example, microscale blood vessels modeled by microfluidic channels. These emulated situations cannot be realized by conventional technologies. In our previous works, microfluidic channels composed of two PDMS (poly(dimethylsiloxane)) layers were successfully used for Hep G2 cell culture. To achieve physiologically meaningful functions in vitro, a culture with a larger number of cells and higher density must be performed. This will require bioreactors with larger surface areas for cell attachment and sufficient amounts of oxygen and nutrition supply. For those purposes, we fabricated a bioreactor by stacking 10 PDMS layers together, i.e., four cell culture chambers, and a chamber dedicated to the oxygen supply inserted in the middle of the 10-stacked layers. The oxygen supply chamber is separated from the microfluidic channels for the culture medium perfusion by thin 300-microm PDMS walls. The high gas permeability of PDMS allows oxygen supply to the microfluidic channels through the thin walls. On the basis of the measurement of glucose consumption and albumin production, it is shown that cellular activity exhibits a gradual increase and saturation throughout the culture. We clearly observed that in the case of the microfluidic bioreactor for large-scale cultures, the oxygen chamber is indispensable to achieve longer and healthy cultures. In the present bioreactor, the cell density was found to be about 3-4 x 10(7) cells/cm(3), which is in the same order of magnitude as the conventional macroscale bioreactors. Consequently, by stacking single culture chambers and oxygen chambers in between, we could have a scalable method to realize the microfluidic bioreactor for large-scale cultures.  相似文献   

3.
A generic “system on a plate” modular multicompartmental bioreactor array which enables microwell protocols to be transferred directly to the bioreactor modules, without redesign of cell culture experiments or protocols is described. The modular bioreactors are simple to assemble and use and can be easily compared with standard controls since cell numbers and medium volumes are quite similar. Starting from fluid dynamic and mass transport considerations, a modular bioreactor chamber was first modeled and then fabricated using “milli‐molding,” a technique adapted from soft lithography. After confirming that the shear stress was extremely low in the system in the range of useful flow rates, the bioreactor chambers were tested using hepatocytes. The results show that the bioreactor chambers can increase or maintain cell viability and function when the flow rates are below 500 µL/min, corresponding to wall shear stresses of 10?5 Pa or less at the cell culture surface. Biotechnol. Bioeng. 2010; 106: 127–137. © 2010 Wiley Periodicals, Inc.  相似文献   

4.
To develop in vitro models of cells, tissues and organs we have designed and realized a series of cell culture chambers. Each chamber is purpose designed to simulate a particular feature of the in vivo environment. The bioreactor system is user friendly, and the chambers are easy to produce, sterilize and assemble. In addition they can be connected together to simulate inter-organ or tissue cross-talk. Here we discuss the design philosophy of the bioreactor system and then describe its construction. Preliminary results of validation tests obtained with hepatocytes and endothelial cells are also reported. The results show that endothelial cells are extremely sensitive to small levels of shear stress and that the presence of heterotypic signals from endothelial cells enhances the endogenous metabolic function of hepatocytes.  相似文献   

5.
Osteogenesis and the production of composite osteochondral tissues were investigated using human adult adipose‐derived stem cells and polyglycolic acid (PGA) mesh scaffolds under dynamic culture conditions. For osteogenesis, cells were expanded with or without osteoinduction factors and cultured in control or osteogenic medium for 2 weeks. Osteogenic medium enhanced osteopontin and osteocalcin gene expression when applied after but not during cell expansion. Osteogenesis was induced and mineralized deposits were present in tissues produced using PGA culture in osteogenic medium. For development of osteochondral constructs, scaffolds seeded with stem cells were precultured in either chondrogenic or osteogenic medium, sutured together, and cultured in dual‐chamber stirred bioreactors containing chondrogenic and osteogenic media in separate compartments. After 2 weeks, total collagen synthesis was 2.1‐fold greater in the chondroinduced sections of the composite tissues compared with the osteoinduced sections; differentiation markers for cartilage and bone were produced in both sections of the constructs. The results from the dual‐chamber bioreactor highlight the challenges associated with achieving simultaneous chondrogenic and osteogenic differentiation in tissue engineering applications using a single stem‐cell source. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2013  相似文献   

6.
动物细胞培养用生物反应器及相关技术   总被引:8,自引:0,他引:8  
动物细胞大量培养是生产生物制品的重要途径,它用到的关键设备是生物反应器。根据培养细胞、培养载体、培养液混合方式的不同,生物反应器主要有搅拌式、气升式、中空纤维式、回转式等,其中搅拌式规模最大。回转式是NASA于20世纪90年代中期开发的一种新型生物反应器,被誉为空间生物反应器,可用于组织工程研究。与生物反应器配套的技术主要有灌注、微载体、多孔微球、转入抗凋亡基因等,可以有效地提高细胞密度,增加生物制品产量,提高质量。今后生物反应器研制主要朝两个方向发展:一是,以高密度培养动物细胞生产蛋白质药物为目的,二是以三维培养动物细胞(主要是人类细胞)再生组织或器官为目的。  相似文献   

7.
The perfusion mode of a continuous cell culture bioreactor was modified to establish a closed loop system. Eighty percent of the spent medium was re-used twice. The medium cycle bioreactor unit was operated sterile and uncomplicated without a technical retention system for the high molecular weight substances. Therefore, only 20% of the actual medium was necessary to run the recycling process. During seven days culture time in a two liter scale 5 grams of IgG1 type monoclonal antibody was produced. During that period the cell specific productivity was constant. Renewal of proteins was omitted because the protein content in the system persisted at a high level. Therefore, self-conditioning substances of the cells were retained in the system as well as the expensive medium components (proteins with catalytic or stimulating function). Seventy to 80% of medium costs and medium quantity were saved for each medium recycling step. Only cheap metabolites that are consumed by the cells had to be supplemented. Uptake rates of glucose and amino acids were calculated to establish a suitable supplementation mixture for the recirculated medium.  相似文献   

8.
Human mesenchymal stem cells (hMSCs) have great potential for therapeutic applications. A bioreactor system that supports long-term hMSCs growth and three-dimensional (3-D) tissue formation is an important technology for hMSC tissue engineering. A 3-D perfusion bioreactor system was designed using non-woven poly (ethylene terepthalate) (PET) fibrous matrices as scaffolds. The main features of the perfusion bioreactor system are its modular design and integrated seeding operation. Modular design of the bioreactor system allows the growth of multiple engineered tissue constructs and provides flexibility in harvesting the constructs at different time points. In this study, four chambers with three matrices in each were utilized for hMSC construct development. The dynamic depth filtration seeding operation is incorporated in the system by perfusing cell suspensions perpendicularly through the PET matrices, achieving a maximum seeding efficiency of 68%, and the operation effectively reduced the complexity of operation and the risk of contamination. Statistical analyses suggest that the cells are uniformly distributed in the matrices. After seeding, long-term construct cultivation was conducted by perfusing the media around the constructs from both sides of the matrices. Compared to the static cultures, a significantly higher cell density of 4.22 x 10(7) cell/mL was reached over a 40-day culture period. Cellular constructs at different positions in the flow chamber have statistically identical cell densities over the culture period. After expansion, the cells in the construct maintained the potential to differentiate into osteoblastic and adipogenic lineages at high cell density. The perfusion bioreactor system is amenable to multiple tissue engineered construct production, uniform tissue development, and yet is simple to operate and can be scaled up for potential clinical use. The results also demonstrate that the multi-lineage differentiation potential of hMSCs are preserved even after extensive expansion, thus indicating the potential of hMSCs for functional tissue construct development. The system has important applications in stem cell tissue engineering.  相似文献   

9.
High cell density cultivation of Escherichia coli on a glycerol-based mineral medium was studied. The cultivation was done in a dialysis reactor composed of two chambers. The inner chamber is formed and separated from an outer chamber by a membrane. Fresh medium was continuously exchanged with medium in the outer chamber so that both glycerol and other components of the medium were supplied to the inner chamber through the membrane. Inhibitory substances diffused from the inner to the outer chamber and were subsequently removed with effluent from the outer chamber. Initially, mathematical models were used to describe the process. The optimal cultivation parameters, such as the initial glycerol concentrations in the two chambers, the desired transport rate across the membrane, glycerol concentration in the feed/dialysing medium, and the time to start the medium exchange, were determined from preliminary experiments and calculations. The actual cultivation results agreed very well with the model predictions. A very high cell concentration of 174 g dry weight/1 was obtained. This cell concentration is within the range of the maximum theoretical concentration of E. coli in culture broth (160–200 g/l).Dedicated to the 60th birthday of Prof. Dr. D. Vortmeyer Correspondence to: H. Märkl  相似文献   

10.
A system of ultrasonic filter device consisted of an ultrasonic generator, ultrasonic cell separation chamber (resonator) and a guide column, which was developed for suspension cultures of a plant cell. The key operation parameters affecting the efficiency of separation of cells from medium fluid were found to be the voltage of ultrasonic generator, the convective flow rate, and the distance between transducer and reflector. In the high density cultures ofAloe saponaria (>17 g DCW/L), the ultrasonic filter was so efficient that the cell holding time in the separation chamber was 10-fold higher than the case without ultrasonic wave at a convective flow rate of 0.24 cm/min. Furthermore, in perfusion type of high cell density cultures, cell aggregates were observed to be densely held in the ultrasonic chamber by ultrasonic force overcoming both gravitational and drag forces by pump. The accumulated cells were finally overflowed after the holding capacity of the chamber was reached. Back pressure was applied periodically to the resonator to flush cells back to bioreactor. The ultrasonic cell separator could operate over 75 min at a convective flow rate of 0.1 cm/min and at a cell concentration of 17 g DCW/L.  相似文献   

11.
We have developed a hepatocyte entrapment hollow fiber bioreactor for potential use as a bioartificial liver. Hepatocytes were entrapped in collagen gel inside the lumen of the hollow fibers. Medium was perfused through the intraluminal region after contraction of the hepatocyte-entrapment gel. Another medium stream, comparable to the patient's blood during clinical application, passed through the extracapillary space. Viability of hepatocytes remained high after 5 days as judged by the rate of oxygen uptake and viability staining. Urea and albumin synthetic activities were also sustained. Transmission electron microscopic examination demonstrated normal ultrastructural integrity of hepatocytes in such a bioreactor. With its sort-term, extracorporeal support of acute liver failure, the current bioreactor warrants further investigation. (c) 1993 John Wiley & Sons, Inc.  相似文献   

12.
《The Journal of cell biology》1990,111(6):2663-2671
In healthy adult peripheral nerve, Schwann cells are believed to be generally quiescent. Similarly, cultures of isolated rat sciatic nerve Schwann cells hardly proliferate in serum-supplemented medium. The possibility that Schwann cells negatively regulate their own proliferation was supported by the demonstration that conditioned media from Schwann cell cultures inhibited the proliferation of mitogen- stimulated test cultures. The inhibition could be complete, was dose dependent, and was exhibited when the test Schwann cells were under the influence of different types of mitogens such as cholera toxin, laminin, and living neurons. The inhibition of proliferation was completely reversible and a rapid doubling of cell number resulted when treatment with conditioned medium was withdrawn from mitogen-stimulated Schwann cells. Conditioned medium from cholera toxin-stimulated and immortalized Schwann cell cultures contained less antiproliferative activity than that found in medium from quiescent Schwann cell cultures. However, media conditioned by two actively proliferating rat Schwannoma cell lines were rich sources of antiproliferative activity for Schwann cells. Unlike the mitogen-stimulated Schwann cells, whose proliferation could be inhibited completely, the immortalized and transformed Schwann cell types were nearly unresponsive to the antiproliferative activity. The antiproliferative activity in Schwann and Schwannoma cell conditioned media was submitted to gel filtration and SDS-PAGE. The activity exists in at least two distinct forms: (a) a high molecular weight complex with an apparent molecular mass greater than 1,000 kD, and (b) a lower molecular weight form having a molecular mass of 55 kD. The active 55-kD form could be derived from the high molecular weight form by gel filtration performed under dissociating conditions. The 55-kD form was further purified to electrophoretic homogeneity. These results suggest that Schwann cells produce an autocrine factor, which we designate as a "neural antiproliferative protein," which completely inhibits the in vitro proliferation of Schwann cells but not that of immortalized Schwann cells or Schwannoma lines.  相似文献   

13.
The thyroid follicle, the morphofunctional unit of thyroid gland, is a spheroidal structure formed by a monolayer of polarized cells surrounding a closed cavity in which thyroglobulin accumulates. Newly isolated porcine thyroid cells reorganize into two types of structures which differ by the orientation of cell polarity: in follicle-like structures, obtained in the presence of TSH, the apical pole delineates a closed cavity and cells express most parameters characteristic of thyroid function; in inside-out follicles the apical pole is oriented towards the culture medium and cells do not express properly the thyroid function. The organization of newly formed follicles can be modified by stimulation of cell migration or by interaction of their apical poles with a new cell environment. Seeded on a hard surface (glass, plastic), cells of follicle-like structures or inside-out follicles formed in suspension migrate giving a monolayer. On the contrary, cells organized into a monolayer treated with hexamethylene bisacetamide, reorganize into follicle-like structures. Inside-out structures reoganize upon interaction of their apical poles with collagen I gel, a coherent matrix, or with a reconstituted basement membrane (RBM), a soft matrix. Overlaid with collagen I, monolayers reorganize into follicles. Embedded in collagen I or in RBM, inside-out follicles reorient their polarity giving functional follicles. On the RBM surface, cells pull on the gel and embed themselves in the soft matrix gel, finally reorienting their polarity to inside-in polarity. When comparing thyroid cells with other epithelial cell types (mammary cells, Sertoli cells), it appears that the obtention in culture of follicle-like structures, ie closed inside-in polarized cell organization, is the best way to express in culture both morphology and function of any specific epithelial tissue, the polarized monolayer in porous bottom culture chamber coming just behind.  相似文献   

14.
We have developed a miniaturized hollow-fiber bioreactor system for mammalian cell culture with a volume of 1 mL. Cell and medium compartments of the bioreactor are separated by a semipermeable membrane, and oxygenation of the cell compartment is accomplished using an oxygenation membrane. As a result of the geometry of the transparent housing, cells can be observed by microscopy during culture. The leukemic cell lines CCRF-CEM, HL-60, and REH were cultivated up to densities of 3.5 x 10(7)/mL without medium change or manipulation of the cells. As shown using CCRF-CEM cells, growth in the bioreactor was strongly influenced and could be controlled by the medium flow rate. As a consequence, consumption of glucose and generation of lactate varied with flow rate. Depending on the molecular size cutoff of the membranes used, added growth factors such as GM-CSF, as well as factors secreted from the cells, are retained in the cell compartment for up to 1 week. This new miniaturized hollow-fiber bioreactor offers advantages in tissue engineering by continuous nutrient supply for cells in high density, retention of added or autocrine produced factors, and undisturbed long-term culture in a closed system.  相似文献   

15.
There is a dearth of technology and methods to aid process characterization, control and scale‐up of complex culture platforms that provide niche micro‐environments for some stem cell‐based products. We have demonstrated a novel use of 3d in vivo imaging systems to visualize medium flow and cell distribution within a complex culture platform (hollow fiber bioreactor) to aid characterization of potential spatial heterogeneity and identify potential routes of bioreactor failure or sources of variability. This can then aid process characterization and control of such systems with a view to scale‐up. Two potential sources of variation were observed with multiple bioreactors repeatedly imaged using two different imaging systems: shortcutting of medium between adjacent inlet and outlet ports with the potential to create medium gradients within the bioreactor, and localization of bioluminescent murine 4T1‐luc2 cells upon inoculation with the potential to create variable seeding densities at different points within the cell growth chamber. The ability of the imaging technique to identify these key operational bioreactor characteristics demonstrates an emerging technique in troubleshooting and engineering optimization of bioreactor performance. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 30:256–260, 2014  相似文献   

16.
Collagen synthesis by bovine aortic endothelial cells in culture.   总被引:8,自引:0,他引:8  
H Sage  E Crouch  P Bornstein 《Biochemistry》1979,18(24):5433-5442
Endothelial cells isolated from bovine aorta synthesize and secrete type III procollagen in culture. The procollagen, which represents the major collagenous protein in culture medium, was specifically precipitated by antibodies to bovine type III procollagen and was purified by diethyl-aminoethylcellulose chromatography. Unequivocal identification of the pepsin-treated collagen was made by direct comparison with type III collagen isolated by pepsin digestion of bovine skin, utilizing peptide cleavage patterns generated by vertebrate collagenase, CNBr, and mast cell protease. The type III collagen was hydroxylated to a high degree, having a hydroxyproline/proline ratio of 1.5:1.0. Pulse-chase studies indicated that the procollagen was not processed to procollagen intermediates or to collagen. Pepsin treatment of cell layers, followed by salt fractionation at acidic and neutral pH, produced several components which were sensitive to bacterial collagenase and which comigrated on sodium dodecyl sulfate-polyacrylamide gel electrophoresis with alpha A, alpha B, and type IV collagen chains purified from human placenta by similar techniques. Bovine aortic endothelial cells also secreted fibronectin and a bacterial collagenase-insensitive glycoprotein which, after reduction, had a molecular weight of 135,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (using procollagen molecular weight standards) and which was not precipitable by antibodies to cold-insoluble globulin or to alpha 2-macroglobulin. Collagen biosynthesis by these cells provides an interesting model system for studying the polarity of protein secretion and the attachment of cells to an extracellular matrix. The presence of type III collagen in the subendothelium and the specific interaction of this protein with fibronectin and platelets suggest the involvement of this collagen in thrombus formation following endothelial cell injury.  相似文献   

17.
Live-cell imaging chambers are used in a wide range of cell biology research. Recently, chambers capable of taking high-resolution and time-lapse images of live cells have been developed and become commercially available. However, because most of these chambers are designed to maintain a thermally stable environment for the cells under study, it is usually very difficult to use them to study temperature-dependent cellular events. Here we report the development of a chamber that is able to be used for the continuous monitoring of live neurons under most commercially available upright epifluorescence and confocal microscopes and in which the temperature and composition of the medium surrounding the neurons can be changed rapidly and reversibly. This live-cell observation chamber has been used successfully with cultured rat hippocampal neurons to study temperature-dependent changes in the dynamics of the microtubule cytoskeleton using fluorescence recovery after photobleaching (FRAP) together with the localization of α-tubulin in the dendritic spines. The success of these observations demonstrates the usefulness and applicability of the live-cell observation chamber described here to a wide range of cell biology experiments.  相似文献   

18.
A cytokine with an apparent molecular weight of 53,000 daltons was isolated from serum-free medium conditioned by MTLn3 cells or from homogenates of MTLn3 cells, a highly metastatic variant of the rat 13762NF mammary adenocarcinoma. The chemotactic responses of MTLn3 and the low metastatic variant MTLn2 cells to this cytokine were tested in vitro using modified Boyden chambers. Both the chemotactic and chemokinetic movements of MTLn3 cells were stimulated by the MTLn3-derived cytokine. In addition, the MTLn3-derived cytokine stimulated a relatively small, but significant chemotactic migration of MTLn2 tumor cells, while these cells did not respond to medium conditioned by MTLn2 cells. MTLn3 cells themselves did not respond chemotactically to type I collagen or medium conditioned by MTLn2 cells. These results suggest that the chemotactic response may be a function of metastatic potential of the invading tumor cells. The production of tumor cytokines that enhance tumor cell motility may thus represent a phenotypic difference between 13762NF tumor cell subpopulations of high and low metastatic potential.  相似文献   

19.
Chondrocytes isolated from human fetal epiphyseal cartilage were seeded under mixed conditions into 15-mm-diameter polyglycolic acid (PGA) scaffolds and cultured in recirculation column bioreactors to generate cartilage constructs. After seeding, the cell distributions in thick (4.75 mm) and thin (2.15 mm) PGA disks were nonuniform, with higher cell densities accumulating near the top surfaces. Composite scaffolds were developed by suturing together two thin PGA disks after seeding to manipulate the initial cell distribution before bioreactor culture. The effect of medium flow direction in the bioreactors, including periodic reversal of medium flow, was also investigated. The quality of the tissue-engineered cartilage was assessed after 5 weeks of culture in terms of the tissue wet weight, glycosaminoglycan (GAG), total collagen and collagen type II contents, histological analysis of cell, GAG and collagen distributions, and immunohistochemical analysis of collagen types I and II. Significant enhancement in construct quality was achieved using composite scaffolds compared with single PGA disks. Operation of the bioreactors with periodic medium flow reversal instead of unidirectional flow yielded further improvements in tissue weight and GAG and collagen contents with the composite scaffolds. At harvest, the constructs contained GAG concentrations similar to those measured in ex vivo human adult articular cartilage; however, total collagen and collagen type II levels were substantially lower than those in adult tissue. This study demonstrates that the location of regions of high cell density in the scaffold coupled with application of dynamic bioreactor operating conditions has a significant influence on the quality of tissue-engineered cartilage.  相似文献   

20.
A DNA synthesis inhibitor protein was purified from the conditioned medium of cycloheximide treated mouse embryo fibroblasts. This protein has a molecular weight of 45,000 as determined by gel filtration and Polyacrylamide gel electrophoresis. The levels of the [35S] methionine la belled 45 kDa protein in the medium and matrix were monitored across two cell cycles in synchronized cultures. The 45 kDa protein was present in higher levels in the medium of non-S-phase cells depicting a peak between the two S-phases. The DNA synthesis inhibitor protein was immunologically related to a chicken DNA-binding protein which showed similar cell cycle specific variations at the intracellular level. The purified 45 kDa protein inhibited DNA synthesis in murine and human cells. In mouse embryo fibroblasts, the DNA synthesis was inhibited to an extent of 86% by 0.25 μg/ml of the inhibitor, while higher amounts of the inhibitor were required to arrest DNA synthesis in human skin fibroblasts: in these cells, 4 μg/ml of the inhibitor inhibited DNA synthesis to an extent of 50%. The high levels of the 45 kDa protein in the medium of non-S phase cells and its DNA synthesis inhibitory potential suggest that this protein may be involved in the regulation of DNA synthesis during the cell cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号