共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Many devastating inherited eye diseases result in progressive and irreversible blindness because humans cannot regenerate dying or diseased retinal neurons. In contrast, the adult zebrafish retina possesses the robust ability to spontaneously regenerate any neuronal class that is lost in a variety of different retinal damage models, including retinal puncture, chemical ablation, concentrated high temperature, and intense light treatment. Our lab extensively characterized regeneration of photoreceptors following constant intense light treatment and inner retinal neurons after intravitreal ouabain injection. In all cases, resident Müller glia re-enter the cell cycle to produce neuronal progenitors, which continue to proliferate and migrate to the proper retinal layer, where they differentiate into the deficient neurons. We characterized five different stages during regeneration of the light-damaged retina that were highlighted by specific cellular responses. We identified several differentially expressed genes at each stage of retinal regeneration by mRNA microarray analysis. Many of these genes are also critical for ocular development. To test the role of each candidate gene/protein during retinal regeneration, we needed to develop a method to conditionally limit the expression of a candidate protein only at times during regeneration of the adult retina. Morpholino oligos are widely used to study loss of function of specific proteins during the development of zebrafish, Xenopus, chick, mouse, and tumors in human xenografts. These modified oligos basepair with complementary RNA sequence to either block the splicing or translation of the target RNA. Morpholinos are stable in the cell and can eliminate or "knockdown" protein expression for three to five days. Here, we describe a method to efficiently knockdown target protein expression in the adult zebrafish retina. This method employs lissamine-tagged antisense morpholinos that are injected into the vitreous of the adult zebrafish eye. Using electrode forceps, the morpholino is then electroporated into all the cell types of the dorsal and central retina. Lissamine provides the charge on the morpholino for electroporation and can be visualized to assess the presence of the morpholino in the retinal cells. Conditional knockdown in the retina can be used to examine the role of specific proteins at different times during regeneration. Additionally, this approach can be used to study the role of specific proteins in the undamaged retina, in such processes as visual transduction and visual processing in second order neurons. 相似文献
4.
Medaka is an ideal model system for developmental studies as it combines the advantages of powerful genetics and classical embryology. Due to the accessibility, transparency and fast development, embryogenesis and morphogenesis can be followed in vivo. Microscopic time-lapse imaging, however, requires the immobilization of the object to be observed. In medaka rhythmical contractile movements of the blastoderm during early development hampered time-lapse studies, as they cause the embryo to rotate vividly. Here we show that the contractile movements can be reduced by continuous treatment with the gap-junction uncoupling agent n-heptanol up to the 12-somite stage (stage 23) without interfering with development. This allows for the first time to perform high-resolution time-lapse studies in medaka. 相似文献
5.
Georgeann S. O'Brien Sandra Rieger Seanna M. Martin Ann M. Cavanaugh Carlos Portera-Cailliau Alvaro Sagasti 《Journal of visualized experiments : JoVE》2009,(24)
Zebrafish have long been utilized to study the cellular and molecular mechanisms of development by time-lapse imaging of the living transparent embryo. Here we describe a method to mount zebrafish embryos for long-term imaging and demonstrate how to automate the capture of time-lapse images using a confocal microscope. We also describe a method to create controlled, precise damage to individual branches of peripheral sensory axons in zebrafish using the focused power of a femtosecond laser mounted on a two-photon microscope. The parameters for successful two-photon axotomy must be optimized for each microscope. We will demonstrate two-photon axotomy on both a custom built two-photon microscope and a Zeiss 510 confocal/two-photon to provide two examples.Zebrafish trigeminal sensory neurons can be visualized in a transgenic line expressing GFP driven by a sensory neuron specific promoter 1. We have adapted this zebrafish trigeminal model to directly observe sensory axon regeneration in living zebrafish embryos. Embryos are anesthetized with tricaine and positioned within a drop of agarose as it solidifies. Immobilized embryos are sealed within an imaging chamber filled with phenylthiourea (PTU) Ringers. We have found that embryos can be continuously imaged in these chambers for 12-48 hours. A single confocal image is then captured to determine the desired site of axotomy. The region of interest is located on the two-photon microscope by imaging the sensory axons under low, non-damaging power. After zooming in on the desired site of axotomy, the power is increased and a single scan of that defined region is sufficient to sever the axon. Multiple location time-lapse imaging is then set up on a confocal microscope to directly observe axonal recovery from injury. Open in a separate windowClick here to view.(76M, flv) 相似文献
6.
Targeting of amacrine cell neurites to appropriate synaptic laminae in the developing zebrafish retina 总被引:4,自引:0,他引:4
Godinho L Mumm JS Williams PR Schroeter EH Koerber A Park SW Leach SD Wong RO 《Development (Cambridge, England)》2005,132(22):5069-5079
Cellular mechanisms underlying the precision by which neurons target their synaptic partners have largely been determined based on the study of projection neurons. By contrast, little is known about how interneurons establish their local connections in vivo. Here, we investigated how developing amacrine interneurons selectively innervate the appropriate region of the synaptic neuropil in the inner retina, the inner plexiform layer (IPL). Increases (ON) and decreases (OFF) in light intensity are processed by circuits that are structurally confined to separate ON and OFF synaptic sublaminae within the IPL. Using transgenic zebrafish in which the majority of amacrine cells express fluorescent protein, we determined that the earliest amacrine-derived neuritic plexus formed between two cell populations whose somata, at maturity, resided on opposite sides of this plexus. When we followed the behavior of individual amacrine cells over time, we discovered that they exhibited distinct patterns of structural dynamics at different stages of development. During cellular migration, amacrine cells exhibited an exuberant outgrowth of neurites that was undirected. Upon reaching the forming IPL, neurites extending towards the ganglion cell layer were relatively more stable. Importantly, when an arbor first formed, it preferentially ramified in either the inner or outer IPL corresponding to the future ON and OFF sublaminae, and maintained this stratification pattern. The specificity by which ON and OFF amacrine interneurons innervate their respective sublaminae in the IPL contrasts with that observed for projection neurons in the retina and elsewhere in the central nervous system. 相似文献
7.
Staggered cell-intrinsic timing of ath5 expression underlies the wave of ganglion cell neurogenesis in the zebrafish retina 总被引:3,自引:0,他引:3
In the developing nervous system, progenitor cells must decide when to withdraw from the cell cycle and commence differentiation. There is considerable debate whether cell-extrinsic or cell-intrinsic factors are most important for triggering this switch. In the vertebrate retina, initiation of neurogenesis has recently been explained by a 'sequential-induction' model--signals from newly differentiated neurons are thought to trigger neurogenesis in adjacent progenitors, creating a wave of neurogenesis that spreads across the retina in a stereotypical manner. We show here, however, that the wave of neurogenesis in the zebrafish retina can emerge through the independent action of progenitor cells--progenitors in different parts of the retina appear pre-specified to initiate neurogenesis at different times. We provide evidence that midline Sonic hedgehog signals, acting before the onset of neurogenesis, are part of the mechanism that sets the neurogenic timer in these cells. Our results highlight the importance of intrinsic factors for triggering neurogenesis, but they also suggest that early signals can modulate these intrinsic factors to influence the timing of neurogenesis many cell cycles later, thereby potentially coordinating axial patterning with control of neuron number and cell fate. 相似文献
8.
In vivo time-lapse imaging of synaptic takeover associated with naturally occurring synapse elimination 总被引:9,自引:0,他引:9
During development, competition between axons causes permanent removal of synaptic connections, but the dynamics have not been directly observed. Using transgenic mice that express two spectral variants of fluorescent proteins in motor axons, we imaged competing axons at developing neuromuscular junctions in vivo. Typically, one axon withdrew progressively from postsynaptic sites and the competing axon extended axonal processes to occupy those sites. In rare instances when the remaining axon did not reoccupy a site, the postsynaptic receptors rapidly disappeared. Interestingly, the progress and outcome of competition was unpredictable. Moreover, the relative areas occupied by the competitors shifted in favor of one axon and then the other. These results show synaptic competition is not always monotonic and that one axon's contraction in synaptic area is associated with another axon's expansion. 相似文献
9.
In this study we describe a model system that allows continuous in vivo observation of the vertebrate embryonic vasculature. We find that the zebrafish fli1 promoter is able to drive expression of enhanced green fluorescent protein (EGFP) in all blood vessels throughout embryogenesis. We demonstrate the utility of vascular-specific transgenic zebrafish in conjunction with time-lapse multiphoton laser scanning microscopy by directly observing angiogenesis within the brain of developing embryos. Our images reveal that blood vessels undergoing active angiogenic growth display extensive filopodial activity and pathfinding behavior similar to that of neuronal growth cones. We further show, using the zebrafish mindbomb mutant as an example, that the expression of EGFP within developing blood vessels permits detailed analysis of vascular defects associated with genetic mutations. Thus, these transgenic lines allow detailed analysis of both wild type and mutant embryonic vasculature and, together with the ability to perform large scale forward-genetic screens in zebrafish, will facilitate identification of new mutants affecting vascular development. 相似文献
10.
Couillard-Despres S Finkl R Winner B Ploetz S Wiedermann D Aigner R Bogdahn U Winkler J Hoehn M Aigner L 《Molecular imaging》2008,7(1):28-34
Adult neurogenesis is a highly dynamic process modulated by several pathologic and environmental factors, as well as by various compounds. So far, available techniques to study neurogenesis are lengthy and personnel and cost intensive. We developed a new tool based on the doublecortin promoter driving the expression of the luciferase reporter gene (DCX-promo-luciferase) in transgenic mice to perform in vivo imaging of neurogenesis. Indeed, the DCX-promo-luciferase mice allowed optical in vivo imaging of the onset of and increase in neurogenesis in developing fetal brains, as well as imaging of neurogenesis in the intact adult mouse central nervous system. Moreover, the capacity to specifically detect a small number of migrating neuronal precursors in vivo after transplantation is for the first time feasible using this DCX-promo-luciferase transgenic tool. The present imaging approach offers several crucial advantages over methods currently available, such as bromodeoxyuridine incorporation or labeling using iron oxide nanoparticles. Hence, it allows longitudinal study of neurogenesis in intact animals without the requirement of cellular prelabeling. Moreover, it guarantees that detection is specific for neuronal precursors and restricted to viable cells. Hence, our DCX-promo-luciferase transgenic model constitutes an effective tool that answers the pressing need for rapid investigation of the impact on neurogenesis of a large number of candidate compounds waiting to be tested. 相似文献
11.
Ariadna G. Battista María Jimena Ricatti Diego E. Pafundo† Marien A. Gautier María Paula Faillace† 《Journal of neurochemistry》2009,111(2):600-613
Regeneration and growth that occur in the adult teleost retina by neurogenesis have been helpful in identifying molecular and cellular mechanisms underlying cell proliferation and differentiation. In this report, we demonstrate that endogenous purinergic signals regulate cell proliferation induced by a cytotoxic injury of the adult zebrafish retina which mainly damages inner retinal layers. Particularly, we found that ADP but not ATP or adenosine significantly enhanced cell division as assessed by 5-bromo-2'-deoxyuridine incorporation following injury, during the degenerative and proliferative phase of the regeneration process. This effect of ADP occurs via P2Y1 metabotropic receptors as shown by intra-ocular injection of selective antagonists. Additionally, we describe a role for purinergic signals in regulating cell death induced by injury. Scavenging of extracellular nucleotides significantly increased cell death principally seen in the inner retinal layers. This effect is partially reproduced by blocking P2Y1 receptors suggesting a neuroprotective function for ADP, which is derived from extracellular ATP probably released by dying cells as a consequence of the ouabain treatment. This study demonstrates a crucial role for ADP as a paracrine signal in the repair of retinal tissue following injury. 相似文献
12.
Imaging and molecular approaches are perfectly suited to young, transparent zebrafish (Danio rerio), where they have allowed novel functional studies of neural circuits and their links to behavior. Here, we review cutting-edge optical and genetic techniques used to dissect neural circuits in vivo and discuss their application to future studies of developing spinal circuits using living zebrafish. We anticipate that these experiments will reveal general principles governing the assembly of neural circuits that control movements. 相似文献
13.
Dendrites, axons, and synapses are dynamic during circuit development; however, changes in microcircuit connections as branches stabilize have not been directly demonstrated. By combining in?vivo time-lapse imaging of Xenopus tectal neurons with electron microscope reconstructions of imaged neurons, we report the distribution and ultrastructure of synapses on individual vertebrate neurons and relate these synaptic properties to dynamics in dendritic and axonal arbor structure over hours or?days of imaging. Dynamic dendrites have a high density of immature synapses, whereas stable dendrites have sparser, mature synapses. Axons initiate contacts from multisynapse boutons on stable branches. Connections are refined by decreasing convergence from multiple inputs to postsynaptic dendrites and by decreasing divergence from multisynapse boutons to postsynaptic sites. Visual deprivation or NMDAR antagonists decreased synapse maturation and elimination, suggesting that coactive input activity promotes microcircuit development by concurrently regulating synapse elimination and maturation of remaining contacts. 相似文献
14.
Time-lapse confocal microscopy of mouse embryo slices was developed to access and image the living aorta. In this paper, we explain how to label all hematopoietic and endothelial cells inside the intact mouse aorta with fluorescent directly labeled antibodies. Then we describe the technique to cut nonfixed labeled embryos into thick slices that are further imaged by time-lapse confocal imaging. This approach allows direct observation of the dynamic cell behavior in the living aorta, which was previously inaccessible because of its location deep inside the opaque mouse embryo. In particular, this approach is sensitive enough to allow the experimenter to witness the transition from endothelial cells into hematopoietic stem/progenitor cells in the aorta, the first site of hematopoietic stem cell generation during development. The protocol can be applied to observe other embryonic sites throughout mouse development. A complete experiment requires ~2 d of practical work. 相似文献
15.
In mammalian development, apoptosis spreads over the retina in consecutive waves and induces a remarkable amount of cell loss. No evidence for such consecutive waves has been revealed in the fish retina so far. As the zebrafish is of growing importance as a model for retinal development and for degenerative retinal diseases, we examined the onset and time course of apoptosis in the developing zebrafish retina and in adult fish. We found that apoptosis peaked in the ganglion cell layer (GCL) and inner nuclear layer (INL) in early developmental stages (3-4 days post-fertilization; dpf) followed by a second, but clearly smaller wave at 6-7dpf. Apoptosis in the outer nuclear layer (ONL) started at 5dpf and peaked at 7dpf. This late-onset high peak of apoptosis of photoreceptors is different from that of all other species examined to date. With 1.09% of cells in the GCL and 1.10% in the ONL being apoptotic, the rate of apoptosis in the developing zebrafish retina was conspicuously lower than that observed in other vertebrates (up to 50% in GCL). During development (2-21dpf), apoptotic waves were most obvious in the central retina, whereas in the periphery near the marginal zone (MZ), apoptosis was much lower; in adult animals, practically no apoptosis was present in the central retina but it still occurred near the MZ. Our data show that the onset and time course of apoptosis in the GCL and INL of the zebrafish is comparable with other vertebrates; however, the amount of apoptosis is clearly reduced. Thus, apoptosis in the zebrafish retina may serve more as a mechanism for the fine tuning of the retinal neuronal network after mitotic waves during development or in remaining mitotic areas than as a mechanism for eliminating large numbers of excess cells. 相似文献
16.
17.
Programmed cell death is an established developmental process in the nervous system. Whereas the regulation and the developmental role of neuronal cell death have been widely demonstrated, the relevance of cell death during early neurogenesis, the cells affected and the identity of regulatory local growth factors remain poorly characterized. We have previously described specific in vivo patterns of apoptosis during early retinal neurogenesis, and that exogenous insulin acts as survival factor (Díaz, B., Pimentel, B., De Pablo, F. and de la Rosa, E. J. (1999) Eur. J. Neurosci. 11, 1624-1632). Proinsulin mRNA was found to be expressed broadly in the early embryonic chick retina, and decreased later between days 6 and 8 of embryonic development, when there was increased expression of insulin-like growth factor I mRNA, absent or very scarce at earlier stages. Consequently, we studied whether proinsulin and/or insulin ((pro)insulin) action in prevention of cell death has physiological relevance during early neural development. In ovo treatment at day 2 of embryonic development with specific antibodies against (pro)insulin or the insulin receptor induced apoptosis in the neuroretina. The distribution of apoptotic cells two days after the blockade was similar to naturally occurring cell death, as visualized by TdT-mediated dUTP nick end labeling. The apoptosis induced by the insulin receptor blockade preferentially affected to the Islet1/2 positive cells, that is, the differentiated retinal ganglion cells. In parallel, the insulin survival effect on cultured retinas correlated with the activation of Akt to a greater extent than with the activation of MAP kinase. These results suggest that the physiological cell death occurring in early stages of retinal development is regulated by locally produced (pro)insulin through the activation of the Akt survival pathway. 相似文献
18.
Previous studies have analyzed photoreceptor development, some inner retina cell types, and specific neurotransmitters in the zebrafish retina. However, only minor attention has been paid to the morphology of the synaptic connection between photoreceptors and second order neurons even though it represents the transition from the light sensitive receptor to the neuronal network of the visual system. Here, we describe the appearance and differentiation of pre- and postsynaptic elements at cone synapses in the developing zebrafish retina together with the maturation of the directly connecting second order neurons and a dopaminergic third order feedback-neuron from the inner retina. Zebrafish larvae were examined at developmental stages from 2 to 7dpf (days postfertilization) and in the adult. Synaptic maturation at the photoreceptor terminals was examined with antibodies against synapse associated proteins. The appearance of synaptic plasticity at the so-called spinule-type synapses between cones and horizontal cells was assessed by electron microscopy, and the maturation of photoreceptor downstream connection was identified by immunocytochemistry for GluR4 (AMPA-type glutamate receptor subunit), protein kinase beta(1) (mixed rod-cone bipolar cells), and tyrosine hydroxylase (dopaminergic interplexiform cells). We found that developing zebrafish retinas possess first synaptic structures at the cone terminal as early as 3.5dpf. Morphological maturation of these synapses at 3.5-4dpf, together with the presence of synapse associated proteins at 2.5dpf and the maturation of second order neurons by 5dpf, indicate functional synaptic connectivity and plasticity between the cones and their second order neurons already at 5dpf. However, the mere number of spinules and ribbons at 7dpf still remains below the adult values, indicating that synaptic functionality of the zebrafish retina is not entirely completed at this stage of development. 相似文献
19.
In vivo imaging reveals dendritic targeting of laminated afferents by zebrafish retinal ganglion cells 总被引:3,自引:0,他引:3
Mumm JS Williams PR Godinho L Koerber A Pittman AJ Roeser T Chien CB Baier H Wong RO 《Neuron》2006,52(4):609-621
Targeting of axons and dendrites to particular synaptic laminae is an important mechanism by which precise patterns of neuronal connectivity are established. Although axons target specific laminae during development, dendritic lamination has been thought to occur largely by pruning of inappropriately placed arbors. We discovered by in vivo time-lapse imaging that retinal ganglion cell (RGC) dendrites in zebrafish show growth patterns implicating dendritic targeting as a mechanism for contacting appropriate synaptic partners. Populations of RGCs labeled in transgenic animals establish distinct dendritic strata sequentially, predominantly from the inner to outer retina. Imaging individual cells over successive days confirmed that multistratified RGCs generate strata sequentially, each arbor elaborating within a specific lamina. Simultaneous imaging of RGCs and subpopulations of presynaptic amacrine interneurons revealed that RGC dendrites appear to target amacrine plexuses that had already laminated. Dendritic targeting of prepatterned afferents may thus be a novel mechanism for establishing proper synaptic connectivity. 相似文献
20.