首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Today reconstructed skin models that simulate human skin, such as Episkin, are widely used for safety or efficacy pre-screening. Moreover, they are of growing interest for regulatory purposes in the framework of alternatives to animal testing. In order to reduce and eventually replace results of in vivo genotoxicity testing with in vitro data, there is a need to develop new complementary biological models and methods with improved ability to predict genotoxic risk. This can be achieved if these new assays do take into account exposure conditions that are more relevant than in the current test systems. In an attempt to meet this challenge, two new applications using a human reconstructed skin model for in vitro genotoxicity assessment are proposed. The skin is the target organ for dermally exposed compounds or environmental stress. Although attempts have been made to develop genotoxicity test procedures in vivo on mouse skin, human reconstructed skin models have not been used for in vitro genotoxicity testing so far, although they present clear advantages over mouse skin for human risk prediction. This paper presents the results of the development of a specific protocol allowing to perform the comet assay, a genotoxicity test procedure, on reconstructed skin. The comet assay was conducted after treatment of Episkin with UV, Lomefloxacin and UV or 4-nitroquinoline-N-oxide (4NQO). Treatment with the sunscreen Mexoryl was able to reduce the extent of comet signal. A second approach to use reconstructed epidermis in genotoxicity assays is also proposed. Indeed, the skin is a biologically active barrier driving the response to exposure to chemical agents and their possible metabolites. A specific co-culture system (Figure 1) using Episkin to perform the regular micronucleus assay is presented. Micronucleus induction in L5178Y cells cultured underneath Episkin was assessed after treatment of the reconstructed epidermis with mitomycin C, cyclophosphamide or apigenin. This second way of using human reconstructed skin for genotoxicity testing aims at improving the relevance of exposure conditions in in vitro genotoxicity assays for dermally applied compounds.  相似文献   

2.
The protective role of the skin is provided by the two major compartments of the skin, dermis and epidermis. Both are affected in the long term by consequences of sun exposure such as skin photoaging and cancer development. Characterization of UV-induced skin response at cellular and molecular levels is needed for prevention or correction of these long term effects. The human skin reconstructed in vitro, comprising both a living dermal equivalent and a fully differentiated epidermis represents a predictive tool to characterize wavelength and cell type specific biological damage together with tissular distribution. While UVB directly affects epidermis, inducing DNA lesions and apoptotic sunburn keratinocytes, UVA radiation can directly target the dermal compartment through ROS generation, dermal fibroblasts alterations and extracellular matrix (ECM) modifications. Interactions between the two compartments have also been found, especially for MMP1 induction. In the normal population, photodamage can be repaired through specialized systems. Using skin cells from Xeroderma pigmentosum (XP, a photosensitive and cancer-prone disease), a DNA-repair deficient skin has been developed in vitro. Specific features due to intrinsic XP cell phenotype have been discovered, some of them being indicative of early steps of neoplasia and suggesting a particular role for stroma-epithelium interactions. Finally, human reconstructed skin can be used for approaches designed to regenerate photodamaged skin. The dermal-epidermal junction (DEJ), which is crucial for skin cohesion, is drastically altered in photo-aged skin. The three-dimensional skin model allowed to visualize the improving effects of vitamin C on the DEJ. Modified skin models, lacking one cell type, allowed us to determine the cellular origin of the different markers, their spatial localization, and the respective roles and interactions of keratinocytes and fibroblasts during DEJ formation. All together these studies give a global and tissular view concerning the effects of UV light on skin cells and emphazise the interest of such models for general aspects of cellular biology. By allowing the control of cells used to reconstruct the model and their origin, these studies make it possible to assess the respective role of the two major cellular actors of the skin as well as their interactions. Ongoing research about incorporating other cell types may certainly give rise to even more relevant models.  相似文献   

3.
Epidermis generated in vitro: practical considerations and applications   总被引:5,自引:0,他引:5  
The technology for culture of epidermis is one of the most advanced to date for generation of a tissue in vitro. Cultured epidermis is already used for a number of applications ranging from use as a permanent skin replacement to use as an organotypic culture model for toxicity testing and basic research. While simple epidermal sheets have been grafted successfully, more advanced models for skin replacement consisting of both dermal and epidermal components are in development and being tested in a number of laboratories. One of the most advanced in vitro models is the living skin equivalent, an organotypic model consisting of a collagen lattice contracted and nourished by dermal fibroblasts overlaid with a fully formed epidermis.  相似文献   

4.
Currently, two reconstructed human skin models, EpiDerm and EPISKIN are being evaluated in an ECVAM skin irritation validation study. A common skin irritation protocol has been developed, differing only in minor technical details for the two models. A small-scale study, applying this common skin irritation protocol to the SkinEthic reconstructed human epidermis (RHE), was performed at ZEBET at the BfR, Berlin, Germany, to consider whether this protocol could be successfully transferred to another epidermal model. Twenty substances from Phase III of the ECVAM prevalidation study on skin irritation were tested with the SkinEthic RHE. After minor, model-specific adaptations for the SkinEthic RHE, almost identical results to those obtained with the EpiDerm and EPISKIN models were achieved. The overall accuracy of the method was more than 80%, indicating a reliable prediction of the skin irritation potential of the tested chemicals when compared to in vivo rabbit data. As a next step, inter laboratory reproducibility was assessed in a study conducted between ZEBET and the Department of Experimental Toxicology, Schering AG, Berlin, Germany. Six coded substances were tested in both laboratories, with three different batches of the SkinEthic model. The assay results showed good reproducibility and correct predictions of the skin irritation potential for all six test chemicals. The results obtained with the SkinEthic RHE and the common protocol were reproducible in both phases, and the overall outcome is very similar to that of earlier studies with the EPISKIN and EpiDerm models. Therefore, the SkinEthic skin irritation assay test protocol can now be evaluated in a formal "catch-up" validation study.  相似文献   

5.
6.
This study was implemented to test the Episkin model of reconstructed epidermis in the evaluation of the efficacy of cosmetic or dermopharmaceutical products on cutaneous energy metabolism. The energy metabolism is evaluated by measuring the concentration of intracellular ATP by a method using an ultrasensitive bioluminescent reaction. The work presented compares results obtained in reconstructed epithelium and monolayer primary cultures of human keratinocytes.After application of a hydrosoluble product, the increase in intracellular ATP is identical in a monolayer culture of keratinocytes (+239±18% versus control) and in Episkin (+248±21% versus control). An emulsion was also tested on the two models. It is only possible to test the emulsion at a dilution of under 0.05% on a keratinocyte culture, and this means that the real efficacy of the product is underestimated (+145±18% versus control). The three-dimensional model enables the application of the undiluted emulsion, and the results show an increase in intracellular ATP of +420±80% versus control: products in final formulation can be tested in normal conditions of use.Abbreviations BPE bovine pituitary extract - DMEM Dulbecco's modified Eagle's medium - EDTA ethylene diamine tetraacetic acid - EGF epidermal growth factor - K-SFM keratinocytes serum free medium - MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide - O/W oil in water - PBS phosphate-buffered saline  相似文献   

7.
A protocol for percutaneous absorption studies has been validated, based on the use of reconstructed human epidermis (RHE) and aqueous solutions of test substances. However, it is often the case that it is more-complex formulations of drugs or chemicals which will make contact with the skin surface. To investigate whether RHE and the reconstructed full-thickness skin model (FT-model) can be used to predict uptake from formulations, we compared the permeation of hydrocortisone and testosterone when applied in emulsion form and as a solution containing the penetration enhancer, ethanol. Human and pig skin and a non-cornified alveolar model served as references. The results were compared with steroid release from the formulations. The permeation rates of the steroids were ranked as: alveolar model > RHE > FT-model, pig skin > human skin. In accordance with the rapid hydrocortisone release from the formulations, the permeation rates of this steroid exceeded those of testosterone. Only minor differences were observed when comparing the testosterone formulations, in terms of release and permeation. However, the ranking of the permeation of the hydrocortisone formulations was: solution > w/o emulsion > o/w emulsion, which permitted the elucidation of penetration enhancing effects, which is not possible with drug release studies. Differences in penetration were most obvious with native skin and reconstructed tissues, which exhibited a well-developed penetration barrier. In conclusion, RHE and skin preparations may be useful in the development of topical dermatics, and in the framework of hazard analysis of toxic compounds and their various formulations.  相似文献   

8.
Skin tissue, in addition to its specific use in dermal research, provides an excellent model for developing the techniques of vibrational microscopy and imaging for biomedical applications. In addition to permitting characterization of various regions of skin, the relative paucity of major biological constituents in the stratum corneum (the outermost layer of skin), permits us to image, with microscopic resolution, conformational alterations and concentration variations in both the lipid and protein components. Thus we are able to monitor the effects of exogenous materials such as models for drug delivery agents (liposomes) and permeation enhancers (DMSO) on stratum corneum lipid organization and protein structure. In addition, we are able to monitor protein conformational changes in single corneocytes. The current article demonstrates these procedures, ranging from direct univariate measures of lipid chain conformational disorder, to factor analysis which permits us to image conformational differences between liposomes that have permeated through the stratum corneum from those which have remained on the surface in a reservoir outside the skin.  相似文献   

9.
A variety of skin equivalent systems have been developed recently mainly for burn therapy but also for studies of the cell and molecular biology of dermatologic and immunologic disorders and for cosmetic and pharmaceutical research. Since European regulation forbids the use of animals to prove product safety in cosmetic products, several commercially available three-dimensional skin models were developed by the cosmetic and chemical industry and validated according to OECD and ECVAM regulations. Three-dimensional skin models consist of two compartments: one serves as a dermal equivalent, usually consisting of fibroblasts in type I collagen, onto which a terminally differentiating epidermis is placed. Up-to-date models are missing that mimic monogenic skin disorders or signs of disease in the skin caused by a systemic autoimmune disorder. We recently developed a three-dimensional skin model for congenital ichthyosis as an example for a keratinization disorder. The system is being validated and will be fundamental for studies of disturbed epidermal differentiation and pharmaceutical intervention.  相似文献   

10.
Exposure to chemicals absorbed by the skin can threaten human health. In order to standardise the predictive testing of percutaneous absorption for regulatory purposes, the OECD adopted guideline 428, which describes methods for assessing absorption by using human and animal skin. In this study, a protocol based on the OECD principles was developed and prevalidated by using reconstructed human epidermis (RHE). The permeation of the OECD standard compounds, caffeine and testosterone, through commercially available RHE models was compared to that of human epidermis and animal skin. In comparison to human epidermis, the permeation of the chemicals was overestimated when using RHE. The following ranking of the permeation coefficients for testosterone was obtained: SkinEthic > EpiDerm, EPISKIN > human epidermis, bovine udder skin, pig skin. The ranking for caffeine was: SkinEthic, EPISKIN > bovine udder skin, EpiDerm, pig skin, human epidermis. The inter-laboratory and intra-laboratory reproducibility was good. Long and variable lag times, which are a matter of concern when using human and pig skin, did not occur with RHE. Due to the successful transfer of the protocol, it is now in the validation process.  相似文献   

11.
The skin is a well-recognized site of steroid formation and metabolism. Episkin is a cultured human epidermis. In this report, we investigate whether Episkin possesses a steroidogenic machinery able to metabolize adrenal steroid precursors into active steroids. Episkin was incubated with [14C]-dehydroepiandrosterone (DHEA) and 4-androstenedione (4-dione) and their metabolites were analyzed by liquid chromatography/mass spectrometry (LC/MS/MS). The results show that the major product of DHEA metabolism in Episkin is DHEA sulfate (DHEAS) (88% of the metabolites) while the other metabolites are 7alpha-OH-DHEA (8.2%), 4-dione (1.3%), 5-androstenediol (1.3%), dihydrotestosterone (DHT) (1.4%) and androsterone (ADT) (2.3%). When 4-dione is used as substrate, much higher levels of C19-steroids are produced with ADT representing 77% of the metabolites. These data indicate that 5alpha-reductase, 17beta-hydroxysteroid dehydrogenase (17beta-HSD) and 3alpha-hydroxysteroid dehdyrogenase (3alpha-HSD) activities are present at moderate levels in Episkin, while 3beta-HSD activity is low and represents a rate-limiting step in the conversion of DHEA into C19-steroids. Using realtime PCR, we have measured the level of mRNAs encoding the steroidogenic enzymes in Episkin. A good agreement is found between the mRNAs expression in Episkin and the metabolic profile. High expression levels of steroid sulfotransferase SULT2B1B and type 3 3alpha-HSD (AKR1C2) correspond to the high levels of DHEA sulfate (DHEAS) and ADT formed from DHEA and 4-dione, respectively. 3beta-HSD is almost undetectable while the other enzymes such as type 1 5alpha-reductase, types 2, 4, 5, 7, 8, and 10 17beta-HSD and 20alpha-hydroxysteroid dehydrogenase (20alpha-HSD) (AKR1C1) are highly expressed. Except for UGT-glucuronosyl transferase, similar mRNA expression profiles between Episkin and human epidermis are observed.  相似文献   

12.
A formal validation study was performed, in order to investigate whether the commercially-available reconstructed human epidermis (RHE) models, EPISKIN, EpiDerm and SkinEthic, are suitable for in vitro skin absorption testing. The skin types currently recommended in the OECD Test Guideline 428, namely, ex vivo human epidermis and pig skin, were used as references. Based on the promising outcome of the prevalidation study, the panel of test substances was enlarged to nine substances, covering a wider spectrum of physicochemical properties. The substances were tested under both infinite-dose and finite-dose conditions, in ten laboratories, under strictly controlled conditions. The data were subjected to independent statistical analyses. Intra-laboratory and inter-laboratory variability contributed almost equally to the total variability, which was in the same range as that in preceding studies. In general, permeation of the RHE models exceeded that of human epidermis and pig skin (the SkinEthic RHE was found to be the most permeable), yet the ranking of substance permeation through the three tested RHE models and the pig skin reflected the permeation through human epidermis. In addition, both infinite-dose and finite-dose experiments are feasible with RHE models. The RHE models did not show the expected significantly better reproducibility, as compared to excised skin, despite a tendency toward lower variability of the data. Importantly, however, the permeation data showed a sufficient correlation between all the preparations examined. Thus, the RHE models, EPISKIN, EpiDerm and SkinEthic, are appropriate alternatives to human and pig skin, for the in vitro assessment of the permeation and penetration of substances when applied as aqueous solutions.  相似文献   

13.
Skin, the largest organ of the human body, is organized into an elaborate layered structure consisting mainly of the outermost epidermis and the underlying dermis. A subcutaneous adipose-storing hypodermis layer and various appendages such as hair follicles, sweat glands, sebaceous glands, nerves, lymphatics, and blood vessels are also present in the skin. These multiple components of the skin ensure survival by carrying out critical functions such as protection, thermoregulation, excretion, absorption, metabolic functions, sensation, evaporation management, and aesthetics. The study of how these biological functions are performed is critical to our understanding of basic skin biology such as regulation of pigmentation and wound repair. Impairment of any of these functions may lead to pathogenic alterations, including skin cancers. Therefore, the development of genetically controlled and well characterized skin models can have important implications, not only for scientists and physicians, but also for manufacturers, consumers, governing regulatory boards and animal welfare organizations. As cells making up human skin tissue grow within an organized three-dimensional (3D) matrix surrounded by neighboring cells, standard monolayer (2D) cell cultures do not recapitulate the physiological architecture of the skin. Several types of human skin recombinants, also called artificial skin, that provide this critical 3D structure have now been reconstructed in vitro. This review contemplates the use of these organotypic skin models in different applications, including substitutes to animal testing.  相似文献   

14.
The skin and its outer epidermis layer in particular, prevent access of various environmental agents including potential allergens, irritants, carcinogens, ultraviolet radiation and microbes. Cells in the epidermis make a significant contribution to innate as well as adaptive immune reactions in skin. The skin immunity thus provides a biologic defense in response to hazardous environmental agents. Although proteomics has been utilized to establish skin proteomes and investigate skin responses to some environmental agents, it has not been extensively used to address the complexity of skin responses to various environments. This review summarizes cutaneous genes and proteins that have been characterized as related to skin exposure to environmental agents. In parallel, this review emphasizes functional proteomics and systems biology, which are believed to be an important future direction toward characterizing the skin proteome–environmental interaction and developing successful therapeutic strategies for skin diseases caused by environmental insults.  相似文献   

15.
Reconstruction of the skin in three-dimensional collagen gel matrix culture   总被引:5,自引:0,他引:5  
Summary The skin comprises three layers: epidermis, dermis, and hypodermis. We report here on a skin, reconstructed in vitro, that is composed of all three layers. The topmost layer, epidermis, was exposed to air by a new method. The exposure induced an extensive proliferation, and differentiation, i.e. keratinization was eventually observed in the cultured epidermal cells. Skin thus cultured will be a useful graft of transplantation and provide an ideal model system in which to study diseases of the skin.  相似文献   

16.
Toads normally obtain water by absorption across their skin from osmotically dilute sources. When hyperosmotic salt solutions are presented as a hydration source to dehydrated desert toads, they place the ventral skin onto the source but soon afterwards escape to avoid dehydration. The escape behavior coincides with neural excitation of the spinal nerves that innervate putative chemosensory cells in the ventral skin. In the present study, fluorescent dye translocated through the spinal nerves to those receptor cells in the epidermis was photoconverted in the presence of 3, 3'-diaminobenzidine tetrahydrochloride for electron-microscopic observation of the cells and associated nerve terminals. Most of the photoconverted cells were located in the deepest layer of the epidermis, with some being in more intermediate layers. No labeled cell was seen in the outermost layer of living cells. In desert toads, flask cells and Merkel cells are occasionally seen in the epidermis. An association of nerve fibers with these epidermal cells has been reported in some species of the anurans. In the present study, however, the cytological features of the photoconverted cells are neither reminiscent of flask cells nor Merkel cells, but are similar to those of surrounding epithelial cells in each layer of the epidermis. We hypothesize a sensory function for these cells, because they have a close association with nerve fibers and participate in the transepithelial transport of salts that must pass through all cell layers of the skin.  相似文献   

17.
The skin and its outer epidermis layer in particular, prevent access of various environmental agents including potential allergens, irritants, carcinogens, ultraviolet radiation and microbes. Cells in the epidermis make a significant contribution to innate as well as adaptive immune reactions in skin. The skin immunity thus provides a biologic defense in response to hazardous environmental agents. Although proteomics has been utilized to establish skin proteomes and investigate skin responses to some environmental agents, it has not been extensively used to address the complexity of skin responses to various environments. This review summarizes cutaneous genes and proteins that have been characterized as related to skin exposure to environmental agents. In parallel, this review emphasizes functional proteomics and systems biology, which are believed to be an important future direction toward characterizing the skin proteome-environmental interaction and developing successful therapeutic strategies for skin diseases caused by environmental insults.  相似文献   

18.
Tissue engineering of cultured skin substitutes   总被引:11,自引:0,他引:11  
Skin replacement has been a challenging task for surgeons ever since the introduction of skin grafts by Reverdin in 1871. Recently, skin grafting has evolved from the initial autograft and allograft preparations to biosynthetic and tissue-engineered living skin replacements. This has been fostered by the dramatically improved survival rates of major burns where the availability of autologous normal skin for grafting has become one of the limiting factors. The ideal properties of a temporary and a permanent skin substitute have been well defined. Tissue-engineered skin replacements: cultured autologous keratinocyte grafts, cultured allogeneic keratinocyte grafts, autologous/allogeneic composites, acellular biological matrices, and cellular matrices including such biological substances as fibrin sealant and various types of collagen, hyaluronic acid etc. have opened new horizons to deal with such massive skin loss. In extensive burns it has been shown that skin substitution with cultured grafts can be a life-saving measure where few alternatives exist. Future research will aim to create skin substitutes with cultured epidermis that under appropriate circumstances may provide a wound cover that could be just as durable and esthetically acceptable as conventional split-thickness skin grafts. Genetic manipulation may in addition enhance the performance of such cultured skin substitutes. If cell science, molecular biology, genetic engineering, material science and clinical expertise join their efforts to develop optimized cell culture techniques and synthetic or biological matrices then further technical advances might well lead to the production of almost skin like new tissue-engineered human skin products resembling natural human skin.  相似文献   

19.
Few studies have suggested that neuropeptide Y (NPY) could play an important role in skin functions. However, the expression of NPY, the related peptides, peptide YY (PYY) and pancreatic polypeptide (PP) and their receptors have not been investigated in human skin. Using specific antisera directed against NPY, PYY, PP and the Y1, Y2, Y4 and Y5 receptor subtypes, we investigated here the expression of these markers. NPY-like immunoreactivity (ir) in the epidermal skin could not be detected. For the first time we report the presence of positive PP-like ir immunofluorescent signals in epidermal cells, i.e. keratinocytes of skin from three areas (abdomen, breast and face) obtained as surgical left-overs. The immunofluorescent signal of PP-like ir varies from very low to high level in all three areas. In contrast, PYY-like ir is only expressed in some cells and with varied level of intensity. Furthermore and for the first time we observed specific Y1 and Y4 receptor-like ir in all epidermal layers, while the Y2 and Y5 subtypes were absent. Interestingly, as seen in human epidermis, in Episkin, a reconstituted human epidermal layer, we detected the presence of PP-like as well as Y1-like and Y4-like ir. These data have shown the presence and distribution of PYY, PP and Y1 and Y4 receptors in the human skin and Episkin, suggesting possible novel roles of NPY related peptides and their receptors in skin homeostasis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号