首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract Aerobically germinated seedlings of rice and Echinochloa were found to survive when placed in an anaerobic environment for 4 d, whereas pea and maize seedlings did not. Although root and shoot growth were inhibited in rice and Echinochloa under anaerobiosis, growth resumed when the seedlings were returned to aerobic conditions. Alcohol dehydrogenase (ADH) activity increased more, and protein synthesis was greater, in the shoots than in the roots under anaerobic conditions. These results suggest that, in anaerobiosis-tolerant species, ADH activity and protein synthesis in the shoots represents or results from metabolic adaptations to low oxygen. These results are discussed in terms of plant establishment and growth in a low-oxygen environment.  相似文献   

2.
An important and interesting feature of rice is that it can germinate under anoxic conditions. Though several biochemical adaptive mechanisms play an important role in the anaerobic germination of rice but the role of phytoglobin-nitric oxide cycle and alternative oxidase pathway is not known, therefore in this study we investigated the role of these pathways in anaerobic germination. Under anoxic conditions, deepwater rice germinated much higher and rapidly than aerobic condition and the anaerobic germination and growth were much higher in the presence of nitrite. The addition of nitrite stimulated NR activity and NO production. Important components of phytoglobin-NO cycle such as methaemoglobin reductase activity, expression of Phytoglobin1, NIA1 were elevated under anaerobic conditions in the presence of nitrite. The operation of phytoglobin-NO cycle also enhanced anaerobic ATP generation, LDH, ADH activities and in parallel ethylene levels were also enhanced. Interestingly nitrite suppressed the ROS production and lipid peroxidation. The reduction of ROS was accompanied by enhanced expression of mitochondrial alternative oxidase protein and its capacity. Application of AOX inhibitor SHAM inhibited the anoxic growth mediated by nitrite. In addition, nitrite improved the submergence tolerance of seedlings. Our study revealed that nitrite driven phytoglobin-NO cycle and AOX are crucial players in anaerobic germination and growth of deepwater rice.  相似文献   

3.
The responses of two aquatic plants, arrowhead (Sagittaria pygmaea Miq.) and pondweed (Potamogeton distinctus A. Benn), to anoxia were compared with those of rice (Oryza sativa L.). Shoot elongation of arrowhead tubers was enhanced at around 1 kPa O2, whereas that of pondweed turions was slight in air and reached a maximum in the absence of O2. Anaerobic enhancement of alcohol dehydrogenase (ADH) activity took place in rice coleoptiles but not in arrowhead and pondweed shoots. Shoots of both arrowhead and pondweed maintained a more stable energy status than did the rice coleoptile under anaerobic conditions. Total adenylate nucleotide contents of arrowhead and pondweed shoots were constant under anaerobic conditions. Adenylate energy charge in both shoots remained at a high and stable level of more than 0·8 for at least 8 d. Three forms of ADH from arrowhead shoots were separated by starch gel electrophoresis, showing that the activity of each ADH form was different under aerobic and anaerobic conditions. The incorporation of 35S-labelled Cys and Met into soluble proteins in arrowhead shoots showed active protein biosynthesis and an involvement of a special set of polypeptides in the anaerobiosis.  相似文献   

4.
5.
The expression and anaerobic induction of alcohol dehydrogenase in cotton   总被引:1,自引:0,他引:1  
The alcohol dehydrogenase (ADH) system in cotton is characterized, with an emphasis on the cultivated allotetraploid speciesGossypium hirsutum cv. Siokra. A high level of ADH activity is present in seed of Siokra but quickly declines during germination. When exposed to anaerobic stress the level of ADH activity can be induced several fold in both roots and shoots of seedlings. Unlike maize andArabidopsis, ADH activity can be anaerobically induced in mature green leaves. Three major ADH isozymes were resolved in Siokra, and it is proposed that two genes,Adh1 andAdh2, are coding for these three isozymes. The genes are differentially expressed. ADH1 is predominant in seed and aerobically grown roots, while ADH2 is prominent in roots only after anaerobic stress. Biochemical analysis demonstrated that the ADH enzyme has a native molecular weight of approximately 81 kD and a subunit molecular weight of approximately 42 kD, thus establishing that ADH in cotton is able to form and is active as dimers. Comparisons of ADH activity levels and isozyme patterns between Siokra and other allotetraploid cottons showed that the ADH system is highly conserved among these varieties. In contrast, the diploid species of cotton all had unique isozyme patterns.This work was generously supported by an Australian Cotton Research Council Postgraduate Studentship.  相似文献   

6.
Summary Oryza sativa Loisel cultivar Mars., a common lowland rice variety was grown under controlled soil redox conditions (Eh) and acidity (pH). The effect of two variables (Eh and pH) on growth, anaerobic root respiration, and uptake of added labelled nitrogen, was investigated. Plant growth, estimated by dry weight showed significantly higher growth under reducing sediment redox potentials (−200 mV and 0 mV) and at a soil pH of 6.5 Using the activity of the inducible enzyme alcohol dehydrogenase (ADH) as an indicator of anaerobic root respiration, a decrease in redox potential resulted in an increase in root ADH. However, growth paralled increases in anaerobic root respiration suggesting nitrogen transformation in the soil to be a primary parameter governing growth. Labelled nitrogen uptake which was greater under anaerobic conditions apparently led to greater growth of lowland rice in the highly reduced or anaerobic soil treatments.  相似文献   

7.
Ability of metabolic adaptation in upland and lowland rice (Oryza sativa L.) seedlings to flooding stress was compared. Flooding stress increased alcohol dehydrogenase (ADH) activity and ethanol concentration in shoots and roots of the upland and lowland rice seedlings. The difference in ADH activity and ethanol concentration in shoots between the upland and lowland rice was not apparent. However, both ADH activity and ethanol concentration in roots of the lowland rice were 2-fold greater than those in roots of the upland rice, suggesting that flooding-induction of ethanolic fermentation in lowland rice roots may be significantly greater than that in the upland rice roots. Since flooding often causes the anaerobic conditions in rooting zone than aerial part of plants and ethanolic fermentation is essential to survive in the anaerobic conditions, the ability of metabolic adaptation in lowland rice seedlings to flooding stress may be greater than that in upland rice seedlings.  相似文献   

8.
Lupine seedlings were exposed to 4 kPa partial pressure oxygen (hypoxically pretreated) for 18 hours before treatment with strictly anaerobic conditions (anoxia). Seedlings previously exposed to hypoxia were more tolerant than the controls (not hypoxically pretreated) to anoxic stress in both roots and shoots. Hypoxic pretreatment induced roots and shoots survival in anoxia. Improved viability of roots, following hypoxic pretreatment, was associated with increased activity of ADH. In nonacclimated roots and shots significant increase in LDH activity occurd during the first hours under anoxia but the in vitro activity of LDH was two orders of magnitude lower than that of ADH. The results are discussed in relation to the ability of lupine seedlings to survive anoxia.  相似文献   

9.
Ferrara G  Loffredo E  Senesi N 《Planta》2006,223(5):910-916
The effects of the endocrine disruptor bisphenol A (BPA) at concentrations of 10 and 50 mg l−1 were evaluated on the germination and morphology, micronuclei (MN) content in root tip cells and BPA bioaccumulation of hydroponic seedlings of broad bean (Vicia faba L.), tomato (Lycopersicon esculentum Mill.), durum wheat (Triticum durum Desf.) and lettuce (Lactuca sativa L.) after 6 and 21 days of growth. In general, BPA at any dose used did not inhibit germination and early growth (6 days) of seedlings of the species examined, with the exception of primary root length of tomato which decreased at the higher BPA dose. In contrast, an evident phytotoxicity was induced by BPA in all species after 21 days of growth with evident morphological anomalies and significant reductions of the lengths and fresh and dry weights of shoots and roots of seedlings. With respect to the nutrient medium without seedlings, BPA concentration decreased markedly during the growth period in the presence of broad bean and tomato seedlings, and limitedly in the presence of durum wheat and, especially, lettuce. Further, the presence of BPA measured in roots and shoots of broad bean and tomato after 21-day growth indicated that bioaccumulation of BPA had occurred. The number of MN in broad bean and durum wheat root tip cells increased markedly by treatment with BPA at both concentrations, thus suggesting a potential clastogenic activity of BPA in these species.  相似文献   

10.
The vhb gene encoding Vitreoscilla haemoglobin (VHb) was transferred to barley with the aim of studying the role of oxygen availability in germination and growth. Previous findings indicate that VHb expression improves the efficiency of energy generation during oxygen-limited growth, and germination is known to be an energy demanding growth stage during which the embryos also suffer from oxygen deficiency. When subjected to oxygen deficiency, the roots of vhb-expressing barley plants showed a smaller increase in alcohol dehydrogenase (ADH) activity than those of the control plants. This indicates that VHb plants experienced less severe oxygen deficiency than the control plants, possibly due to the ability of VHb to substitute ADH for recycling NADH and maintaining glycolysis. In contrast to previous findings, we found that constitutive vhb expression did not improve the germination rate of barley kernels in any of the conditions studied. In some cases, vhb expression even slowed down germination slightly. VHb production also appeared to restrict root formation in young seedlings. The adverse effects of VHb on germination and root growth may be related to its ability to scavenge nitric oxide (NO), an important signal molecule in both seed germination and root formation. Because NO has both cytotoxic and stimulating properties, the effect of vhb expression in plants may depend on the level and role of endogenous NO in the conditions studied. VHb production also affected the levels of endogenous barley haemoglobin, which may explain the relatively moderate effects of VHb in this study.  相似文献   

11.
Long-term flooding imposes a strong selection pressure on plants for the development of protective mechanisms to alleviate the harmful effects of hypoxic and anoxic conditions. This is particularly critical in the Amazonian floodplains where plants withstand annual periods of flooding lasting 7 months and mean flooding amplitude reaching 10 m or more. Himatanthus sucuuba (Apocynaceae) is a tree that is found in the varzea (VZ) floodplains and non-flooded terra firme (TF) forests. It was examined whether individuals from these two contrasting habitats respond differently when subjected to extreme flooding conditions. TF and VZ seedlings were experimentally well-watered, waterlogged (roots and parts of the stems flooded), or submerged (whole plant flooded) during a 4-month period. Anaerobic respiration, evaluated by measuring alcohol dehydrogenase (ADH) activity, and root carbohydrate reserves were quantified, given that the availability of readily fermentable carbohydrates is essential to sustain an active fermentative metabolism. We also assessed changes in morphoanatomy, seedling survival, biomass accumulation and distribution. VZ seedlings had greater root concentrations of soluble sugars and starch, larger seedling mass and accumulated more biomass in roots and stems while TF seedlings allocated more towards stem and leaves. ADH activity was low in seedlings of both populations before exposure to flooding. Waterlogging induced an increase in ADH activity that reached a maximum value in 15 days. Thereafter activity decreased slowly, meanwhile a rapid formation of lenticels, adventitious roots and aerenchyma was observed. Submergence induced leaf shedding and the development of aerenchyma in the root cortex. While VZ seedlings maintained high levels of ADH activity throughout the whole 4-month period, ADH activity in TF seedlings peaked about 15 days after submersion followed by a continuous decrease and death of all the plants. Thus, VZ and TF seedlings differed considerably in terms of tolerating long-term exposure to flooding, especially under total submersion. These results suggest that the predictability and long-term duration of flooding in Central Amazon rivers can impose a selective pressure that is strong enough to result in large phenotypic differences between the two populations of H. sucuuba in the two habitat types.  相似文献   

12.
Activity of mitochondria isolated from whole seedlings of Echinochloa crus-galli (L.) Beauv. var oryzicola germinated under aerobic and anaerobic conditions for 5 to 7 days was investigated. Mitochondria from both treatments exhibited good respiratory control and ADP/O ratios. Although O2 uptake was low in anaerobic mitochondria, activity rapidly increased when the seedlings were transferred to air. Mitochondria from both aerobically and anaerobically grown seedlings of E. crus-galli var oryzicola maintained up to 66% of their initial respiration rate in the presence of both cyanide and salicylhydroxamic acid, and the inhibitory effects of cyanide and azide were additive. In addition, antimycin A was not an effective inhibitor of respiration. Reduced-minus-oxidized absorption spectra revealed that cytochromes a, a3, and b were reduced to a greater extent and cytochrome c was reduced to a lesser extent in anaerobically germinated seedlings relative to that in aerobically germinated seedlings. An absorption maximum in the cytochrome d region of the spectrum was reduced to the same extent under both germination conditions and an absorption maximum at 577 nm was present only in anaerobically germinated seedlings. Anaerobically germinated seedlings contained 70% of the cytochrome c oxidase activity found in air grown seedlings. Upon exposure to air, the developmental pattern of this enzyme in anaerobically germinated seedlings was similar to air controls. Succinate dehydrogenase activity in anaerobic seedlings was only 45% of the activity found in aerobically germinated seeds, but within 1 hour of exposure to air, the activity had increased to control levels. The results suggest that mitochondria isolated from E. crus-galli var oryzicola differ from other plants studied and that the potential for mitochondrial function during anaerobiosis exists.  相似文献   

13.
Flooding results in induction of anaerobic metabolism in many higher plants. As an important component of anaerobic energy production, alcohol dehydrogenase (ADH) activity increases markedly in response to flooding in white clover, Trifolium repens. Significant inter-individual variation in flood-induced ADH activity exists in natural populations of T. repens. The genetic basis of this variation was analyzed by offspring-midparent regression of data from 75 greenhouse reared families; the estimated heritability of flood-induced ADH activity was 0.55 (±0.13). Genetic variation in flood-induced ADH activity has pronounced effects on physiological response and flood tolerance in this species. ADH activity is positively correlated with the rate of ethanol production, indicating that observed in vitro activity differences are manifested in in vivo physiological function. T. repens plants with higher ADH activities during flooding have greater flood tolerance (measured as growth rate when flooded/unflooded growth rate). Variation in ADH activity during flooding accounts for more than 79% of the variance in flood tolerance. On the basis of a limited field survey of populations occupying three sites differing in exposure to flooding conditions, individuals from site C, the most frequently flooded site, expressed significantly higher average ADH activity when flooded than individuals from site A, a site with no history of flooding. Since ADH activity levels are not correlated with electrophoretic mobility variation in T. repens, this work supports previous suggestions that regulatory variation in enzyme activity may play a central role in biochemical adaptations to environmental stress.  相似文献   

14.
何彦龙  王满堂  杜国桢 《生态学报》2007,27(8):3091-3098
以高寒草甸克隆植物黄帚橐吾为实验材料,通过遮荫网模拟植被遮荫,研究种子大小与萌发及幼苗生长能力的关系和幼苗对光照条件的反应。结果表明:(1)在自然光照下,黄帚橐吾种子大小对种子萌发的影响显著,大种子的萌发率高于小种子。遮荫生境下,大、小种子萌发率有所降低,但遮荫对小种子萌发的影响比大种子显著。小种子的萌发率下降了近1/8,而大种子的萌发率仅下降了1/11。(2)黄帚橐吾种子大小对幼苗生物量积累影响显著,大种子幼苗总生物量(TB)大于小种子幼苗的。但生物量的分配与播种时间相关,播种后60 d,在自然光照条件下,大种子幼苗对根生物量的分配大于小种子幼苗,而对叶生物量的分配则正好相反。在遮荫环境中,大、小种子幼苗普遍对根的生物量分配增加,大种子幼苗根冠比(R/S)大于小种子幼苗。(3)黄帚橐吾种子大小对幼苗的生长也有明显影响。在自然光照下,小种子幼苗的相对生长速率(RGR)较大于大种子幼苗,但叶面积比率(LAR)、叶面积干质量比(SLA)、叶干质量(LWR)差别不明显。在遮荫条件下,幼苗的LAR、SLA、LWR显著增加,但大、小种子幼苗间差异不显著,幼苗的RGR减小,小种子幼苗的减小趋势大于大种子幼苗。  相似文献   

15.
Primary root growth dynamics and lateral root development of dark- and light grown cotton seedlings (Gossypium hirsutum L., cv. Acala SJ-2) were studied under control and salinity stress conditions. The seedlings were grown by two methods: A) in paper-lined, vermiculite-filled beakers with the plants growing between the paper and the glass wall (Gladish and Rost, 1993), and B) in hydroponics after germination and initial growth in germination paper rolls saturated with the treatment solutions (Kent and Läuchli, 1985). After germination, daily primary root elongation rate gradually incrased to a maximum, then gradually declined to close to zero for dark-grown seedlings, or to sustained rates of about 10 mm per day for light-grown control plants. Salinity stress delayed primary root growth and reduced peak elongation rates, without changing the general primary root growth pattern. These results suggest that salinity changed the time-scale, but did not modify the normal developmental sequence. Lateral root growth was more inhibited by salinity than primary root growth. In addition, elongation of lateral roots was more inhibited by salinity than their initiation and emergence. Light exposure of the shoot favored both sustained primary root growth from 7 days after planting, and lateral root emergence and growth. Salinity effects were more severe on seedlings germinated and grown in hydroponics (method B) than on vermiculite-grown plants (method A). These results emphasize the importance of growing conditions for the NaCl-induced effects on cotton root development. In addition, the differential effects of salinity on primary and lateral roots became evident, pointing to diverse control mechanisms for the development of these root types.  相似文献   

16.
The pattern of protein synthesis was compared in several organs of maize (Zea mays L.) under aerobic and anaerobic conditions. Protein synthesis was measured by [35S]methionine incorporation and analysis by two-dimensional native-SDS (sodium lauryl sulfate) polyacrylamide gel electrophoresis and fluorography. The aerobic protein-synthesis profiles were very different for root, endosperm, scutellum and anther wall. However, except for some characteristic qualitative and quantitative differences, the patterns of protein synthesis during anaerobiosis were remarkably similar for these diverse organs and also for mesocotyl and coleoptile. The proteins synthesized were the anaerobic polypeptides (ANPs) which have been previously described in anaerobic roots of seedlings. Leaves exhibited no detectable protein synthesis under anaerobic conditions, and died after a short anaerobic treatment. Evidence is presented that the ANPs are not a generalized response to stress. This indicates that the ANPs are synthesized as a specific response to anaerobic conditions such as flooding.Abbreviations ADH alcohol dehydrogenase - ANP anaerobic polypeptide - SDS sodium lauryl sulfate  相似文献   

17.
Difference in the growth response to submergence between coleoptiles and roots of rice (Oryza sativa L.) was investigated in 9-d-old rice seedlings. The coleoptile length in the submergence condition was much greater than that in aerobic condition, whereas the root length in the submergence condition was less than that in the aerobic condition. Alcohol dehydrogenase (ADH) activity in the coleoptiles in the submergence condition was much greater than that in the aerobic condition, but ADH activity in the roots in the submergence condition increased slightly. These results suggest that the preferential ADH induction in rice seedlings may contribute to the difference in the growth response between the coleoptiles and roots under low oxygen conditions.  相似文献   

18.
The objective of this work was to elucidate a possible adaptive role of lipid biosynthesis and unsaturated fatty acids (FAs), esterified to lipids, as terminal acceptors of electrons, alternative to molecular oxygen, in the shoots of rice seedlings (Oryza sativa L.) under conditions of strict anoxia. Biosynthesis of lipids and their accumulation, as well as the reduction of double bonds in unsaturated FAs, were studied by electron microscopic observation of the accumulation of lipid bodies in the cytoplasm and by the biochemical analysis of FAs in shoot lipids before and after anaerobic incubation of the shoots. The experiments were carried out with intact coleoptiles after 5 and 8 days of anaerobic germination of seeds (primary anoxia) and with detached shoots, preliminarily grown in air and then subjected to anoxia in the presence of 2% glucose for 48 h (secondary anoxia). In these experiments, lipid bodies did not accumulate in the cytoplasm under anoxic conditions. Lipid bodies appeared only during 48-h anaerobic incubation of detached coleoptiles in the absence of exogenous glucose, when mitochondria degraded. There was no change either in the double bond index of FAs, or in the qualitative and quantitative composition of FAs during shoot anaerobic incubation. We conclude that neither lipids synthesized under anaerobic conditions nor esterified unsaturated FAs are involved in plant adaptation to anaerobiosis as terminal acceptors of electrons, alternative to molecular oxygen. Lipid biosynthesis under anoxic conditions, which was demonstrated for anoxia-tolerant seedlings of Oryza sativa and Echinochloa phyllopogon in experiments with radioactive precursors, 14C-acetate and 3H-glycerol, is only the manifestation of a turnover of saturated FAs and various classes of lipids, which stabilizes cell membranes under adverse conditions of strict anoxia.__________Translated from Fiziologiya Rastenii, Vol. 52, No. 4, 2005, pp. 540–548.Original Russian Text Copyright © 2005 by Generosova, Vartapetian.  相似文献   

19.
In order to clarify the effect of abscisic acid (ABA) on anaerobic tolerance in alfalfa ( Medicago sativa L.), the seedlings were subjected to anaerobic stress after pretreatment with ABA. At concentrations> 1 μ M , ABA pretreatment increased the root viability of the seedlings to anaerobic stress and the viability increased with increasing ABA doses. At 100 μ M ABA, the viability was 2.5-fold greater as compared with that of control seedlings. Roots of the seedlings rapidly lost ATP under the anaerobic stress; however, the decrease in ATP was much slower in the ABA-pretreated seedlings than the control seedlings. At 12 h after onset of the stress, ATP concentrations in the roots of 100 and 10 μ M ABA-pretreated seedlings were 2.7- and 2.0-fold that of the control seedlings, respectively. During the period of ABA pretreatment under aerobic condition, ABA increased alcohol dehydrogenase (ADH, EC 1.1.1.1) activity in the roots until 12 h and then leveled off. The maximum ADH activities were 4.3- and 2.8-fold that in the roots of the control seedlings for 100 and 10 μ M ABA-pretreated seedlings, respectively. After being subjected to the anaerobic stress, both ADH activities in the roots of the ABA-pretreated and the control seedlings increased but the differences in their activity remained. These results suggest that ABA pretreatment may maintain ATP level due to induction of ADH activity, which may be one of the causes of increasing anaerobic tolerance in the seedlings.  相似文献   

20.
为揭示植物适应锰胁迫的生理机制,通过在不同Mn2+浓度(0、1、5、10、15、20 mmol/L)下开展盐肤木(Rhus chinensis)种子萌发以及幼苗生长实验,检测锰胁迫处理7、15、30 d后幼苗生理生化特性的变化。结果表明:(1)随着Mn2+浓度的升高,盐肤木种子发芽率变化不显著,在80.0%-81.6%之间,发芽势、发芽指数和活力指数则呈先升后降的趋势;其幼苗生物量也呈现先升后降的趋势;(2)随着Mn2+浓度的升高与胁迫时间的延长,盐肤木幼苗叶绿素a、叶绿素b含量均呈现先增加后降低的趋势,类胡萝卜素含量呈现下降的趋势;(3)胁迫7 d时,随着Mn2+浓度的升高,盐肤木幼苗超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)活性均显著上升;胁迫15、30 d时,高Mn2+浓度(15-20 mmol/L)下POD、CAT活性则均降低;(4)胁迫7 d时,随着Mn2+浓度的升高,可溶性糖、可溶性蛋白、游离脯氨酸含量升高;胁迫15、30 d时,在Mn2+浓度为20 mmol/L时可溶性蛋白与游离脯氨酸含量显著降低;(5)随着Mn2+浓度的升高与胁迫时间的延长,丙二醛(MDA)含量均升高。研究说明盐肤木具有较强的耐受锰胁迫能力,它可通过增强抗氧化酶活性、积累渗透调节物质含量来应对锰胁迫。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号